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ABSTRACT

The formation mechanism of planetesimals in protoplagetiiscs is hotly debated. Currently, the favoured model lire® the
accumulation of meter-sized objects within a turbulent disllowed by a phase of gravitational instability. At beste can simulate
a few million particles numerically as opposed to the sdviilion meter-sized particles expected in a real proto@tary disc.
Therefore, single particles are often used as super-fggtio represent a distribution of many smaller particless assumed that
small-scale phenomena do not play a role and particle mmiisare not modelled. The super-particle approximatiomoisalways
valid when applied to planetesimal formation because thtegy can be marginally collisional (of order one collisi@n particle per
orbit). The super-particle approximation can only be vaiic collisionless or strongly collisional system, althbug many recent
numerical simulations this is not the case.

In this work, we present new results from numerical simalai of planetesimal formation via gravitational instdhiliA scaled
system is studied that does not require the use of supeacipartThis system is simplified for computational pradttgaand proper
identification of important processes: 1) the evolutionartieles is studied in a local shearing box; 2) the partaeticle interactions
such as gravity, physical collisions, and gas drag are dalirectly assuming a constant background shear flow withoyfeedback
from the particles. We find that the scaled particles can bd tsmodel the initial phases of clumping if the propertiethe scaled
particles are chosen such that all important timescaldseirsystem are equivalent to what is expected in a real pantefdry disc.
Constraints are given for the number of particles neededderdo achieve numerical convergence.

We compare this new method to the standard super-partipl@agh. We find that the super-particle approach producediaile
results that depend on artifacts such as the gravitatiaf@réng in both the requirement for gravitational collegsd the resulting
clump statistics. Our results show that short-range iotemas (collisions) have to be modelled properly.
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1. Overview (Weidenschilling 1977b). Even if km-sized planetesimatsev
able to form, they would be in danger of being ground down

Extrasolar planets have been observed around a varietyrof RfYyain by mutual collisions (Stewart & Leinhardt 2D09).
ent stars from pulsars to solar-type stars to M-dwarfs (sge e

[Chauvin et al! 2004, Wolszczan & Frail 1992) indicating that Gavitational instability is often considered to be a salnti
planet formation is common and successful in a broad rangetofmost of these problems because the intermediate sizes are
environments. However, the process of planet formaticegifits avoided all together. In this theory, the dust layer becodesse
is not directly observable, leaving theory and numericalusi enough for the Keplerian shear and velocity dispersion ef th
lations to fill in the blanks between observations of hotwme dust particles to be unable to support the dust against its ow
stellar discs around young stars and planets orbiting raatars. self gravity. The dust then collapses into clumps that avent
One of the mostimportant unanswered questions in the tiefonally cool via drag forces and mutual collisions into plaséte
planet formation is what is the mechanism for planetesimial f mals. Many diferent authors have worked on this subject. Until
mation, i.e., the process by which the building blocks ofipla recently, the focus has been on quiet, non-turbulent, and lo
are formed. density regions of the accretion disc (see é.g., Michikeshi.
There are two main theories for planetesimal formatio2009, 2007, Tanga etlal. 2004). However, the turbulent gas in
mutual collisions (e.g!l, Hayashietal. 1977) and gravitzl the protoplanetary nebula stirs the dust, which incredsese-
instability in the dust layer (Goldreich & Ward 1973). In thedocity dispersion of the dust particles. Several ideas Hzeen
first hypothesis, dust particles grow as the result of amret proposed to overcome the turbulence-induced mixing of tiet d
dominated collisions. Although the formation of planetesis particles and create localized clumps. For exan@gm] e
by mutual collisions is consistent with meteoritic evidenthe (2008) suggest that the same turbulence that stirs the dust o
collision speed between dust particles (or aggregates) baus larger scales may also collect the dust particles on smaliksc
much slower than the typical velocity dispersion in a staddaA similar idea was proposed by Johansen et al. (2007), inlwhic
protostellar disc to avoid destructive collisions (Blum &W dust particles are localized into clumps using both tunbcie
[2008). In addition, the planetesimal formation processds and the streaming instability (Youdin & Goodman 2005). The
slow that meter-sized particles are in danger of spiralimtg i clumps then become gravitationally unstable. A third hixests
the star before growing large enough to decouple from the gagygests that large structures, such as vortices, may beaabl
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collect and protect dust particles from the turbulent backgd 2. Orders of magnitude

(Barge & Sommerla 1995). In this paper, we focus on the gra\g- _— .

tational collapse in a very dense and turbulent region optbe -1. Definition of timescales

toplanetary disc. The overdensity in the dust layer, whicA- The aim of this work is to simulate the dynamics of dust (or
proximately two orders of magnitude higher than the stashdasarticles) interacting gravitationally inside a protaptary disc.
minimum-mass solar nebula, might have been created by anyeefch particle is subject to fiveférent physical processes, each
the processes described above. operating on various typical timescales:

Numerical simulations must be used to test models of plangopping time 7
etesimal formation. However, the separation of scales & th Each particle feels the fiects of the surrounding gas
problem is huge. A meter-sized object is more than 12 orders o through a linear drag force. This force can be written as
magnitude smaller than the protoplanetary disc thickresséfg Faag = =2(vg — Vp), Wherers is the stopping time of a
numericists to ussuper-particles. These super-particles have a particle o7f-smassnp, Vg is the velocity of the gas, and, is

mass much higher than the mass of a single dust particlehéutt locity of th ticlé (Weidenschilling 1977
forces (e.g., drag forces) acting on them are equivalertdset e velocity of the partic 3.

of a single dust particle. Tanga et al. (2004) were able tghise Physical collision timescale 7

approximation to suc_ce_sfully mod_el the gravitational apée in Dust particles will sifer a physical collision with another
aregime in which collisions are unimportant. However, wtien dust particle on a timescale of = (o %n)~L, whereor
surface density is increased by two orders of magnitudeggms m g e geometrical cross-section of the particlgs jsvthe

tioned above, the System does become marginally colliszma particle velocity dispersion, analis the number density of
therefore the super-particle approach breaks down. particles.

IMichikoshi et al. (2009) perform a similar set of simulation o
also in a low density, non-turbulent region of the disc. Aligh ~ Orbital timescalere . _ -
the authors describe their particles as super-partidiesyay | N timescale associated with the particles orbiting time ce
in which they accurately treat the collisions is the samehas t ~ tral object in a local shearing patch is the epicyclic period
method presented in this paper. Other approaches use Montefe = 21Q~*, whereQ is the angular velocity at the semi-
Carlo type methods to resolve statistically the outcomevef-o major axis of the shearing box.
lapping particles (see e.@., Lithwick & Chiang 2007).

In this paper, we consider two limits for the gravitationateir-

In the following, we look carefully at the numerical requireactions between dust particles, long-range and shorteriey-
ments of modelling gravitational instability accuratelydatest actions. The long-range interaction can be seen as a codlect
the validity of using super-particles in a high density cegi Process involving interactions between clouds of pasicten
For simplicity, we begin with a system without turbulencelanthe other hand, the short-range interaction is importantde
assume that the surface density has already been increpse8diving close approaches between pairs of particles gravj-
turbulence or some equivalent process. We find that the sug@fional scattering). For the sake of clarity, we sepateged two
particle approach gives erratic results when collisionsobge Processes.

important. . .
portant Gravitational collapse timescale g

We therefore go on and present a method that does not useWe introduce a length scale> 6;, whered; is the average
super-particles. We simulate a scaled system in which the nu  distance between neighbouring dust particles. In thistJimi
ber of particles is dramatically lower than in a real protoy- which we call the long-range interaction, the dust particle
tary disc. To keep the surface density the same, the mass of in distribution can be approximated by a continuous density
dividual particles has to be increased. The drag force predu o, and one can define a gravitational timescale, which is
by the surrounding gas is scaled accordingly, so that the sto  of the order of the free fall time of the system, defined by
ping time remains constant. Furthermore, we increase the-ph  7a = 1/ vGp whereG is the gravitational constant.
ical size of each particle. This allows us to keep the calfisi
timescales in simulations of fiierent particle numbers exactly Gravitational scattering timescale 7gs
the same. These requirements lead to results that are indiexpe Short-range gravitational interactions can be seen as-an in

of the number of particles, which is the only free parameténé teraction between a pair of single particles that can result
simulation, and we call those simulations converged. Thelte a scattering event. As Wlth physical collisions, the tmaadaec_
agree with other simulations performed in the context ofies for a gravitational interaction depends on the cross-segti

rings [Goldreich & Tremairie 1982; Daisaka &lida 1999). Isthi  76s = (06 %)%, whereo is the gravitational cross-section

paper, we argue that this method should also be used in ¢urren of the particle. Using Kepler's laws, one finds thag ~

simulations of planetesimal formation. G?mZ/\¢. The gravitational cross-section is velocity depen-
dent, which makes it qualitatively @iéerent from physical

~ The outline of this paper is as follows. In Selct. 2, we de- (pjllard ball) collisions between two particles. We notetth
fine the important timescales in the problem and show that the gravitational focusing can also lower the physical calfisi

super-particle approach breaks down in high density region timescale.

Sect[B, we discuss the numerical method and the initialieond

tions of our simulations. Results of numerical simulatiossyg As mentioned earlier (Sedf] 1), the particles might also foe a
both the super-particle approach and our scaling methograre fected by excitation from a turbulent background state on a
sented in Secf]4. We conclude the paper with resolution cdimescale defined by the turbelence itself. In this paper, we
straints for numerical simulations and discuss the imgtices model this excitation in a simplified way, described in Sect.
for the planetesimal formation process through gravitetian- [3. In our case, the turbulence is scale independent and has no
stability in Sect[’b. timescale associated with it.
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2.2. The real physical system super-particles undergo gravitational scattering eventsch

. : . . . is unphysical since these events never occur in a real system
To identify the dominant physical processes in a protofikage Individual particle-particle collisions are not modelled

disc, one has to quantify and compare the relevant timescalé 11 oe are various examples where this approach is used

as defined above. In the following discussion and in the num%hccessfully. For example, smoothed particle hydrodyoami

ical simulations, we assunf& = 1 AU, a gas disc thickness SPH) ; . . .
- o uses the super-particle approximation to simulateyma
of H/Ro = 0.01, and a minimum mass solar nebula (MMSNéas moIecuIe@hbﬁﬁ). These systems are often assomed t

! o 5
WlthI%utrface ga?_ density - g%ol gV?/mH One usually assumeli{)e strongly collisional to ensure thermodynamical equilibrium
a solid to gas ratio gbs/pg = 0.01. We, however, assume a soli nside each super-particle. One can therefore assignctiote

to gas ratio of unity. As mentioned above, this value is jusl%]r ; ;
. . ) . J operties to clouds of particles such as pressure and tampe
fied by numerical simulations (Johansen et al. 2007.120G2) t ure. Another example is the evolution of galaxies. When two

demonstrate overdensities of the order of 2010" can easily galaxies collide, individual particles (stars) will usiyahot un-

occur because of the interaction with a turbulent gas dree, tdergo gravitational scattering events or physical caliisi In

streamir)g instability, or vertical settling. We note thagrsfi- that case, the super-particle approach modetslsionless sys-
cantI‘ diferent models of the solar nebula have .been propo a] in Wh’iCh collective dynamics is the only important plogsi
‘ -2007). However, all our results can easily be SCK’jegiocess. In both cases, the super-particle approximati@walid
d|fferent_scer_1arlos. . : approach for simulating the system numerically, but witddt
We simplify the system by assuming that all solid Comp(tﬁown as soon as the systenmarginally collisional.

?hents gf tkllde d'sﬁ are Irt] rn_et?r-alzeqt péa.mcles.. We assunte tha zq 5, example, we consider two clouds of particles undergo-
ese boulders have a typical velocity dispersion causegaby ing a “collision”. In the strongly collisional case, the alds will

turbu(ljen_ce Y %‘OSCS ~ :?;g"vs’ Whgrelcs is the local sound SLI?jWIy merge and the thermodynamic variables (e.g., temper
’S'.” accor anc;ﬁ wi t.nlum?rlc(?t resmalm P tﬁE e) will diffuse between the clouds, the patrticles inside each
). Since y/<< ¢, the particles tend to sediment toward the,, | following a random walk trajectory due to numerous col

midplane, forming a finite thickness dust layer due to the'nof?sions. On the other hand, in the collionless regime, the tw

zero velocity dispersion. clouds simply do not see each other because there is no short-

1 mforrr]neter-s#ﬁed bOl.JtIdterS’ tlhe pgys_lcal cross-sectpm_rs range interaction present between the particles. In a maligi
, WHereas he gravitational Scattering cross-secliorsis: — q)jisjona regime, some particles will collide with patgs of

) . o UG
107*"m*" showing clearly that gravitational scattering is 'rre.lihe other cloud, leading to a partial thermalisation of teleeity

evant to the dynaml_cs of dust particles embec_ided In a d'?ﬁstribution, but some other particles will not have anylisan
However, all other timescales are roughly eqmyalent. WMetey a1l and will follow approximately a straight line. Evidén the
§|zed boulders "ﬂe we_akly coqpled to the gas with a stoppifgicome of this everdannot be described using a super-particle
time s ~ e ~ Q! (Weidenschilling 1977a). The physical coI-approach
lision timescale ig; = 7.3Q"! and the long-range gravitational '
interaction timescales isy ~ Q1.

This physical system is expected to become gravitationaly4. Scaling method

unstable, according to the Toomre criteribn (Tod g6HR . . . _
instability occurs when the gravitational collapse tingseg; The idea of our scaling method is that one should keep all impo

is shorter than the transit time due to random particle rnstiotam timescales in a numerical simulation as close to thbdeo

A/ % and the orbital timescale. Assuming that the particles céﬁal physical system as possible and model all particléstais

. . . = explicitly.
be modelled by an isotropic ghwith a sound speed; vhe sys- The numerical system consists Nf,y, particles in a box
tem becomes unstable when

with lengthH, simulating a patch of the disc at a fixed radius

WBQ Ro. The particle mass iBhym = ZH?/Nnpum (H is the box size
Q= 7Gx < Qerit = 1. (1) and one scale height). Thus, the density in the box and tte lon
o range gravitational interactions are unchanged compar#ukt
In that case, the most unstable wavelength is given by real system.

The gravitational scattering cross-section of the nunaéric

21°Gx ; ;
AT = = (2) systemis then given by
. . . G?x2H*
In the following, we compare the physical parameters froi® thog pym = — 3)
section to their counterpart in numerical simulations. et fi Nnum\fﬁ

summarize the super-particle approach before presentiag

scaling method It:or the initial surface density and velocity dispersiondisethe

simulation (Secf_2]2), one finds

H?  0.0001AU

2 2
A super-particle represents many smaller particles. Timzuhy Naum Naum
ics of the small particles are not calculated exactly. Issiamed The physical collision cross-section in the simulation is
that all particles behave similarly and in a collective mamio  ocpum = 782,y Whereanm, is the radius of the particles in
simulate gravitational interaction between super-piagicone the simulation. We derive two constraints from the physical
has to use a softened potential. Without this, the grawitaili gravitational collision cross-sections:
scattering cross-section of super-particles becomesitge bnd

2.3. Super-particle approximation

(4)

OG,num =

1. Samemean free path in simulation and real physical systems
1 This would be true for a strongly collisional system, but @ for- That meansNnymocnum = Noc, whereo, and N are the
mally valid in the studied regime. geometrical cross-section and the number of particles in a
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region of sizeH? in a real disc, respectively. In other wordsThe interaction ternf, is divided into components related to
this condition ensures that the physical collision timéscaself gravity, physical collisions between particles, ocagiand
in the simulation is exactly the same as in the real system excitation forces:

Fint = Fgrav+ Feol + Farag+ Frurb. (7

b\'fé solve the resulting equations of motion with a leap fragkk
rﬂ[ift kick) time stepping scheme. In the following subsens,

we describe the numerical methods used to compute each of
these terms and their physical relevance.

. Negligible gravitational scattering
When two particles approach each other, the outcome sho
be a physical collision, which means that,.um > ocnum
The gravitational scattering timescale remains long co
pared to the physical collision timescale.

The first condition places a constraint on the particle sizheé
simulation. WithN = 4.7 - 10'8 and a particle radius af = 1 m
as found in a real disc within a box of volunt¢®, using the

The box size of @1 AU was chosen such that there are
always several unstable modes in the box, when the system is
pushed into the regime of gravitational collapse, as estichy

parameters from above finds that Eq.2.
Oc.num NO-C 0.014
anum = \/ = \/ o~ AU. (5)
um T Nnumr VNnum ghost boxes

We note that once this condition is satisfied in the initiataio
tions it will be automatically satisfied at all times. In silations,
we typically find that the collision timescale is reduced byre
than one order of magnitude during the gravitational cakap
The second condition is then satisfied by changing the num- |
ber of particles. An interesting result is thatNf,,,, > 10, the |
second condition is easily satisfied if the first one is safifsfi ;
We note however thatcum depends strongly on the velocity !

dispersion. In particular, a velocity dispersion 5 timesaen
than the initial value (as found in some simulations) leauls t
an increase by a factor of 600 in the gravitational scatterin
cross-section. Therefore, we suggest using a large safetyrf
(Nnhum > 10°) to ensure that the second condition is always satis-
fied, even for significantly smaller, vThis condition also allows
us to estimate when our approach breaks down, namely when the
number of clumps in the system is so lolW & 10 ~ 100) that
gravitational scattering becomes important.

Although it would be helpful as a further simplification, $t i
not possible to perfom the above mentioned simulation in two
dimensions. In that case, the filling factor, which is defined
be the ratio of the volume (or area) of all particles to thaltotFig. 1. Shearing box, simulating a small patch of the protoplan-
volume (or area), is of the order of one for the above paramietestary disc. The grey box represents the shearing box of-inter
We note that in 2D an increase in particle number (and deereast, the dashed boxes surrounding the central box represent
in particle size as required by Hq. 5) does not decreaselihg fil ghost ring.
factor if the collisional lifetime remains constant.

to star

3. Methods
3.1. Self gravit
Two different kinds of simulation are considered in this paper: gravity

1. Particles are assumed to be point masses and have no \ |t-he N-body problem that we consider, we have to solve
' cal size. the aravitational fieldpof the particles bein rpm@wton’s equations of universal gravitation for a large fem

( e g . part 9 8O ot particlesN. The gravitational force on thieth particle is given
imated with a smoothing length to avoid numerical d|ver5y

gences (see SeEt. B.1).

. Particles have a physical size and, therefore, no gterita

smoothing is required but physical collisions must be if-orav =

cluded.

We refer to the particles as super-particles and scaleétlesrt
respectively.

mm; a
(ri,-+b)2 g

whereb is the smoothing length used to avoid divergences in
numerical simulations (in simulations that include phgseolli-

pNe

j#i

(8)

“We perform our simulations in a cubic box with shear perkionsb = 0) ande; is the unit vector in the direction of the grav-
odic bour)(jary gond|t|on§ in the rad|ad)(and_ perd|OQ|c bQUﬂd- itational force between the-th and j—th particle. Calculating
ary conditions in the azimuthayY and vertical §) directions, the gravity for each particle from each other particle resis
as illustrated in Figll (Wisdom & Tremaine 1988). In the locay ({NZ) operations. To reduce the number of operations, one can
approximation, the force per mass on each p_artlcle IS a SUM Qs direrent approximations to EQJ] 8. In this paper, we use a
the contributions from Hill's equations and the interactierms. Barnes-Hut (BH) tree cod (Barnes & Hut 1086) ’

Hill's equation can be written as The BH tree in three dimensions divides the original box into
Fhin (6) eight smaller cells with half the length of the original badhis

—2Q &, x Vp +30Q% x &~ O’z e,
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process is continued recursively until there is only ondiglar case scenario because all timescales are equivalent, veagec
per cell left. The depth of the tree in a homogeneous mediuntie radius by a factor of 4 in all simulations.

approximately logN. One then calculates the total mass and the

centre of mass for every cell at every level of the tree.

To calculate the force acting on a particle, one starts at tﬁ
top of the tree and descends into the tree as far as necessafydch particle feels a drag force. The background velocithef
achieve a given accuracy. If the current cell is far away ftben gasv, is assumed to be a steady Keplerian profile
particle for which the force is calculated, then the dethden-
sity structure within this cell is not important. All that mters is __34 9
the box’s monopole moment (total mass and centre of mas\g)._ 2 X &. ©)

One therefore does not have to descend into this tree branch

any further. The BH tree reduces the number of calculationsA/though accretion flows are turbulent, we choose to use a sim
O(NlogN). ple velocity profile so that the behaviour of self-gravitatpar-

aﬁicles can be understood in conditions that can be easily con
trolled.

.é’:’. Drag force

We use 8rings of ghost boxes in the radial and azimuth
direction (Fig.1 shows one ring). A ghost box is simply a t&uf
copy of the main box. The gravity on each patrticle is then cal-
culated by summing over contributions from each (ghost). bo%. 4. Random excitation
This setup approximates a medium of infinite horizontal ieixte ) ) ) )
and avoids large force discontinuities at the boundariesda/ The system of particles described above is dynamicallyainst
not need any ghost boxes in the vertical direction because tHe even without self-gravity, as the deient of restitution and
disc is stratified. the stopping time do not depend on the particle veloBiti€he

A finite number of ghost rings can only act as an approximBarticles can either settle down in the midplane and create a
tion of an infinite medium and the gravitational force wiliteto  '@zor-thin disc if the stopping time is too short, or they ean
concentrate particles horizontally in the centre of the.libxe Pand vertically forever if the stopping time is above somioal
to the 8 ghost rings, the asymmetry of the gravitationalddre- Valueé and the excitation mechanism is provided only by <olli
tween the centre and the faces of the box is reduced by a faci9ns- Dust particles in accretion discs are found in theirsgt

of 20 compared to using no ghost rings at all. We note, howevEgdime. However, a complete settling never occurs in aiceret
that a small asymmetry remains in our simulations and leadi§ks because the background flow is always turbulent dueto t

to higher concentrations in the box centre. In other sinrat Kelvin-Helmoltz instability (Johansen etlal. 2006), the MBr
such as Tanga etlal. (2004), thieet is not seen because th@ther hydrodynamic 'ns_tab'““es_(sef%%
system is initially gravitationally unstable and integGhtonly ) which difuse particles verticall . lzou
for approximately one orbit. The system that we are inteckst2006). This stirring process of turbulence is not preserthén

in is marginal gravitationally unstable and this slightrmsyetry 9as Velocity field of the simulations presented here (se@fq.
will become important after several orbits. In the begignii 10 @pproximate the turbulent mixing, we added a random ex-
our simulations, we integrate for many orbits in order tacrea  Citation (white noise in space and time) to the particleshia t
stable equilibrium. We then push the system into a gravitati simulation. This allows us to have a well defined equilibrium
ally unstable regime (see Sdct]3.5 for details). Duringsthble N Which the system is stable rather than starting from Unsta
phase, horizontal over-concentrations are to be expeotbdra initial conditions that mlght influence the final state. _

indeed observed because of this asymmetry. However, sirce i We perturb the velocity components of each particle after
real protoplanetary disc the gravitational instabilitgimsidered €ach timestep on a scale; = Vst&, wherest is the current

to appear locally (e.g., inside a vortex or a similar streg)uthis  timestep and is a random variable with a normal distribution
effect of having a preferred location for gravitational ingligh  around 0 and variance This excitation mechanisireats up the

is not unphysical and does nafect any conclusions made inparticles and allows us to have a well defined three dimeasion
this paper. We tested this by applying a linear cfitothe grav- equilibrium as shown in Sedil 4. In our simulations, we use a
itational force at a distance of one box length (A. Toomrivate Vvalue ofs = 1.3- 10" m?s™3 ands = 8.9 - 10" m?s™® for the
communication). In this case, there was no preferred lopati  Simulations without and with collisions, respectively.€Be val-

the box and the simulation evolved in exactly the same way. ues were chosen such that the equilibrium state is appraogiyna
equivalent for both types of simulations.

3.2. Physical collisions

3.5. Initial conditions
Physical collisions between particles are treated in thievie ) , ,
ing way. After each timestep, we check whether any two pa! particles, which have equal mass, smoothing length, and
ticles are overlapping. Using the already existing treecstre Physical size, are placed randomly inside the box inxhe
from the gravity calculation, one can again reduce the cemdﬁF"a”e- We note that particles have either a physical size or a

. ; : thing length associated with them, depending on the typ
tational costs fronD(N?) to O(NlogN). In these simulations, SMoothing enal _
a collision between particles is defined as an overlap betw: of simulation we perform (Sedfl 3). In the z-direction, tfaatp

; . v cles are placed in a layer with an initially Gaussian distidn
two particles that are approaching each other. When aieallis 5, 4 the midplane and a standard deviation of 0.05 H. Wevallo
is detected, it is resolved assuming energy and momentum c

Tt ; AR ; -1
servation (perfectly elastic collisions). We note thattiheestep ?hfsf/)r/s?)t?m to reach equilibrium by integrating it ufitd 300
e

has to be small enough such that no collision is missed and

overlap is always small compared to the particle size. 2 This instability is qualitatively similar to the instalifi described
The particle radius is given by Hg. 5. In order to keep the caly[Goldreich & Tremain€ (1978) for Saturn rings, althougkhia latter

lision timescaler; close to unity, which is numerically the worstcase the drag forces are absent.
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——— ; ; length acts as arflective smoothing length. In general, to check
25mis [ N=160000 -.ooee { the numerical resolution, the particle numidggm is increased
N=160000 LS —— i and the smoothing length is reduced independently. A simu-

lation is resolved when the result is independent of bBdthy,
andb. This turns out to be impossible in the present situation.
The main reason is that the smallest scale in a gravitational
collapse will ultimately depend on the smoothing length. By
varying both parameters at the same time, an empirical scal-
ing of b ~ 1/ v/Npum works fairly well if Npym is large enough.
However, this procedure is not justified and is unphysiche T
smoothing length was introduced to avoid divergent terngs an
not to model any small-scale physical process. Therefore, i
shouldnot have any impact on the physical outcome of the sim-
ulation. Incidentally, the existence of this dependencidates
thatshort-rangeinteractionsare important for the result of these
simulations and should be modelled with care.

20 m/s

velocity dispersion

15m/s

10 m/s

30q* 3BQ° 20q* 45Q°

time In Fig[2, we plot the velocity dispersion as a function ofdéim
The simulations begin from the stable equilibrium desdilve
8ect[3. Aftert = 30 QL, we switch df the excitation mecha-
ism. Because the system continues to cool, it becomedaravi
onally unstable within one orbit, as estimated by Bqg. 1c©n
clumping occurs, the velocity dispersion begins to riseragél
simulations use the particle radius given by[Hqg. 5 as a snvapth
35 mis [N=160000 ---oee Frgsd length except the ones labelel, which use a ten times larger
N=640000 value. The larger softening length is approximately a 128#t
the box length and illustrates the kind of evolution expédtem
an FFT method using a 12§rid.

Fig. 2. Super-particles: Velocity dispersion as a function of tim
in four different runs. The simulation labeled has a ten times

larger smoothing length. The curves do not overlap beczhfseg
simulations are not converged.

30 m/s

Snapshots of the particle distribution of two simulations a
shown in Fid.#. Both simulations use 160 000 particles ahd al
parameters, except the smoothing length, are the sameophe t
row is the simulation with a smoothing length given by Ef. 5,
whereas the bottom row uses a smoothing length that is ten
times larger. The simulations correspond to the blue (nmediu
dashed) and red (solid) curve in Eiy.2. We show the snapshots
illustrate the importance of the smoothing length in sirtiates
without physical collisions. One can see that the simutestidif-
fer already before clumps form. Stripy structures appeaaon

10 mis scale given by Ed.]2. As soon as we enter the unstable regime

w0 B 43{? 5Q o' att ~ 32Q7! (i.e., the velocity dispersion begins to rise, see
also Fig.2) the simulations evolve venyfidirently. The simula-
Fig. 3. Scaled-particles: Velocity dispersion as a function oftimtion on the top row of Fi§l4 forms many clumps at an early time,
in three diterent runs that include physical collisions. All curvesvhereas the bottom row simulation forms only a few, more mas-
overlap because the simulations are converged. sive clumps at later times.

25 mls

velocity dispersion

20 m/s

15m/s |-

This can be confirmed by looking at spectra of the same two
We tested various ways of pushing the system into the unséanulations as shown in Fig.6. These spectra were gendrgted
ble regime, either by reducing the turbulence stirring oshgrt- mapping the particles onto a 128128 grid in thex — y plane
ening the stopping time, but did not see any qualitatiiedénce and computing the fast Fourier transform of the mapping @ th
as long as we start from a well defined equilibrium state. & tfx direction. The resulting spectra were finally averaged @& th
simulations presented in this paper, we switéirtlee turbulence y direction (seéﬁl 04, for a complete description
stirring. Following this modification, the system becomest  of the procedure). As suggested by the snapshots, the nonlin
tationally unstable and bound clumps form within a few @bit ear dynamics of the gravitational instability strongly dags
on the smoothing length used. In particular, one obsenas th
smaller scales are amplified more slowly for larger smoathin
4. Results lengths. The resulting spectratat 4001 also difer signif-
icantly. With a small enough smoothing length, the spectrum
looks almost flat, whereas a large smoothing length intreduc
We first present simulations without physical collisionsper- a cutdf atk/2r ~ 10. We also note that the smoothing length in
particles) which rely on the smoothing lengthto avoid any the latter case is of the order of the grid sikg2r ~ 100). The
divergencies. Although we use a tree code and thereforecwtoff observed clearly demonstrates that the smoothing length
smoothed potential for the force calculation is assumed, tmodifies the dynamics on scales up to 10 times larger than the
results are equivalent to an FFT-based method where the giidoothing length itself.

4.1. Super particles
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Fig.4. Super-particles: Snapshots of the particle distributiothiexy plane. Both simulations use 160 000 particles witffiedent
smoothing lengths. The simulation on the bottom uses ameestiarger smoothing length than the one on the top. The satgps
were taken (from left to right) at= 0, 30,37, 40Q 1. With a large smoothing length, the outcome looks veffedént, the system

is more stable, more stripy structure can be seen and clumnpsidter, if at all.

Fig.5. Scaled particles: Snapshots of the particle distributiothe xy plane. The simulations (from top to bottom) use 40 000,
320 000, 640 000 particles with their physical size given oy In all simulations, the collision timescale was keptstant. The
snapshots were taken (from left to right)tat 0, 30,37,40Q'. The simulation with 40 000 particles has a large filling fadiy
the last frame, which prevents clumps from forming. Therimiediate resolution simulation (middle row) and the highesolution
simulation (bottom row) have more and smaller particlestand a smaller filling factor. The results (i.e., number ofeps in the
last frame) are very similar in the intermediate and higloiggn simulations.
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4.2. Scaled particles

The velocity dispersion evolution of simulations with = 0.01
160000320 000640 000 particles including physical collisions
is presented in Figl3. In these runs, no gravitational shingt
length is needed. Again, the simulations start from a stadpla- G i
librium and aftett = 30Q1, we change the same parameters as  o.o: e, P .
in the non-collisional case to push the system into the taavi
tionally unstable regime. Snapshots of the particle distions
for three runs are also plotted in Fi.5. The middle and Ipotto =
rows of snapshots correspond to the purple (medium dashdd)a 0001
dark blue (long dashed) lines of Hig.3.

One can see in F(g.3 as well as Elg.5 that the intermedi-

. N=160000
s 1538

N=160000 LS™, _. "4k, N=160000
=36 TN " t=36

ower

=160000 LS|
: =38

ate and high resolution runs produce very similar results. W N=160000 LS
call those simulations converged, as a change in partiale-nu ~ **®F a0 ]

ber does not change the outcome. An additional, lower resolu
tion run (N = 40000) is not converged because the filling fac- s s
tor is too large in dense regions, preventing clumps fromdpei ! 10 100
gravitationally bound. The problem does not occur in the-non Wavelength 1

collisional cases because particles are allowed to oveslamge Fig.6. Super-particles: Density distribution spectrum with
the filling factor scales with particle number agvIN,,m, this 160 000 particles and twofiierent smoothing lengths thatiir
issue is resolved for runs with more than a few hundred tholby a factor 10 at times = 30 (red, solid curve), = 36 (green,
sand particles. We note that the velocity dispersion migffied long dashed curve), arid= 38 (blue, short dashed curved). The
slightly at later stages for the converged runs becauserthé fispectra at similar times are not on top of each other bechese t
clump radius is still determined by the physical particldiuva simulations are not converged.

and therefore by the particle number.

We show the density distribution spectrum in Eig.7 as a func- ' '
tion of the number of particles. The resulting spectra dodest
pend on the number of particles in the system, as expected. In
comparison with Figl6, the simulations with collisions aoa-
verged since the dynamic is not controlled by the numeriaal p
rameteN, which is the only free parameter in the system.

At very late times { > 38Q71), the spectra begin to show
a systematic trend towards more structure on smaller st@les 5
runs with largeiN. This is expected and due to the filling factor,
already mentioned above. As soon as one clump in the simu- g0
lation is only determined by the size of the individual paes
it consists out of, our approach breaks down. One can also see
these clumps forming by looking at the velocity dispersion i
Fig[3. The particles inside a clump begin to dominate the ve- 1e0s
locity dispersion over the background after 38Q1. A clear
indication of this is the spiky structure with a typical osla-
tion time of~ Q™! corresponding to dierent clumps interacting 1 10 100
and merging with each other. One way around this issue, which Wavelength 1/L

will be considered in future work, is to allow particles tome  j 7 scaled particles: Density distribution spectrum with
12009). Using thlaccre_tlo_n model, the mass ;g 000, 320 000, and 640 000 particles (colors are equiviaen

of the clump can be used as an upper limit. Fig[@). At each time, the spectra are converged, i.e., thetsp

are on top of each other and independent of the particle num-

ber, besides the noise level on very small scales. At latesim

(t > 38, blue curve), one begins to see more structure on small

In this paper, we have shown that convergenchllibody sim- scales in simulations with larger number of particles (s&€1t

ulations of planetesimal formation via gravitational adstity

can be achieved when taking into account all relevant paysic

processes. It is absolutely vital to simulate gravity, dangpex-

citation, and physical collisions simultaneously, as takated collapse. Simulations with and without physical collissomere

timescales are of the same order and thereforeffdces are Studied for a range of particle numbers to test convergence.

strongly coupled. In cases without physical collisions, convergence can aot b
A set of simulations is defined to be converged when the raehieved. However, it was possible to change multiple fiee s

sults do not depend on the particle number or any other gatificulation parameters at the same time, namely the particldeum

numerical parameter such as a smoothing length. As a tesstacadN and the smoothing length such that in special cases the re-

box with shear periodic boundary conditions was used, @ontasults did not depend on the particle number. We note however

ing hundreds of thousands of self-gravitating (supertjglas that there is a free parameter in the simulation (i.e., theath:

in a stratified equilibrium state. The particles were theshma ing length) that &ects the outcome and makes it impossible to

into a self gravitating regime that eventually led to gratidnal find thereal physical solution.

0.01 | 1

0.001

N=160000

Y1 N=320000

Woille N=640000
"

5. Discussion and implications
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In the protoplanetary disc, physical collisions dominatero less than unity at = 0 is given by
gravitational scattering. In the case of planetesimal fdiom,
the system is marginally collisional. Physical collision8l par-  Z 7 (a,ym)% - Noum < C¢ L?H, (11)
tially randomise the particle distribution, whereas a sthimgy 3
length does not because the softening length is very lamye cQyhereC; is a safety factor. AlthougB; < 1 would be enough
pared to the gravitational cross-section. Even if the gasianal  to resolve collisions initially, it is insflicient to simulate the col-
particle-particle scattering becomes important, it canseen |apse phase. During the collapse, the filling factor riséditg.
from Eq.[3 that the velocity dependence of the cross-sectiagsuming that one wishes to resolve collisions correctigmh
oc differs fundamentally from the velocity independent crosgne particles have contracted by one order of magnitudehase
sectionoc. We therefore argue that the super-particle approagdlinciude a safety factor o = 1073, If the collapse occurs
should not be used when collisions become important. mainly in two dimensions, as in the simulations presentee, lze
With collisions, the simulation outcome is both quantitafactor ofC; = 1072 is suficient. Furthermore, one has to ensure
tively and qualitatively very dferent from simulations with no that the box contains at least a few unstable modes (s€8 Eq. 2)
physical collisions. The initial size of the clumps is largad the - All this together places tight numerical constraints on etigal
number of clumps is smaller. As there is no smoothing lengt§imulations of planetesimal formation via gravitatiomatabil-
there is &ectively one fewer free parameter. Changing the pgy.
ticle number while keeping the collision time constant does In future work, we will expand the discussion to include
change the outcome. We therefore call these simulations c@fore physics, namely a proper treatment and feedback of the
verged. background gas turbulence. This will allow us to furthemrcla
Additional tests including inelastic collisions with a moal ify the behaviour of planetesimals in the early stages ofigtia

codficient of restitution of ®5 have been performed to confirmformation and eventually test thefiirent formation scenarios.
that the results do not depend on the way physical collisiwas

modelled. As expected, the qualitative outcome in termsiafn Acknowledgements. We thank J. Papaloizou, G. Ogilvie, S.-l. Inutsuka, A.

; ; ; ; ohansen, Y. Lithwick, and A. Youdin for helpful discussoand com-
ber of clumps and clump size isflérent because the phySICa}rLents. Hanno Rein is supported by an Isaac Newton Studpntstd St
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smoothing length) and confirmed our previous results. T gper can be downloaded free of charge as an application foiithene at

in the FFT code acts as a smoothing length and a direct cchtp://itunes.com/apps/gravitytree

parison between the two gravity solvers gave an approxigfate

fective smoothing length of a quarter of the grid length. &ese

one has to solve individual particle-particle interactigime grid

size has to be smaller than the physical size of the parti8les Barge, P. & Sommeria, J. 1995, A&A, 295, L1

a result, the FFT method is always slower than a tree code.Barnes, J. & Hut, P. 1986, Nature, 324, 446
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