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A NOTE ON FINITE HYPERBOLIC PLANES
OBTAINED FROM PROJEKTIVE PLANES

S. Olgun, I. Ozgiir & I. Giinaltily

Abstract

Let II be a finite projective plane of order n and M be a set, |[M| = m, of
any lines of Il which contains three non-concurrent lines. Consider the hyperbolic
plane II,, obtained from II by removing all lines (including all points on them) of
M. In this paper, we obtain larger values than the known maximum value of m
and determine the line classes of some hyperbolic planes of type II,,. Furthermore
we give an answer to a question in Bumcrot [1] about hyperbolic planes containing
two-point liens.

1. Preliminary Definitions and Propositions

An incidence structure is an ordered triple of sets (P, £,I), where PNL =0,1 C
PxL. For Pin P and [ in £L,PI [ isread “P is on [”. We also write this [ I P.

Definition 1.1. A linear space is an incidence structure (P, L,I) satisfying:

L1. Each two distinct points are on exactly one line.
L2. Each line is on at least two points.

Definition 1.2. A hyperbolic plane is a linear space (P, L,I) satisfying:

H1. Through each point P, not on a line [, there pass at least two lines not
meeting .

H2. There exist at least four points, no three of which are collinear.

H3. If a subset S of P contains three non-collinear points and contains all points
on the lines through pairs of distinct points of S, then S contains all points of P.

If S =(P,L,I) is a linear space, we define as usual v = |P|,b = |L|, where | |
denotes cardinality. For each point P and line [ of S, let

r(P) Hlel: PIl}
k() = |{PeP: PIl}
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If v is finite, then all of these numbers as well as |I| are finite, in this case we say S is
finite. For finite S we further define

km = min{k(l) : € L}

kv = max{k(l) : le L}
rm = min{r(P) : P € P}
ry = max{r(P) : PeP}

The following proposition is easy consequence of axiom H1.

Proposition 1.1 (Bumcrot [1]). If a two-dimensional linear space S contains three
distinct points Py, Py, Py such that k(P,P;) = 2 for 1 < i < j < 3, then S is not a
hyperbolic plane.

Proposition 1.2 (Bumcrot [1]). Any finite linear space satisfying:

1. 7y > kpr +2
2. km(km—l) >y
is a hyperbolic plane.

2. Some Hyperbolic Planes Obtained From Projective Planes by Removing
Some Lines.

Let IT = (P, L,I) be a finite projective plane of order n, and M be a set of lines
in II satisfying:

C. Every line of II meets lines of M in at least two distinct points.

Let @ be the set of all points of P that are on at least one line of M. Then the
substructure

Hm=(P_Qa£_M7[m<P—Q)X(£_M))

is a hyperbolic plane, if 3<m <n+ %(1 —+/4n +5) and n > 5, where m = |M]|.

Here, the inequality m < n + %(1 — V/4n +5) is a sufficient but not necessary
condition. In fact, when M consists of lines such that no three of them are concurrent,
denife a corner point as an intersection point of any two lines in M. If the minimum
number of corner points on any line of II,, is r and

1
3§m§n+r+5(1~\/4n+5), n>5,

then II,, is a hyperbolic plane (see Kaya-Ozcan 12]).
Recall that in this case, if n is odd, m < n+ 1 and if n is even, m < n + 2.
Therefore there are two cases:
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Case I: Let n be odd. If m = n+ 1, that is, the elemnts of M are tangent lines of an
oval O, then II,, = IIZ,, is the hyperbolic plane model of Ostrom [4].

If n elements of M are removed from II, then 19 is not a hyperbolic plane, since
each tangent line in TI9 contains only one point in II9. On the other hand, if m tangent
lines of O are removed from II, where 3 < m < n — 1, then II¢ is a hyperbolic plane
which can be easily shown.

Case II. Let n be even. If m = n + 2, then it is known that Il is hyperbolic plane
(Olgun [3]). However, I1,,41,1I, and II,,_; are not hyperbolic planes since 1,1 contains
a line which has no point in II,, 41, IT,, contains two lines, each of which has only one point
in 1L, and II,,_; contains three lines which form a triangle and every one of which has
only two points in TI,,_;. (See Prop.1.1).

On the other hand, one can easily show that II,, is a hyperbolic plane for 3 <
m < n — 2. Now we give a proposition which will show taht the proposition is still true
for larger values of m.

Proposition 2.1. Let II be a projective plane of order n and M be a set of m lines

that contains n+ 1 or n + 2 lines which no three concurrent, according as n is odd or

even, respectively. Denote by II,, the structure obtained from I by removing all lines

(including all points on them ) of M.

3n—V4An+5
2

3n+3—+VAn+5

n+2<m< 5 forn > 8, when n is even,

Ifn+1<m< for n > 7, when n is odd

or

then Il,, s a hyperbolic plane.

Proof. We give the proof for n odd.

L1. Clearly any two distinct points in I, , as points of II, are on exactly one line
in II,, .
L2. Any line of II,, is on at least

n—1 n—1 3n+1
n+1—[ 5 +<m—2< 5 ))}— 2 -m

points in II,, since it has at most "Tfl corner points.
n+1 3n+1 3In—+v4n+5 14++4n+5 .
g M=o - 5 = 5 > 2,(n > 7) even if

n—+v4n+5

m=—D—"- So, any line of II,,, has more than two points. Thus, L1 and
L2 imply that II,, is a linear space.
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In II,,, since r,, =73y =n+ 1 and kM§n+3,
™m > ka4 2 (1)
Since k,, = 3n+1 - m,
2
km(km~1):3n+12_2m <3n+12—2m_1> :3n+12—2m.3n—12—2m

Thus ky,(km —1) > n+ 1, since m < 3"—“%4"—?. Therefore we have
km(k?m - 1) Z M (2)

It follows from Proposition 1.2 the inequalities (1)-(2) imply that the linear space
IT,,, is a hyperbolic plane.
If n is even the proof is similar. a

Open question: Let II,, be the hyperbolic plane obtained in Proposition 2.1. Is there
any value of m which is larger than obtained in Proposition 2.1?

The classification of sets of lines with respect to the number of points on each line
of a hyperbolic plane obtained from II by removing some lines, in particular, no three
of them are concurrent is an important subject. In the mean time, the lines of some
hyperbolic planes of this type have been classified by some authors. For example, line
classes of the hyperbolic planes II3, 114, II5,IIs and II7, have been determined. Also the
line classes of the hyperbolic planes II$_; and I1¢_, are examined in Ozcan—Olgun—Kaya

[5].

The Classification of Lines.

Let II,, be a hyperbolic plane obtained from I by removing m lines such that no
three of them are concurrent. Then the lines of II,, are classified as follows.

The set of lines of II,,, every one of which contains exactly s corner points, is
called a class and denoted by C,.

Unless otherwise stated, II,, will be understood as defined above.

Now, we recall, without proof, two results on line classes of the hyperbolic planes
I3, 104,15, Hg and II7 given in Ozcan-Olgun-Kaya [5].

Corollary 2.1. For any hyperbolic plane 11, with m € {3,4,5},
Q) 1 (m) m — 2
V=51, 2
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@ a=(7)n-1- (m;Z)
e ) (53 )

where g, = |Cs],s=0,1,2.

Corollary 2.2. The number of lines in Cy,Cv,Cs of any hyperbolic plane of type Ilg
or 11z can be determined in terms of the number of lines in Cs as follows:

g2 = 45 — 3¢g3 g2 = 105 — 3q3
g1 =15(n —7) + 3¢3 or ¢ =21(n—11)+ 3g3
go =n? —14n + 55 — ¢3 go = n? —20n 4 120 — g3

respectively.

Proposition 2.2. Let II be a projective plane of even order n. Let H be a dual

hyperoval i II and Il,, be a hyperbolic plane obtained from II by removing m lines,

m € {n—2,n—3}, of H. Then there exist three line classes in I1,, o and T, _3, namely,

C’n 6 Cn 4 and Cn 2 which are in Il,,_y and C’,_ S,C"n;2 and C', ., which are in 11,,_3.
2 2

Furthermore
gn_t = qo,qn=4 = q1, gn=2 = g2 and gn_s = G5, qn-6 = G}, qn_s = G5,
2 2 2 2 2 2
where qs, is related to 11y and q, is related to 15 as in Corollary 2.1, (s =0,1,2).

Sketch of proof. The proof of the first part is straightforward. For the second part,
consider the lines which complete m lines (m € {n—2,n—3}, to n+2 lines of H. Then,
the classes Cn 6 Cn 4 C'n. 2 of II,_5 and the classes Cy,C1,Co of I14 are the same,
that is, Cn 6 —C(],Cn 4 —Cland Cn 2 = Cy.

Likewise, the classes C’,_ S,C’L G,C’n 4 of II, 5 and the classes C{,Cy, C} of 1I;
are the same, that is, C”n s = C’ C”,, 6 = C1 andC’n . =CY.

(Recall that g, and q.,,s =0, 1, 2 is known for m =4 and m =5, from Corollary
2.1., respectively). Thus the proof is finished. O

Proposition 2.3. Let II be a projective plane of order n, with n even, H be a dual
nyperoval in Il and IL,, be a hyperbolic plane obtained from TI by removing m lines
m € {n—4,n—5} of H, then there exist for line classes in I1,,_4 and I1,,_5. Then there
exist for line classes in 11,4 and I1,_5, namely, Cg;_i, , 4 € {4,6,8,10} which are in
I,,_4 and C',_;,j € {6,8,10,12} which are in TL,,_5.

2

Furthermore
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qre = 45 — 3¢n-a,gn-s = 15(n — 7) + 3qn_—4,qn—210 =n? — 14n + 55 — qns in
2 2 2 2
M4, and ¢’ s = 105—3q",_¢,q%_10 = 21(n—11)+3¢"s_s,¢n_1s =n*—20n+120—¢, ,
2 2 2 2
mn Hn_5. ’ :

Sketch of proof. The proof of the first part is straightforward. For the second part,
consider again the lines which complete m lines, m € {n — 4,n — 5}, to n + 2 lines
belong to H. Then, the classes Cl‘%—(e—k) = C%m+k of II,,_4 and the classes C} of
Ils, k € {0,1,2,3} are completely the same. Therefore, one can easily write

Gn-s =45 —3¢n-s,qn-s = 15(n —7) 4+ 3¢n-s,¢n=10 =n° — 14n + 55 — gn_s
2 2 2 2 2 2

from Corollary 2.2 The proof for II,,_5 is similar to above.

3. Some Models of the Hyperbolik Planes Containing two-Point Lines

The following proposition constitutes an answer for question in Bumcrot [1]: “How
many two-point lines can be on a given point in a hyperbolic plane?”.

Proposition 3.1. Let I1 be a projective plane of order n. Remove n—1 lines (including
all points on them) from II such that n — 2 of them are concurrent. Denote this sub-
structure as Il,_;. If Il is not a Fano plane, that is, the diagonal points of any complete
quadrangle in 11 are not collinear and n > 5, then Il,_, is a hyperbolic plane.

Proof. Let I;, {,(: =1,2,3,...,n—2), be removed lines from II to obtain the hyperbolic
plane Il,,_; and the lines l;, (i =1,2,...,n — 2) be concurrent at the point Q. Denote,
LAL=Q; (1=1,2,...,n—2), and the other points of | as Q,_1, Qn, Qry1-

It is clear that any line of II,,_; on a point Q;,(j = n —1,n,n + 1), but not on
(o is a line including only two points of II,,_; (two-point line). So, there exist exactly
two two-point lines on any point of II,,_;.

We now start with the satisfaction of the hyperbolic plane conditions.

L1. Clearly, any two distinct points in II,,_; as points of II are on exactly one line
in Hn—l-

L2. Let II,,.1 = (P, L', I') and d € L.

If d does not contain I; Al for 1 < i < n —2, then k(d) = 2 or k(d) =n — 1.
Hence k,,, = 2. Therefore, each line of II,,_; contains at least two points.

H1. II,,-; has b=n?+2 lines, 3n — 3 of them have degree 2,n% — 3n + 2 of them
have degree of 3, and the remaining three of them have degree n — 1. So through each
point which is not on a line d there exists at least two lines that do not meet d.

H2. All lines, which are of degree n — 1 do not meet in II,,_;. So there exist at
least four points with no three collinear.

H3. Let S be a subset of P’.
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Suppose that S contains three non-collinear points and all point on the lines
through pairs of any distinct points of S.

If S contains three distinct non-collinear points A, B,C such that k(AB) =
k(AC) =2 in II,—; and AQ,I'Qo then {A4,Qo,Qn-1,Qnt1} is a complete quadrangle
in II and the diagonal points, Q,,B,C of this quadrangle in II are not collinear, since
IT is not a Fano plane. So the line BC' is not on Q,,. Therefore k(BC) =3 in II,_; and
5> 4.

Suppose first that |S| = 4 and S consists of all points on the triangle {A, B, C}.
kE(BC) = 3. Therefore S contains all points of the line AD.

If EI'AD then S contains all points of the line BE and the line CE. So k(BE) =
k(CE) = 3.

If GI'BE and FI'CE, then GI'l,_, and FI'l,. ;. Therefore S contains all
points of P’. The proof for |S| > 4 is entirely similar to the proof for |S| = 4. O

Remark: Consider the hyperbolic plane II ; in the case I of section 2. TIZ_, has

exactly two two-point lines meeting at a point of I ; (two tangent lines, not removed,
of O).
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PROJEKTIF DUZLEMLERDEN ELDE EDILEN SONLU HiPERBOLIK

84

DUZLEMLER UZERINE BiR NOT

6zet

IT mertebesi n olan sonlu bir projektif diizlem, M de II nin noktadag olmayan
ii¢ dogru kapsayan herhangi dogrular ciimlesi, |[M| = m, olsun. II den M nin
tim dogrularimin iizerlerindeki tiim noktalariyla birlikte atilmasiyla elde edilen II,,
hiperbolik diizlemi igin m nin bilinen degerlerinden daha biiyiik olan baz degerler
elde edildi. II,, tipi baz1 hiperbolik dizlemlerin dogru siniflar1 belirlendi. Bundan
bagka Bumcrot[1] de iki noktah dogrular kapsayan hiperbolik diizlemlere dair bir
soruya cevap verildi.
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