
ar
X

iv
:1

00
1.

01
09

v2
  [

as
tr

o-
ph

.E
P

]  
8 

Ja
n 

20
10

Astronomy & Astrophysicsmanuscript no. 12870 c© ESO 2010
January 8, 2010

The Validity of the Super-Particle Approximation during
Planetesimal Formation

Hanno Rein, Geoffroy Lesur, and Zoë M. Leinhardt
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ABSTRACT

The formation mechanism of planetesimals in protoplanetary discs is hotly debated. Currently, the favoured model involves the
accumulation of meter-sized objects within a turbulent disc, followed by a phase of gravitational instability. At best, one can simulate
a few million particles numerically as opposed to the several trillion meter-sized particles expected in a real protoplanetary disc.
Therefore, single particles are often used as super-particles to represent a distribution of many smaller particles. It is assumed that
small-scale phenomena do not play a role and particle collisions are not modelled. The super-particle approximation isnot always
valid when applied to planetesimal formation because the system can be marginally collisional (of order one collision per particle per
orbit). The super-particle approximation can only be validin a collisionless or strongly collisional system, although, in many recent
numerical simulations this is not the case.
In this work, we present new results from numerical simulations of planetesimal formation via gravitational instability. A scaled
system is studied that does not require the use of super-particles. This system is simplified for computational practicality and proper
identification of important processes: 1) the evolution of particles is studied in a local shearing box; 2) the particle-particle interactions
such as gravity, physical collisions, and gas drag are solved directly assuming a constant background shear flow withoutany feedback
from the particles. We find that the scaled particles can be used to model the initial phases of clumping if the properties of the scaled
particles are chosen such that all important timescales in the system are equivalent to what is expected in a real protoplanetary disc.
Constraints are given for the number of particles needed in order to achieve numerical convergence.
We compare this new method to the standard super-particle approach. We find that the super-particle approach produces unreliable
results that depend on artifacts such as the gravitational softening in both the requirement for gravitational collapse and the resulting
clump statistics. Our results show that short-range interactions (collisions) have to be modelled properly.
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1. Overview

Extrasolar planets have been observed around a variety of par-
ent stars from pulsars to solar-type stars to M-dwarfs (see e.g.,
Chauvin et al. 2004; Wolszczan & Frail 1992) indicating that
planet formation is common and successful in a broad range of
environments. However, the process of planet formation itself
is not directly observable, leaving theory and numerical simu-
lations to fill in the blanks between observations of hot circum-
stellar discs around young stars and planets orbiting mature stars.
One of the most important unanswered questions in the theoryof
planet formation is what is the mechanism for planetesimal for-
mation, i.e., the process by which the building blocks of planets
are formed.

There are two main theories for planetesimal formation:
mutual collisions (e.g., Hayashi et al. 1977) and gravitational
instability in the dust layer (Goldreich & Ward 1973). In the
first hypothesis, dust particles grow as the result of accretion-
dominated collisions. Although the formation of planetesimals
by mutual collisions is consistent with meteoritic evidence, the
collision speed between dust particles (or aggregates) must be
much slower than the typical velocity dispersion in a standard
protostellar disc to avoid destructive collisions (Blum & Wurm
2008). In addition, the planetesimal formation process is so
slow that meter-sized particles are in danger of spiraling into
the star before growing large enough to decouple from the gas

(Weidenschilling 1977b). Even if km-sized planetesimals were
able to form, they would be in danger of being ground down
again by mutual collisions (Stewart & Leinhardt 2009).

Gavitational instability is often considered to be a solution
to most of these problems because the intermediate sizes are
avoided all together. In this theory, the dust layer becomesdense
enough for the Keplerian shear and velocity dispersion of the
dust particles to be unable to support the dust against its own
self gravity. The dust then collapses into clumps that eventu-
ally cool via drag forces and mutual collisions into planetesi-
mals. Many different authors have worked on this subject. Until
recently, the focus has been on quiet, non-turbulent, and low
density regions of the accretion disc (see e.g., Michikoshiet al.
2009, 2007; Tanga et al. 2004). However, the turbulent gas in
the protoplanetary nebula stirs the dust, which increases the ve-
locity dispersion of the dust particles. Several ideas havebeen
proposed to overcome the turbulence-induced mixing of the dust
particles and create localized clumps. For example, Cuzzi et al.
(2008) suggest that the same turbulence that stirs the dust on
larger scales may also collect the dust particles on small scales.
A similar idea was proposed by Johansen et al. (2007), in which
dust particles are localized into clumps using both turbulence
and the streaming instability (Youdin & Goodman 2005). The
clumps then become gravitationally unstable. A third hypothesis
suggests that large structures, such as vortices, may be able to
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collect and protect dust particles from the turbulent background
(Barge & Sommeria 1995). In this paper, we focus on the gravi-
tational collapse in a very dense and turbulent region of thepro-
toplanetary disc. The overdensity in the dust layer, which is ap-
proximately two orders of magnitude higher than the standard
minimum-mass solar nebula, might have been created by any of
the processes described above.

Numerical simulations must be used to test models of plan-
etesimal formation. However, the separation of scales in the
problem is huge. A meter-sized object is more than 12 orders of
magnitude smaller than the protoplanetary disc thickness forcing
numericists to usesuper-particles. These super-particles have a
mass much higher than the mass of a single dust particle, but the
forces (e.g., drag forces) acting on them are equivalent to those
of a single dust particle. Tanga et al. (2004) were able to usethis
approximation to succesfully model the gravitational collapse in
a regime in which collisions are unimportant. However, whenthe
surface density is increased by two orders of magnitude, as men-
tioned above, the system does become marginally collisional and
therefore the super-particle approach breaks down.

Michikoshi et al. (2009) perform a similar set of simulations,
also in a low density, non-turbulent region of the disc. Although
the authors describe their particles as super-particles, the way
in which they accurately treat the collisions is the same as the
method presented in this paper. Other approaches use Monte
Carlo type methods to resolve statistically the outcome of over-
lapping particles (see e.g., Lithwick & Chiang 2007).

In the following, we look carefully at the numerical require-
ments of modelling gravitational instability accurately and test
the validity of using super-particles in a high density region.
For simplicity, we begin with a system without turbulence and
assume that the surface density has already been increased by
turbulence or some equivalent process. We find that the super-
particle approach gives erratic results when collisions become
important.

We therefore go on and present a method that does not use
super-particles. We simulate a scaled system in which the num-
ber of particles is dramatically lower than in a real protoplane-
tary disc. To keep the surface density the same, the mass of in-
dividual particles has to be increased. The drag force produced
by the surrounding gas is scaled accordingly, so that the stop-
ping time remains constant. Furthermore, we increase the phys-
ical size of each particle. This allows us to keep the collision
timescales in simulations of different particle numbers exactly
the same. These requirements lead to results that are independent
of the number of particles, which is the only free parameter in the
simulation, and we call those simulations converged. The results
agree with other simulations performed in the context of Saturn’s
rings (Goldreich & Tremaine 1982; Daisaka & Ida 1999). In this
paper, we argue that this method should also be used in current
simulations of planetesimal formation.

The outline of this paper is as follows. In Sect. 2, we de-
fine the important timescales in the problem and show that the
super-particle approach breaks down in high density regions. In
Sect. 3, we discuss the numerical method and the initial condi-
tions of our simulations. Results of numerical simulationsusing
both the super-particle approach and our scaling method arepre-
sented in Sect. 4. We conclude the paper with resolution con-
straints for numerical simulations and discuss the implications
for the planetesimal formation process through gravitational in-
stability in Sect. 5.

2. Orders of magnitude

2.1. Definition of timescales

The aim of this work is to simulate the dynamics of dust (or
particles) interacting gravitationally inside a protoplanetary disc.
Each particle is subject to five different physical processes, each
operating on various typical timescales:

Stopping time τs
Each particle feels the effects of the surrounding gas
through a linear drag force. This force can be written as
Fdrag =

mp

τs
(vg − vp), whereτs is the stopping time of a

particle of massmp, vg is the velocity of the gas, andvp is
the velocity of the particle (Weidenschilling 1977a).

Physical collision timescale τc
Dust particles will suffer a physical collision with another
dust particle on a timescale ofτc = (σc v̄pn)−1, whereσc

is the geometrical cross-section of the particles, v̄p is the
particle velocity dispersion, andn is the number density of
particles.

Orbital timescale τe
The timescale associated with the particles orbiting the cen-
tral object in a local shearing patch is the epicyclic period
τe = 2πΩ−1, whereΩ is the angular velocity at the semi-
major axis of the shearing box.

In this paper, we consider two limits for the gravitational inter-
actions between dust particles, long-range and short-range inter-
actions. The long-range interaction can be seen as a collective
process involving interactions between clouds of particles. On
the other hand, the short-range interaction is important for re-
solving close approaches between pairs of particles (i.e.,gravi-
tational scattering). For the sake of clarity, we separate these two
processes.

Gravitational collapse timescale τGl
We introduce a length scaleλ ≫ δr, whereδr is the average
distance between neighbouring dust particles. In this limit,
which we call the long-range interaction, the dust particle
distribution can be approximated by a continuous density
ρ, and one can define a gravitational timescale, which is
of the order of the free fall time of the system, defined by
τGl = 1/

√
Gρ whereG is the gravitational constant.

Gravitational scattering timescale τGs
Short-range gravitational interactions can be seen as an in-
teraction between a pair of single particles that can resultin
a scattering event. As with physical collisions, the timescale
for a gravitational interaction depends on the cross-section,
τGs = (σG v̄pn)−1, whereσG is the gravitational cross-section
of the particle. Using Kepler’s laws, one finds thatσG ∼
G2m2

p/ v̄4p. The gravitational cross-section is velocity depen-
dent, which makes it qualitatively different from physical
(billard ball) collisions between two particles. We note that
gravitational focusing can also lower the physical collision
timescale.

As mentioned earlier (Sect. 1), the particles might also be af-
fected by excitation from a turbulent background state on a
timescale defined by the turbelence itself. In this paper, we
model this excitation in a simplified way, described in Sect.
3. In our case, the turbulence is scale independent and has no
timescale associated with it.
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2.2. The real physical system

To identify the dominant physical processes in a protoplanetary
disc, one has to quantify and compare the relevant timescales
as defined above. In the following discussion and in the numer-
ical simulations, we assumeR0 = 1 AU, a gas disc thickness
of H/R0 = 0.01, and a minimum mass solar nebula (MMSN)
with surface gas densityΣ = 890 g cm−2. One usually assumes
a solid to gas ratio ofρs/ρg = 0.01. We, however, assume a solid
to gas ratio of unity. As mentioned above, this value is justi-
fied by numerical simulations (Johansen et al. 2007, 2009) that
demonstrate overdensities of the order of 101 − 102 can easily
occur because of the interaction with a turbulent gas disc, the
streaming instability, or vertical settling. We note that signifi-
cantly different models of the solar nebula have been proposed
(Desch 2007). However, all our results can easily be scaled to
different scenarios.

We simplify the system by assuming that all solid compo-
nents of the disc are in meter-sized particles. We assume that
these boulders have a typical velocity dispersion caused bygas
turbulence v̄p ∼ 0.05cs ∼ 30m/s, wherecs is the local sound
speed, in accordance with numerical results (Johansen et al.
2007). Since v̄p ≪ cs, the particles tend to sediment toward the
midplane, forming a finite thickness dust layer due to the non-
zero velocity dispersion.

For meter-sized boulders, the physical cross-section isσc ∼
1 m2, whereas the gravitational scattering cross-section isσG ∼
10−21 m2 showing clearly that gravitational scattering is irrel-
evant to the dynamics of dust particles embedded in a disc.
However, all other timescales are roughly equivalent. Meter-
sized boulders are weakly coupled to the gas with a stopping
time τs ∼ τe ∼ Ω−1 (Weidenschilling 1977a). The physical col-
lision timescale isτc = 7.3Ω−1 and the long-range gravitational
interaction timescales isτGl ∼ Ω−1.

This physical system is expected to become gravitationally
unstable, according to the Toomre criterion (Toomre 1964).The
instability occurs when the gravitational collapse timescale τGl

is shorter than the transit time due to random particle motions
λ/ v̄p and the orbital timescale. Assuming that the particles can
be modelled by an isotropic gas1 with a sound speed v̄p, the sys-
tem becomes unstable when

Q ≡
v̄pΩ

πGΣ
< Qcrit ≃ 1. (1)

In that case, the most unstable wavelength is given by

λT =
2π2GΣ
Ω2

. (2)

In the following, we compare the physical parameters from this
section to their counterpart in numerical simulations. We first
summarize the super-particle approach before presenting the
scaling method.

2.3. Super-particle approximation

A super-particle represents many smaller particles. The dynam-
ics of the small particles are not calculated exactly. It is assumed
that all particles behave similarly and in a collective manner. To
simulate gravitational interaction between super-particles, one
has to use a softened potential. Without this, the gravitational
scattering cross-section of super-particles becomes too large and

1 This would be true for a strongly collisional system, but is not for-
mally valid in the studied regime.

super-particles undergo gravitational scattering events, which
is unphysical since these events never occur in a real system.
Individual particle-particle collisions are not modelled.

There are various examples where this approach is used
successfully. For example, smoothed particle hydrodynamics
(SPH) uses the super-particle approximation to simulate many
gas molecules (Lucy 1977). These systems are often assumed to
be strongly collisional to ensure thermodynamical equilibrium
inside each super-particle. One can therefore assign collective
properties to clouds of particles such as pressure and tempera-
ture. Another example is the evolution of galaxies. When two
galaxies collide, individual particles (stars) will usually not un-
dergo gravitational scattering events or physical collisions. In
that case, the super-particle approach models acollisionless sys-
tem in which collective dynamics is the only important physical
process. In both cases, the super-particle approximation is a valid
approach for simulating the system numerically, but will break
down as soon as the system ismarginally collisional.

As an example, we consider two clouds of particles undergo-
ing a “collision”. In the strongly collisional case, the clouds will
slowly merge and the thermodynamic variables (e.g., tempera-
ture) will diffuse between the clouds, the particles inside each
cloud following a random walk trajectory due to numerous col-
lisions. On the other hand, in the collionless regime, the two
clouds simply do not see each other because there is no short-
range interaction present between the particles. In a marginally
collisional regime, some particles will collide with particles of
the other cloud, leading to a partial thermalisation of the velocity
distribution, but some other particles will not have any collision
at all and will follow approximately a straight line. Evidently, the
outcome of this eventcannot be described using a super-particle
approach.

2.4. Scaling method

The idea of our scaling method is that one should keep all impor-
tant timescales in a numerical simulation as close to those of the
real physical system as possible and model all particle collisions
explicitly.

The numerical system consists ofNnum particles in a box
with length H, simulating a patch of the disc at a fixed radius
R0. The particle mass ismnum = ΣH2/Nnum (H is the box size
and one scale height). Thus, the density in the box and the long-
range gravitational interactions are unchanged compared to the
real system.

The gravitational scattering cross-section of the numerical
system is then given by

σG,num =
G2
Σ

2H4

N2
num v̄4p

. (3)

For the initial surface density and velocity dispersion used in the
simulation (Sect. 2.2), one finds

σG,num ≃
H2

N2
num
≃

0.0001AU2

N2
num

. (4)

The physical collision cross-section in the simulation is
σc,num = πa2

num whereanum, is the radius of the particles in
the simulation. We derive two constraints from the physicaland
gravitational collision cross-sections:

1. Same mean free path in simulation and real physical systems
That meansNnumσc,num = Nσc, whereσc and N are the
geometrical cross-section and the number of particles in a



4 Hanno Rein et al.: The validity of the super-particle approximation

region of sizeH3 in a real disc, respectively. In other words,
this condition ensures that the physical collision timescale
in the simulation is exactly the same as in the real system.

2. Negligible gravitational scattering
When two particles approach each other, the outcome should
be a physical collision, which means thatσc,num ≫ σG,num.
The gravitational scattering timescale remains long com-
pared to the physical collision timescale.

The first condition places a constraint on the particle size in the
simulation. WithN = 4.7 · 1018 and a particle radius ofa = 1 m
as found in a real disc within a box of volumeH3, using the
parameters from above finds that

anum =

√

σc,num

π
=

√

Nσc

Nnumπ
≃

0.014
√

Nnum
AU. (5)

We note that once this condition is satisfied in the initial condi-
tions it will be automatically satisfied at all times. In simulations,
we typically find that the collision timescale is reduced by more
than one order of magnitude during the gravitational collapse.

The second condition is then satisfied by changing the num-
ber of particles. An interesting result is that ifNnum > 10, the
second condition is easily satisfied if the first one is satisfied.
We note however thatσG,num depends strongly on the velocity
dispersion. In particular, a velocity dispersion 5 times smaller
than the initial value (as found in some simulations) leads to
an increase by a factor of 600 in the gravitational scattering
cross-section. Therefore, we suggest using a large safety factor
(Nnum > 105) to ensure that the second condition is always satis-
fied, even for significantly smaller v̄p. This condition also allows
us to estimate when our approach breaks down, namely when the
number of clumps in the system is so low (N < 10 ∼ 100) that
gravitational scattering becomes important.

Although it would be helpful as a further simplification, it is
not possible to perfom the above mentioned simulation in two
dimensions. In that case, the filling factor, which is definedto
be the ratio of the volume (or area) of all particles to the total
volume (or area), is of the order of one for the above parameters.
We note that in 2D an increase in particle number (and decrease
in particle size as required by Eq. 5) does not decrease the filling
factor if the collisional lifetime remains constant.

3. Methods

Two different kinds of simulation are considered in this paper:

1. Particles are assumed to be point masses and have no physi-
cal size, the gravitational field of the particles being approx-
imated with a smoothing length to avoid numerical diver-
gences (see Sect. 3.1).

2. Particles have a physical size and, therefore, no gravitational
smoothing is required but physical collisions must be in-
cluded.

We refer to the particles as super-particles and scaled particles,
respectively.

We perform our simulations in a cubic box with shear peri-
odic boundary conditions in the radial (x) and perdiodic bound-
ary conditions in the azimuthal (y) and vertical (z) directions,
as illustrated in Fig.1 (Wisdom & Tremaine 1988). In the local
approximation, the force per mass on each particle is a sum of
the contributions from Hill’s equations and the interaction terms.
Hill’s equation can be written as

Fhill = −2Ω ez × vp + 3Ω2 x ex − Ω2z ez. (6)

The interaction termFint is divided into components related to
self gravity, physical collisions between particles, or drag and
excitation forces:

Fint = Fgrav+ Fcol + Fdrag+ Fturb. (7)

We solve the resulting equations of motion with a leap frog (kick
drift kick) time stepping scheme. In the following subsections,
we describe the numerical methods used to compute each of
these terms and their physical relevance.

The box size of 0.01 AU was chosen such that there are
always several unstable modes in the box, when the system is
pushed into the regime of gravitational collapse, as estimated by
Eq. 2.

ghost boxes

y

xto star

ghost boxes

Fig. 1. Shearing box, simulating a small patch of the protoplan-
etary disc. The grey box represents the shearing box of inter-
est, the dashed boxes surrounding the central box representone
ghost ring.

3.1. Self gravity

In the N-body problem that we consider, we have to solve
Newton’s equations of universal gravitation for a large number
of particlesN. The gravitational force on thei-th particle is given
by

Fgrav =

∑

j,i

G
mim j
(

ri j + b
)2

ei j, (8)

whereb is the smoothing length used to avoid divergences in
numerical simulations (in simulations that include physical colli-
sionsb = 0) andei j is the unit vector in the direction of the grav-
itational force between thei−th and j−th particle. Calculating
the gravity for each particle from each other particle results in
O
(

N2
)

operations. To reduce the number of operations, one can
use different approximations to Eq. 8. In this paper, we use a
Barnes-Hut (BH) tree code (Barnes & Hut 1986).

The BH tree in three dimensions divides the original box into
eight smaller cells with half the length of the original box.This
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process is continued recursively until there is only one particle
per cell left. The depth of the tree in a homogeneous medium is
approximately log8 N. One then calculates the total mass and the
centre of mass for every cell at every level of the tree.

To calculate the force acting on a particle, one starts at the
top of the tree and descends into the tree as far as necessary to
achieve a given accuracy. If the current cell is far away fromthe
particle for which the force is calculated, then the detailed den-
sity structure within this cell is not important. All that matters is
the box’s monopole moment (total mass and centre of mass).
One therefore does not have to descend into this tree branch
any further. The BH tree reduces the number of calculations to
O
(

N logN
)

.
We use 8rings of ghost boxes in the radial and azimuthal

direction (Fig.1 shows one ring). A ghost box is simply a shifted
copy of the main box. The gravity on each particle is then cal-
culated by summing over contributions from each (ghost) box.
This setup approximates a medium of infinite horizontal extent
and avoids large force discontinuities at the boundaries. We do
not need any ghost boxes in the vertical direction because the
disc is stratified.

A finite number of ghost rings can only act as an approxima-
tion of an infinite medium and the gravitational force will tend to
concentrate particles horizontally in the centre of the box. Due
to the 8 ghost rings, the asymmetry of the gravitational force be-
tween the centre and the faces of the box is reduced by a factor
of 20 compared to using no ghost rings at all. We note, however,
that a small asymmetry remains in our simulations and leads
to higher concentrations in the box centre. In other simulations
such as Tanga et al. (2004), this effect is not seen because the
system is initially gravitationally unstable and integrated only
for approximately one orbit. The system that we are interested
in is marginal gravitationally unstable and this slight asymmetry
will become important after several orbits. In the beginning of
our simulations, we integrate for many orbits in order to reach a
stable equilibrium. We then push the system into a gravitation-
ally unstable regime (see Sect. 3.5 for details). During thestable
phase, horizontal over-concentrations are to be expected and are
indeed observed because of this asymmetry. However, since in a
real protoplanetary disc the gravitational instability isconsidered
to appear locally (e.g., inside a vortex or a similar structure), this
effect of having a preferred location for gravitational instability
is not unphysical and does not affect any conclusions made in
this paper. We tested this by applying a linear cut-off to the grav-
itational force at a distance of one box length (A. Toomre, private
communication). In this case, there was no preferred location in
the box and the simulation evolved in exactly the same way.

3.2. Physical collisions

Physical collisions between particles are treated in the follow-
ing way. After each timestep, we check whether any two par-
ticles are overlapping. Using the already existing tree structure
from the gravity calculation, one can again reduce the compu-
tational costs fromO

(

N2
)

to O
(

N logN
)

. In these simulations,
a collision between particles is defined as an overlap between
two particles that are approaching each other. When a collision
is detected, it is resolved assuming energy and momentum con-
servation (perfectly elastic collisions). We note that thetimestep
has to be small enough such that no collision is missed and the
overlap is always small compared to the particle size.

The particle radius is given by Eq. 5. In order to keep the col-
lision timescaleτc close to unity, which is numerically the worst

case scenario because all timescales are equivalent, we increase
the radius by a factor of 4 in all simulations.

3.3. Drag force

Each particle feels a drag force. The background velocity ofthe
gasvg is assumed to be a steady Keplerian profile

vg = −
3
2
Ωx ey. (9)

Although accretion flows are turbulent, we choose to use a sim-
ple velocity profile so that the behaviour of self-gravitating par-
ticles can be understood in conditions that can be easily con-
trolled.

3.4. Random excitation

The system of particles described above is dynamically unsta-
ble even without self-gravity, as the coefficient of restitution and
the stopping time do not depend on the particle velocities2. The
particles can either settle down in the midplane and create a
razor-thin disc if the stopping time is too short, or they canex-
pand vertically forever if the stopping time is above some critical
value and the excitation mechanism is provided only by colli-
sions. Dust particles in accretion discs are found in the settling
regime. However, a complete settling never occurs in accretion
disks because the background flow is always turbulent due to the
Kelvin-Helmoltz instability (Johansen et al. 2006), the MRI, or
other hydrodynamic instabilities (see e.g., Lesur & Papaloizou
2009) which diffuse particles vertically (Fromang & Papaloizou
2006). This stirring process of turbulence is not present inthe
gas velocity field of the simulations presented here (see Eq.9).
To approximate the turbulent mixing, we added a random ex-
citation (white noise in space and time) to the particles in the
simulation. This allows us to have a well defined equilibrium
in which the system is stable rather than starting from unstable
initial conditions that might influence the final state.

We perturb the velocity components of each particle after
each timestep on a scale∆vi =

√
δt ξ, whereδt is the current

timestep andξ is a random variable with a normal distribution
around 0 and variances. This excitation mechanismheats up the
particles and allows us to have a well defined three dimensional
equilibrium as shown in Sect. 4. In our simulations, we use a
value of s = 1.3 · 1015 m2s−3 and s = 8.9 · 1014 m2s−3 for the
simulations without and with collisions, respectively. These val-
ues were chosen such that the equilibrium state is approximately
equivalent for both types of simulations.

3.5. Initial conditions

All particles, which have equal mass, smoothing length, and
physical size, are placed randomly inside the box in thex −
y plane. We note that particles have either a physical size or a
smoothing length associated with them, depending on the type
of simulation we perform (Sect. 3). In the z-direction, the parti-
cles are placed in a layer with an initially Gaussian distribution
about the midplane and a standard deviation of 0.05 H. We allow
the system to reach equilibrium by integrating it untilt = 30Ω−1

(4.8yrs).

2 This instability is qualitatively similar to the instability described
by Goldreich & Tremaine (1978) for Saturn rings, although inthe latter
case the drag forces are absent.
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Fig. 2. Super-particles: Velocity dispersion as a function of time
in four different runs. The simulation labeledLS has a ten times
larger smoothing length. The curves do not overlap because the
simulations are not converged.
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Fig. 3. Scaled-particles: Velocity dispersion as a function of time
in three different runs that include physical collisions. All curves
overlap because the simulations are converged.

We tested various ways of pushing the system into the unsta-
ble regime, either by reducing the turbulence stirring or byshort-
ening the stopping time, but did not see any qualitative difference
as long as we start from a well defined equilibrium state. In the
simulations presented in this paper, we switch off the turbulence
stirring. Following this modification, the system becomes gravi-
tationally unstable and bound clumps form within a few orbits.

4. Results

4.1. Super particles

We first present simulations without physical collisions (super-
particles) which rely on the smoothing lengthb to avoid any
divergencies. Although we use a tree code and therefore a
smoothed potential for the force calculation is assumed, the
results are equivalent to an FFT-based method where the grid

length acts as an effective smoothing length. In general, to check
the numerical resolution, the particle numberNnum is increased
and the smoothing lengthb is reduced independently. A simu-
lation is resolved when the result is independent of bothNnum
andb. This turns out to be impossible in the present situation.
The main reason is that the smallest scale in a gravitational
collapse will ultimately depend on the smoothing length. By
varying both parameters at the same time, an empirical scal-
ing of b ∼ 1/

√
Nnum works fairly well if Nnum is large enough.

However, this procedure is not justified and is unphysical. The
smoothing length was introduced to avoid divergent terms and
not to model any small-scale physical process. Therefore, it
shouldnot have any impact on the physical outcome of the sim-
ulation. Incidentally, the existence of this dependency indicates
thatshort-range interactions are important for the result of these
simulations and should be modelled with care.

In Fig.2, we plot the velocity dispersion as a function of time.
The simulations begin from the stable equilibrium described in
Sect. 3. Aftert = 30Ω−1, we switch off the excitation mecha-
nism. Because the system continues to cool, it becomes gravita-
tionally unstable within one orbit, as estimated by Eq. 1. Once
clumping occurs, the velocity dispersion begins to rise again. All
simulations use the particle radius given by Eq. 5 as a smoothing
length except the ones labeledLS, which use a ten times larger
value. The larger softening length is approximately a 128-th of
the box length and illustrates the kind of evolution expected from
an FFT method using a 1283 grid.

Snapshots of the particle distribution of two simulations are
shown in Fig.4. Both simulations use 160 000 particles and all
parameters, except the smoothing length, are the same. The top
row is the simulation with a smoothing length given by Eq. 5,
whereas the bottom row uses a smoothing length that is ten
times larger. The simulations correspond to the blue (medium
dashed) and red (solid) curve in Fig.2. We show the snapshotsto
illustrate the importance of the smoothing length in simulations
without physical collisions. One can see that the simulations dif-
fer already before clumps form. Stripy structures appear ona
scale given by Eq. 2. As soon as we enter the unstable regime
at t ∼ 32Ω−1 (i.e., the velocity dispersion begins to rise, see
also Fig.2) the simulations evolve very differently. The simula-
tion on the top row of Fig.4 forms many clumps at an early time,
whereas the bottom row simulation forms only a few, more mas-
sive clumps at later times.

This can be confirmed by looking at spectra of the same two
simulations as shown in Fig.6. These spectra were generatedby
mapping the particles onto a 128× 128 grid in thex − y plane
and computing the fast Fourier transform of the mapping in the
x direction. The resulting spectra were finally averaged in the
y direction (see Tanga et al. 2004, for a complete description
of the procedure). As suggested by the snapshots, the nonlin-
ear dynamics of the gravitational instability strongly depends
on the smoothing length used. In particular, one observes that
smaller scales are amplified more slowly for larger smoothing
lengths. The resulting spectra att = 40Ω−1 also differ signif-
icantly. With a small enough smoothing length, the spectrum
looks almost flat, whereas a large smoothing length introduces
a cutoff at k/2π ≃ 10. We also note that the smoothing length in
the latter case is of the order of the grid size (k/2π ∼ 100). The
cutoff observed clearly demonstrates that the smoothing length
modifies the dynamics on scales up to 10 times larger than the
smoothing length itself.
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Fig. 4. Super-particles: Snapshots of the particle distribution in thexy plane. Both simulations use 160 000 particles with different
smoothing lengths. The simulation on the bottom uses a ten times larger smoothing length than the one on the top. The snapshots
were taken (from left to right) att = 0, 30, 37, 40Ω−1. With a large smoothing length, the outcome looks very different, the system
is more stable, more stripy structure can be seen and clumps form later, if at all.

Fig. 5. Scaled particles: Snapshots of the particle distribution in the xy plane. The simulations (from top to bottom) use 40 000,
320 000, 640 000 particles with their physical size given by Eq. 5. In all simulations, the collision timescale was kept constant. The
snapshots were taken (from left to right) att = 0, 30, 37, 40Ω−1. The simulation with 40 000 particles has a large filling factor by
the last frame, which prevents clumps from forming. The intermediate resolution simulation (middle row) and the highest resolution
simulation (bottom row) have more and smaller particles andthus a smaller filling factor. The results (i.e., number of clumps in the
last frame) are very similar in the intermediate and high resolution simulations.
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4.2. Scaled particles

The velocity dispersion evolution of simulations withN =

160 000, 320 000, 640 000 particles including physical collisions
is presented in Fig.3. In these runs, no gravitational smoothing
length is needed. Again, the simulations start from a stableequi-
librium and aftert = 30Ω−1, we change the same parameters as
in the non-collisional case to push the system into the gravita-
tionally unstable regime. Snapshots of the particle distributions
for three runs are also plotted in Fig.5. The middle and bottom
rows of snapshots correspond to the purple (medium dashed) and
dark blue (long dashed) lines of Fig.3.

One can see in Fig.3 as well as Fig.5 that the intermedi-
ate and high resolution runs produce very similar results. We
call those simulations converged, as a change in particle num-
ber does not change the outcome. An additional, lower resolu-
tion run (N = 40 000) is not converged because the filling fac-
tor is too large in dense regions, preventing clumps from being
gravitationally bound. The problem does not occur in the non-
collisional cases because particles are allowed to overlap. Since
the filling factor scales with particle number as 1/

√
Nnum, this

issue is resolved for runs with more than a few hundred thou-
sand particles. We note that the velocity dispersion might differ
slightly at later stages for the converged runs because the final
clump radius is still determined by the physical particle radius
and therefore by the particle number.

We show the density distribution spectrum in Fig.7 as a func-
tion of the number of particles. The resulting spectra do notde-
pend on the number of particles in the system, as expected. In
comparison with Fig.6, the simulations with collisions arecon-
verged since the dynamic is not controlled by the numerical pa-
rameterN, which is the only free parameter in the system.

At very late times (t & 38Ω−1), the spectra begin to show
a systematic trend towards more structure on smaller scalesfor
runs with largerN. This is expected and due to the filling factor,
already mentioned above. As soon as one clump in the simu-
lation is only determined by the size of the individual particles
it consists out of, our approach breaks down. One can also see
these clumps forming by looking at the velocity dispersion in
Fig.3. The particles inside a clump begin to dominate the ve-
locity dispersion over the background aftert ∼ 38Ω−1. A clear
indication of this is the spiky structure with a typical correla-
tion time of∼ Ω−1 corresponding to different clumps interacting
and merging with each other. One way around this issue, which
will be considered in future work, is to allow particles to merge
(Michikoshi et al. 2009). Using thisaccretion model, the mass
of the clump can be used as an upper limit.

5. Discussion and implications

In this paper, we have shown that convergence inN-body sim-
ulations of planetesimal formation via gravitational instability
can be achieved when taking into account all relevant physical
processes. It is absolutely vital to simulate gravity, damping, ex-
citation, and physical collisions simultaneously, as the related
timescales are of the same order and therefore all effects are
strongly coupled.

A set of simulations is defined to be converged when the re-
sults do not depend on the particle number or any other artificial
numerical parameter such as a smoothing length. As a test case, a
box with shear periodic boundary conditions was used, contain-
ing hundreds of thousands of self-gravitating (super-)particles
in a stratified equilibrium state. The particles were then pushed
into a self gravitating regime that eventually led to gravitational
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Fig. 6. Super-particles: Density distribution spectrum with
160 000 particles and two different smoothing lengths that differ
by a factor 10 at timest = 30 (red, solid curve),t = 36 (green,
long dashed curve), andt = 38 (blue, short dashed curved). The
spectra at similar times are not on top of each other because the
simulations are not converged.
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Fig. 7. Scaled particles: Density distribution spectrum with
160 000, 320 000, and 640 000 particles (colors are equivalent to
Fig.6). At each time, the spectra are converged, i.e., the spectra
are on top of each other and independent of the particle num-
ber, besides the noise level on very small scales. At late times
(t & 38, blue curve), one begins to see more structure on small
scales in simulations with larger number of particles (see text).

collapse. Simulations with and without physical collisions were
studied for a range of particle numbers to test convergence.

In cases without physical collisions, convergence can not be
achieved. However, it was possible to change multiple free sim-
ulation parameters at the same time, namely the particle number
N and the smoothing lengthb, such that in special cases the re-
sults did not depend on the particle number. We note however
that there is a free parameter in the simulation (i.e., the smooth-
ing length) that effects the outcome and makes it impossible to
find thereal physical solution.



Hanno Rein et al.: The validity of the super-particle approximation 9

In the protoplanetary disc, physical collisions dominate over
gravitational scattering. In the case of planetesimal formation,
the system is marginally collisional. Physical collisionswill par-
tially randomise the particle distribution, whereas a smoothing
length does not because the softening length is very large com-
pared to the gravitational cross-section. Even if the gravitational
particle-particle scattering becomes important, it can beseen
from Eq. 3 that the velocity dependence of the cross-section
σG differs fundamentally from the velocity independent cross-
sectionσC . We therefore argue that the super-particle approach
should not be used when collisions become important.

With collisions, the simulation outcome is both quantita-
tively and qualitatively very different from simulations with no
physical collisions. The initial size of the clumps is larger and the
number of clumps is smaller. As there is no smoothing length,
there is effectively one fewer free parameter. Changing the par-
ticle number while keeping the collision time constant doesnot
change the outcome. We therefore call these simulations con-
verged.

Additional tests including inelastic collisions with a normal
coefficient of restitution of 0.25 have been performed to confirm
that the results do not depend on the way physical collisionsare
modelled. As expected, the qualitative outcome in terms of num-
ber of clumps and clump size is different because the physical
properties of the system have been changed. However, once in-
dividual collisions are resolved the results converge in exactly
the same manner as in those simulations presented above (which
have a coefficient of restitution of 1).

We have also explored other gravity solvers by comparing a
fast Fourier (FFT) gravity solver with the BH tree code (using a
smoothing length) and confirmed our previous results. The grid
in the FFT code acts as a smoothing length and a direct com-
parison between the two gravity solvers gave an approximateef-
fective smoothing length of a quarter of the grid length. Because
one has to solve individual particle-particle interactions, the grid
size has to be smaller than the physical size of the particles. As
a result, the FFT method is always slower than a tree code. In
addition, the tree structure can be reused to search efficiently for
collisions.

This paper focused on the numerical requirements to study
gravitational instability and the formation of planetesimals in
protoplanetary discs. The initial conditions were chosen such
that the equilibrium is a well defined starting point for the con-
vergence study. The collision, damping, collapse and orbital
timescales are all of the same order, which is effectively the
worst case scenario. To provide any constraints on planetesimal
formation itself, one would have to properly simulate the turbu-
lent background gas dynamics which is beyond the scope of this
paper.

However, we were able to determine the numerical resolu-
tion needed to resolve dust particles in a protoplanetary disc.
Assuming that one wishes to simulate dust particles realisti-
cally, including collisions, and that the particles are uniformly
distributed in a box of baseL2 and heightH, the size of each
particle is determined by the collision rate in the real disc(see
Eq. 5)

anum =

√

N
Nnum

a, (10)

wherea andN are the size and number of particles in the volume
L2H of the real disc. The number of particles in the simulation
Nnum has to be large enough to ensure that the filling factor is
low until clumps form. The requirement that the filling factor is

less than unity att = 0 is given by

4
3
π (anum)3 · Nnum ≤ C f L2H, (11)

whereC f is a safety factor. AlthoughC f . 1 would be enough
to resolve collisions initially, it is insufficient to simulate the col-
lapse phase. During the collapse, the filling factor rises rapidly.
Assuming that one wishes to resolve collisions correctly when
the particles have contracted by one order of magnitude, onehas
to include a safety factor ofC f = 10−3. If the collapse occurs
mainly in two dimensions, as in the simulations presented here, a
factor ofC f = 10−2 is sufficient. Furthermore, one has to ensure
that the box contains at least a few unstable modes (see Eq. 2).
All this together places tight numerical constraints on numerical
simulations of planetesimal formation via gravitational instabil-
ity.

In future work, we will expand the discussion to include
more physics, namely a proper treatment and feedback of the
background gas turbulence. This will allow us to further clar-
ify the behaviour of planetesimals in the early stages of planet
formation and eventually test the different formation scenarios.
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