Tr. J. of Mathematics 21 (1997), 61 – 68. © TÜBİTAK

SOME NEW SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

Ayhan Esi

Abstract

In this paper we introduce and examine some properties of three sequence spaces defined by using a sequence of moduli.

Introduction

Ruckle [6] used the idea of a modulus function f to construct the sequence space

$$L(f) = \{x(x_k): \sum_{k=1}^{\infty} f(|x_k|) < \infty\}.$$

This space is an FK space and Ruckle proved that the intersection of all such L(f) spaces is Φ the space of finite sequences, thereby answering negatively a question of A. Wilansky; "Is there a smallest FK-space in which the set $\{e_1, e_2, ...\}$ of unit vectors in bounded?"

The space L(f) is closely related to the space l_1 which is an L(f) space with f(x) = x for all real $x \ge 0$. Ruckle proved that, for any modulus f,

$$L(f) \subset l_1 \text{ and } L(f)^{\alpha} = 1_{\infty}$$

where

$$L(f)^{\alpha} = \{ y = (y_k) : \sum_{k=1}^{\infty} |y_k x_k| < \infty \text{ fo all } x \in L(f) \}$$

is the α -dual of L(f).

Let $A = (a_{nk})$ be an infinite matrix of nonnegative real numbers and let $p = (p_k)$ be a sequence of real numbers such that $p_k > 0$ for all k and $\sup_k p_k = H < \infty$. This

¹⁹⁸⁰ Mathematics Subject Classification: $40\,A05\text{-}40\,C05\text{-}40\,D05$ Key words: Squence Spaces, Modulus Function, Paranorm.

assumption is made throughout the rest of this paper. We write $A_n(x)\sum_k a_{nk}|x_k|^{p_k}$ if

the series converges for each n ad $A_{m,n}(x) = \sum_{k} a_{mk} |x_{k+n}|^{p_k}$ if the series converges

for each m and n. (Here and afterwards summation without limits run from 1 to ∞). Following Ruckle [6] and Maddox [2], we recall that a function $f:[0,\infty)\to[0,\infty)$ such that modulus f is

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$, for all $x \ge 0, y \ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

It follows from (ii) and (iv) that f must be continuous everywhere on $[0, \infty)$.

In the present note we introduce and examine some new sequence spaces by using a sequence of moduli.

Definition 1. Let F be a sequence of moduli and suppose that $A = (a_{mk})$ be a nonnegative regular matrix. We define

$$w_0[A, p, F] = \left\{ x \in w : \lim_m \sum_k a_{mk} \left[f_k (|x_{k+n}|) \right]^{p_k} = 0 \text{ uniformly in } n \right\},$$

$$w[A, p, F] = \left\{ w \in w : \lim_m \sum_k a_{mk} \left[f_k (|x_{k+n}| - L|) \right]^{p_k} = 0, \text{ for some } L, \text{ uniformly in } n \right\},$$

$$w_{\infty}[A, p, F] = \left\{ x \in w : \sup_{m,n} \sum_k a_{mk} \left[f_k (|x_{k+n}|) \right]^{p_k} < \infty \right\},$$

For a sequence of moduli $F = (f_k)$ we give following conditions:

- $(C_1) \sup_k f_k(t) < \infty \text{ for all } t > 0;$
- (C_2) $\lim_{t\to 0} f_k(t) = 0$ uniformly in $k \ge 1$.

We remark that in case $f_k = f(k \ge 1)$, where f is a modulus, the conditions (C_1) and (C_2) are automatically fulfilled.

When $f_k = f$ and $p_k = 1$ for all k, we denote these sequence spaces by $w_0[A, f], w[A, f]$ and $w_{\infty}[A, f]$. If $x \in w[A, f]$; we say that x is strongly almost A-summable to L with respect to the modulus f.

When $A = (a_{mk}) = (C, 1)$ Cesaro matrix, $f_k = f$ and $p_k = 1$ for all k, we obtain generalization of the sequence spaces $[F_0(f)], [F(f)]$ and $[F_{\infty}(f)]$ which were defined by Pehlivan [7]. If $x \in [F(f)]$, we say that x is strongly almost convergent to L with respect to the modulus f.

If $[\hat{c}]$ denotes the set of all strongly almost convergent sequences, Maddox [1]

$$[\hat{c}] = \left\{ x : \lim_{m} \frac{1}{m} \sum_{k=1}^{m} |x_{k+n} - L| = 0, \text{ uniformly in } n \right\}$$

Note that if A = (C,1) Cesaro matrix $p_k = 1$ and $f_k(x) = x$ for all k, then $w[A, p, f] = [\hat{c}]$. Also in this case $w_{\infty}[A, p, f] = l_{\infty}$.

We now establish a number of useful theorems.

Therem 1. $w_0[A, p, F], w[A, p, F]$ and $w_{\infty}[A, p, F]$ are linear spaces over the complex field C.

Proof. We consider only w[A, p, F]. Others can be treated similarly. If $H = \sup_k p_k$ and $K = \max(1, 2^{H-1})$, we have Maddox [3] (p. 346).

$$|a_k + b_k|^{p_k} \le K \cdot (|a_k|^{p_k} + |b_k|^{p_k}) \tag{1}$$

Suppose that $x \to L_1(w[A, p, F])$ and $y \to L_2(w[A, p, F])$. For $\lambda, \mu \in C$, there exists M_{λ} and N_{μ} integers such that $|\lambda| \le M_{\lambda}$ and $|\mu| \le N_{\mu}$. For (1), we write

$$A_{m,n}[F(\lambda x + \mu y - (\lambda L_1 + \mu L_2)e)] \le K(M_{\lambda})^H A_{m,n}(F(x - L_1e)) + K(N_{\mu})^H A_{m,n}(F(y - L_2e))$$
(2)

Where $A_{m,n}F((x)) = \sum_k a_{mk} \Big[f_k \big(|x_{k+n}| \big) \Big]^{p_k}$ and e = (1, 1, 1, ...). If follows from (2) $\lambda x + \mu y \to \lambda L_1 + \mu L_2(w[A, p, F])$ and completes the proof. \square

Theorem 2. Let A be a nonnegative matrix and $F = (f_k)$ be sequence of moduli. If (C_1) holds then,

$$w[A, p, F) \subset w_{\infty}[A, p, F]$$

Proof. It is a direct consequence of Property (1).

Theorem 3. $w_0[A, p, F]$ and w[A, p, F] are complete linear topological spaces paranormed by g defined by

$$g(x) = \sup_{n,m} \left\{ \sum_{k} a_{mk} \left[f_k \left(|x_{k+n}| \right) \right]^{p_k} \right\}^{\frac{1}{M}}$$

Where $M = \max(1, H = \sup_k p_k)$.

Proof. From Theorem 2, for each $x \in w[A, p, F], g(x)$ exists. Clearly g(0) = 0, g(x) = g(-x) and by Minkowski's inequality $g(x+y) \leq [g(x)] + g(y)$. We now show that the scalar multiplication is continuous. Whence $\lambda \to 0, x \to 0$ imply $g(\lambda x) \to 0$ and also $x \to 0, \lambda$ fixed imply $g(\lambda x) \to 0$. We now show that $\lambda \to 0, x$ fixed imply $g(\lambda x) \to 0$.

Let
$$x \in w[A, p, f]$$
, then as $m \to \infty$,

$$b_{m,n} = \sum_{k} a_{mk} \Big[f_k \big(|x_{k+n} - L| \big) \Big]^{p_k} \to 0$$
 uniformly in n .

For $|\lambda| < 1$ we have

$$\left\{ \sum_{k} a_{mk} [f_k(|\lambda x_{k+n}|)]^{p_k} \right\}^{\frac{1}{M}} = \left\{ \sum_{k} a_{mk} \left[f_k (|\lambda x_{k+n} - \lambda L + \lambda L|) \right]^{p_k} \right\}^{\frac{1}{M}} \\
\leq \left\{ \sum_{k} a_{mk} \left[f_k (|(\lambda x_{k+n} - \lambda L)|) + f_k (|(\lambda L)|) \right]^{p_k} \right\}^{\frac{1}{M}}$$

By Minkowski's inequality

$$\leq \left\{ \sum_{k} a_{mk} \left[f_k \left(\left| (\lambda x_{k+n} - \lambda L) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} + \left\{ \sum_{k} a_{mk} \left[f_k \left(\left| (\lambda L) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} \\
\leq \left\{ \sum_{k>n} a_{mk} \left[f_k \left(\left| x_{k+n} - L \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} + \left\{ \sum_{k\leq N} a_{mk} \left[f_k \left(\left| \lambda x_{k+n} - \lambda L \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} \\
+ \left\{ \sum_{k} a_{mk} \left[f_k \left(\left| (\lambda L) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}}$$

Let $\epsilon > 0$ and choose N such that for each n, m and k > N implies $b_{m,n} < \epsilon/2$. For each N, by continuity of f_k for all k, as $\lambda \to 0$,

$$\left\{ \sum_{k \leq N} a_{mk} \left[f_k \left(|\lambda(x_{k+n} - L)| \right) \right]^{p_k} \right\}^{\frac{1}{M}} + \left\{ \sum_k a_{mk} \left[f_k \left(|\lambda L| \right) \right]^{p_k} \right\}^{\frac{1}{M}} \to 0$$

Then choose $\delta < 1$ such that $|\lambda| < \delta$ implies

$$\left\{ \sum_{k \leq N} a_{mk} \left[f_k \left(|\lambda(x_{k+n} - L)| \right) \right]^{p_k} \right\}^{\frac{1}{M}} + \left\{ \sum_k a_{mk} \left[f_k \left(|\lambda L| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \frac{\epsilon}{2}$$

Hence we have

$$\left\{ \sum_{k} a_{mk} \left[f_k \left(|\lambda x_{k+n}| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \epsilon$$

and $g(\lambda, x) \to 0 (\lambda \to 0)$. Thus w[A, p, F] is paranormed linear topological space by g. Now, we show that w[A, p, F] is complete with respect to its paranorm topologies. Let (x^i) be a Cauchy sequence in w[A, p, F]. Then, we write

$$G(x^i - x^j) \to 0 \text{ as } i, j \to \infty$$
 (3.1)

Hence for each fixed n and k, as $i, j \to \infty$, we have

$$\left[f_k\Big(\big|(x_{k+n}^i-x_{k+n}^j)\big|\Big)\right]^{p_k}\to 0$$

By continuity of f_k for all k

$$\lim_{i,j\to\infty} \left[f_k \Big(\big| (x_{k+n}^i - x_{k+n}^j) \big| \Big) \right]^{p_k} = \left[f_k \Big(\lim_{i,j\to\infty} \Big| \big(x_{k+n}^i - x_{k+n}^j \big) \Big| \Big) \right]^{p_k} = 0$$

Since f_k is modulus for all k,

$$\lim_{i,j\to\infty} \left| \left(x_{k+n}^i - x_{k+n}^j \right) \right| = 0$$

and for each fixed n and k (x_{k+n}^i) , be a Cauchy sequence in C. Since C is complete, as $i \to \infty(x_{k+n}^i) \to (x_{k+n})$ say. Now from (3.1), we have for $\epsilon > 0$, there exists a natural number T such that

$$\left\{ \sum_{k} a_{mk} \left[f_k \left(\left| (x_{k+n}^i - x_{k+n}^j) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \epsilon$$
 (3.2)

for all m, n and i, j > T. Since for any fixed natural number N, we have from (3.2)

$$\left\{ \sum_{k \le N} a_{mk} \left[f_k \left(\left| (x_{k+n}^i - x_{k+n}^j) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \epsilon$$
 (3.3)

for all m, n and i, j < T. By taking $j \to \infty$ in the above expression we obtain

$$\left\{ \sum_{k \le N} a_{mk} \left[f_k \left(\left| (x_{k+n}^i - x_{k+n}) \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \epsilon$$

for all m, n and i > T. Since N is arbitrary, by taking $N \to \infty$ we obtain

$$\left\{ \sum_{k} a_{mk} \left[f_k \left(\left| x_{k+n}^i - x_{k+n} \right| \right) \right]^{p_k} \right\}^{\frac{1}{M}} < \epsilon$$

for all m, n and i > T that is

$$q(x^i - x) \to 0$$
 as $i \to \infty$ and thus $x^i \to x$ as $i \to \infty$.

Also for each i, there exists L^i with

$$\sum_{k} a_{mk} \left[f_k \left(\left| (x_{k+n}^i - L^i) \right| \right) \right]^{p_k} \to 0 \quad (m \to \infty)$$
(3.4)

uniformly in n. From Regularity of A and (3.4), we have $[f_k(|L^i-L^j|)] \to 0$ as $i, j \to \infty$, for all k and (L^i) is a cauchy sequence in C, so (L^i) converges to L, say.

Consequently we get

$$\sum_{k} a_{mk} \left[f_k \left(\left| (x_{k+n} - L) \right| \right) \right]^{p_k} \to 0 \quad (m \to \infty)$$

uniformly in n. So that $x = (x_k) \in w[A, p, F]$ and the space is complete.

Theorem 4. Suppose that A be a nonnegative regular matrix and $F = (f_k)$ be sequence of moduli, then;

- (i) $l_{\infty} \subset w_{\infty}[A, p, F]$
- (ii) If $F = (f_k)$ is uniformly bounded on $[0, \infty), w_{\infty}[A, p, F] = w$.
- (iii) If $0 < p_k \le q_k$ and q_k/p_k is bounded, $w[A, q, F] \subset w[A, p, F]$.

Proof. (i) and (ii) are trivial.

(iii) If we take $w_{k,n} = [f_k(|x_{k+n} - L|)]^{p_k}$ for all k and n, then, using the same technique of Theorem 2 of Nanda [5] it is easy to prove (iii)

Theorem 5. Let $F = (f_k)$ is uniformly bounded on $[0, \infty)$ and A be a nonnegative regular matrix. When $x \in w_{\infty}[A, p, F]$

regular matrix. When
$$x \in w_{\infty}[A, p, F]$$

$$\sum_{k} a_{k} x_{k} \text{ is convergent if and only if } (a_{k}) \in \Phi.$$

Proof. The sufficiency is easy. For necessity that $(a_k) \notin \Phi$. Hence there is a strictly increasing (k(m)) of positive integers k(m) such that $|a_{k(m)}| > 0, m = 1, 2, 3, ...$

We define the sequence y by

$$y_k = \begin{cases} \frac{1}{a_{k(m)}} &, & k = k(m) \\ 0 &, & k \neq k(m) \end{cases}$$

Since $F = (f_k)$ is uniformly bounded on $[0, \infty)$ then,

$$\sum_{k} a_{mk} \Big[f_k \big(|y_{k+n}| \big) \Big]^{p_k} < \infty$$

hence $y \in w_{\infty}[A, p, F]$ but $\sum_k a_k \cdot y_k = \sum_m 1 = \infty$. This is a contradiction to $\sum_k a_k \cdot y_k$ convergent. This completes the proof.

Corollary Let $F = (f_k)$ is uniformly bounded $[0, \infty)$. Then,

$$\left[w_{\infty}[A, p, F]\right]^{\beta} = \Phi$$

Where $\left[w_{\infty}[A, p, F]\right]^{\beta} = \left\{y = (y_k) : \sum_{k} y_k x_k < \infty \text{ or all } x \in w_{\infty}[A, p, F]\right\}$ is the

 β -dual of $w_{\infty}[A, p, F]$ and Φ denotes the space of all finite sequences.

Theorem 6. Let $F = (f_k)$ be a sequence of moduli and A be a nonnegative regular matrix. If (C_1) and (C_2) hold then

$$w[A,p]\subset w[A,p,F]$$

Where $w[A,p] = \left\{ x \in w : \lim_m \sum_k a_{mk} \left(|x_{k+n} - L| \right)^{p_k} = 0, \text{ for some L, uniformly in n} \right\}$

Proof. Using the same technique of Theorem 4 of Maddox [2] it is easy to prove of the Theorem. \Box

Theorem 7. Let A be a nonnegative regular matrix and $F = (f_k)$ be sequence of moduli. If

$$\beta = \lim_t (f_k(t)/t) > 0 \text{ for all } k, \text{ then}$$

$$w[A, p] = w[A, p, F]$$

Proof. In Theorem 6, it was shown that $w[A,p] \subset w[A,p,F]$. We must show that $w[A,p,F] \subset w[A,p]$. For any modulus function, the existence of positive limit given with β was given in Maddox [4]. Now $\beta > 0$ and let $x \in w[A,p,F]$. Since $\beta > 0$, for every t > 0 we write $f_k(t) \geq \beta .t$ for all k. From this inequality, it is easy to see that $x \in w[A,p]$. This completes the proof.

Let $F = (f_k)$ and $G = (g_k)$ be sequences of moduli. The next theorem shows the relation between w[A, p, F] and w[A, p, G] for sequences for moduli F and G.

Theorem 8. Suppose that $F = (f_k)$ and $G = (g_k)$ be sequences of moduli and $g_k \ge f_k$ for all k, then,

$$\lim_{x\to\infty}\frac{f_k(x)}{g_k(x)}<\infty \text{ implies } w[A,p,G]\subset w[A,p,F]$$

Proof. It is trivial.

References

- [1] J. Maddox, 'A new type of convergence', Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.
- [2] I.J. Maddox, 'Sequence spaces defined by a modulus', Math. Proc. Camb. Philos Soc., 100 (1986), 161-166.
- [3] I.J. Maddox, 'Spaces of strongly summable sequences', Quart. J. Math., 18 (1967) 345-355.
- [4] I.J. Maddox, 'Inclusions between FK spaces and Kuttner's theorem', Math. Proc. Camb. Phil. Soc., (1987), 101, 523-527.
- [5] S. Nanda, 'Strongly almost summable and strongly almost convergent sequences', Acta Math. Hung. 49 (1-2), (1987), 71-76.
- [6] W.H. Ruckle, 'FK spaces in which the sequence of coordinate vektors in bounded', Canad. J. Math. 25 (1973), 973-978.
- [7] S.Pehlivan, 'A sequence space defined by a modulus', Erciyes Univ. Journal of Science, 5 (1-2), (1989), 875-880.

MODÜLÜS FONKSİYONLARININ BİR DİZİSİ YARDIMIYLA TANIMLANMIŞ BAZI YENİ DİZİ UZAYLARI

Özet

Bu çalışmada modülüs fonksiyonlarının bir dizisi yardımıyla bazı yeni dizi uzayları tanımlanmış ve bu uzayların sağladıı bazı özellikler verilmiştir.

Ayhan ESİ Fırat University, Department of Mathematics, 23119, Elazığ-TURKEY

Received 4.12.1995