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ABSTRACT

We derive expressions for the time integrated spectrum of Cosmic Rays (CRs) that are accelerated
in a decelerating relativistic shock wave and escape ahead of the shock. It is assumed that at any given
time the CRs have a power law form, carry a constant fraction of the energy E of the shocked plasma,
and escape continuously at the maximal energy attainable. The spectrum of escaping particles is highly
sensitive to the instantaneous spectral index due to the fact that the minimal energy, εmin ∼ Γ2mpc

2

where Γ is the shock Lorentz factor, changes with time. In particular, the escaping spectrum may be
considerably harder than the canonical N(ε) ∝ ε−2 spectrum. For a shock expanding into a plasma
of density n, a spectral break is expected at the maximal energy attainable at the transition to non
relativistic velocities, ε ∼ 1019(ǫB/0.1)(n/1cm

−3)1/6(E/1051erg)1/3eV where ǫB is the fraction of the
energy flux carried by the magnetic field. If ultra-high energy CRs are generated in decelerating
relativistic blast waves arising from the explosion of stellar mass objects, their generation spectrum
may therefore be different than the canonical N(ε) ∝ ε−2.
Subject headings: cosmic rays

1. INTRODUCTION

Cosmic rays (CRs) are widely believed to be accel-
erated in collisionless shock waves in various systems
(see e.g. Blandford & Eichler 1987; Axford 1994). In
particular, supernova remnant (SNR) shocks propagat-
ing subrelativistically are thought to accelerate pro-
tons up to ∼ 1015 eV (see e.g. Ginzburg & Syrovatskii
1969), while non or trans-relativistic internal shocks
or ultra-relativistic external shocks of the jets of ac-
tive galactic nuclei (AGNs, see e.g. Berezinsky 2008) or
gamma-ray bursts (GRBs, Waxman 1995; Vietri 1995;
Milgrom & Usov 1995) may be the sources of Ultra High
Energy CRs (UHECRs) up to the GZK energies of ∼
few ×1020 eV.
In cases where the shocked material expands consider-

ably before releasing the CRs, most of the cosmic rays
loose most of their energy by adiabatic losses before es-
caping. Thus, the instantaneous spectrum of CRs at a
given time and the integrated spectrum of the CRs es-
caping from the system may be different.
In this paper, we write down simple analytic expres-

sions for the spectrum of escaping CRs from a relativistic
decelerating shock wave assuming that at any given time
(a) CRs escape at the maximal energy attainable at that
time, (b) the CRs have a power law energy spectrum,
and (c) the CRs carry a constant fraction of the shocked
thermal plasma. We show that even under these simple,
widely acceptable assumptions, the resulting spectrum
may be non trivial and in particular significantly harder
than the canonical N(ε) ∝ ε−2 spectrum.
In section § 2 we formulate our basic assumptions and

give general expressions for the resulting flux. In section
§ 3 we focus on energy conserving blast waves expanding
in a uniform medium. The implications of the results
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are discussed in § 4. Expressions for the escaping CR
spectrum expected in other scenarios, including power
law density profiles, radiative shocks, and a jet injection
with constant luminosity, are derived in § A.

2. BASIC MODEL AND ASSUMPTIONS

Consider CRs that are accelerated by an expanding
shock wave which is decelerating due to interaction with
an external medium.

2.1. Assumptions

(i) The basic assumption that we make is that at any
given time (or shock radius R), particles escape at the
maximal energy εmax attainable at that time. Specifi-
cally, it is assumed that εNesc(ε), the number of CRs
ejected within a logarithmic energy interval around ε,
is similar to the number of particles in the system,
εN(ε,R), at the radius R for which the maximal energy
εmax is equal to ε,

εNesc(ε) ∼ εN(ε,R|εmax=ε). (1)

For concreteness we further make the following as-
sumptions.
(ii) At any given radius R, the energy spectrum of CRs
is a power law, N(ε) ∝ ε−2−x for εmin < ε < εmax, with
x > 0 and with total energy ECR. The spectrum can be
expressed as

ε2N(ε) = xECR

(

ε

εmin

)

−x

, (2)

where we assumed that (εmax/εmin)
−x ≪ 1.

(iii) The minimal, maximal and total cosmic ray energies
are power law functions of the radius,

εmin ∝ R−αmin , εmax ∝ R−αmax , ECR ∝ R−αE . (3)
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2.2. Resulting spectra

Under the above assumptions, the spectrum of escaped
particles is given by

ε2Nesc(ε) ∝ ε−xesc (4)

with
xesc = x− (αminx+ αE)/αmax. (5)

For the case αmin = 0, this reduces to equation (28) of
Ohira et al. (2009).
Equation (5) is valid for x > 0. We note that for the

limiting value, x = 0, a logarithmic correction is intro-
duced to the spectrum of escaped CRs, due to the loga-
rithmic dependence of the total CR energy on εmin,max,
ECR = log(εmax/εmin)ε

2N(ε).

3. ENERGY CONSERVING BLAST WAVES

We next apply the above general result to simple cases,
focusing on a blast wave of fixed energy which starts off
ultra-relativistic, and then decelerates to non relativis-
tic velocity. The non relativistic and relativistic stages
are analyzed in § 3.1 and § 3.2 respectively. The spec-
trum resulting from the combination of the two stages is
addressed in § 4.

3.1. Non-relativistic expansion

Perhaps the simplest case to consider is the case of
constant CR minimal energy εmin and total energy ECR

(αE , αmin = 0). This is expected in the Sedov-Taylor
phase of non relativistic blast waves. The energy in CRs
is dominated by the relativistic CRs, ε > mpc

2, and is
commonly assumed to be a constant fraction f of the
total energy E in the system. Hence εmin ∼ mpc

2 and
ECR = fE, both independent of the shock radius. Eq.
(5) implies that the escaped spectrum is the same as the
instantaneous spectrum,

xesc = x, i.e. Nesc(ε) ∝ ε−2−x. (6)

This result can be obtained directly from Eq. (1) by not-
ing that the entire spectrum, up to the maximal energy
εmax(R), is independent of radius.

3.2. Ultra-relativistic expansion

We next consider the case of ultra-relativistic expan-
sion. Below and in § A we make the following assump-
tions in addition to assumptions (i)-(iii) above:
(iv) The minimal CR energy is the energy of the thermal
particles,

εmin ∼ εth ∼ Γ2mpc
2; (7)

(v) The CR pressure is a radius independent fraction fCR

of the momentum flux in the shock frame, pCR ∝ Γ2ρ,
implying

ECR ∝ R3Γ2ρ; (8)

(vi) The maximal CR energy is the maximal energy of
CRs that are confined by a fluid rest frame magnetic field
Brest (equivalent to Diffusive Shock Acceleration in the
Bohm limit),

εmax ∼ eEobsδR ∼ eBrestR ∝ e(Γρ1/2)R, (9)

where Eobs ∼ ΓBrest is the electric field in the ob-
server frame corresponding to a magnetic field Brest ∼

(8πΓ2ρc2ǫB)
1/2 in the rest frame of the shocked plasma,

assumed to carry a constant fraction ǫB of the momen-
tum flux, and δR ∼ R/Γ is the maximal distance that a
cosmic ray can propagate along the electric field in the
observer frame.

3.2.1. Ultra-relativistic impulsive expansion

We next consider a Blandford- McKee (energy conserv-
ing; Blandford & McKee 1976) shock expanding into a
uniform medium. By assumption αE = 0. Using equa-
tions (7)-(9), αmax = 1/2 and αmin = 3 are obtained.
Using (5) we find xesc = −5x, or

Nesc(ε) ∝ ε5x−2. (10)

4. DISCUSSION

The spectral index of escaped CRs, given by Eq. (10),
may be surprisingly hard if the instantaneous spectrum
deviates from a flat spectrum. The basic reason for this
is the fact that the minimal CR energy εmin ∼ Γ2mpc

2

changes with radius much faster than the maximal en-
ergy, implying that at later times (corresponding to lower
escaped energies) there is much less CR energy at the es-
caping, high end of the spectrum.
For example, consider the commonly assumed Diffusive

Shock Acceleration (DSA) mechanism (Krymskii 1977;
Axford et al. 1977; Bell 1978; Blandford & Ostriker
1978), which for ultra-relativistic shocks with isotropic,
small-angle scattering, leads to an instantaneous
spectrum N ∝ ε−20/9 (Keshet & Waxman 2005;
Bednarz & Ostrowski 1998; Kirk et al. 2000). Using
Eq. (10), this implies a very hard escaping spectrum,
Nesc ∝ ε−8/9. We emphasize that DSA has not been
shown to work based on first principles and even if it
does, the resulting spectrum is sensitive to the scatter-
ing mechanism (e.g. Keshet & Waxman 2005) which is
poorly understood. The important point is that the es-
caping spectrum is highly uncertain, very sensitive to the
acceleration mechanism, and may be considerably harder
than N(ε) ∝ ε−2.
Once the shock decelerates to non relativistic speeds,

the integrated escaping spectrum changes its form. In
the subsequent Sedov-Taylor phase, the minimal CR en-
ergy does not change any more, εmin ∼ mpc

2, and the
escaping spectrum will be similar to the instantaneous
spectrum [see Eq. (6)]. Note that in the extreme case
in which CRs carry most of the energy, and assuming
they are accelerated by non-linear DSA (for a recent re-
view see Malkov & Drury 2001), the instantaneous spec-
trum may not be a power law and correspondingly the
escaping spectrum is different than that given here (e.g.
Caprioli et al. 2009; Ohira et al. 2009). In any case, a
significant break is expected in the escaping spectrum at
an energy ε∗ equal to the maximal energy achievable at
the transition from relativistic to non-relativistic shock
velocities. Using Eq. (9) for Γβ ∼ 1, the break is ex-
pected at

ε∗ ∼ eBrestR ∼ (8πρc2ǫB)
1/2[3E/(4πρc2)]1/3

∼ 1019ǫB,−1n
1/6
0 E

1/3
51 eV, (11)

where E = 1051E51 erg, ρ = n mp is the ambient den-
sity with n = n0 cm−3, and ǫB = 0.1ǫB,−1. The spectral
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index above this energy will be −2− xesc = −2 + 5x, as
given by Eq. (10). We note that the energy range where
xesc = −5x is limited between ε∗ and max(ε) ∼ εmax(Γ0)
where Γ0 is the initial Lorentz factor. The maximal en-
ergy scales with Γ as εmax ∝ Γ1/3 resulting in a narrow

energy range ε∗ . ε . Γ
1/3
0 ε∗.

We conclude that the spectrum of UHECRs, may be
different than ε−2 and possibly considerably harder, if

they originate from a relativistic decelerating blast-wave
resulting from the explosion of a stelar mass object.

BK & EW acknowledge support by ISF, AEC and
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APPENDIX

OTHER PARTICULAR CASES

Consider an ultra-relativistic shock, which expands into a medium with a density profile

ρ ∝ R−αρ (A1)

with a bulk Lorentz factor
Γ ∝ R−αΓ . (A2)

Using Eqs. (7)-(9) and (A1) we find:

αmin = 2αΓ, αmax = αΓ +
1

2
αρ − 1, and αE = 2αΓ + αρ − 3. (A3)

Substituting this in equation (5) we find

xesc = 3− 2αΓ − αρ +
(2− αρ) + 2αΓ

(2− αρ)− 2αΓ
x. (A4)

For a uniform density distribution, αρ = 0, and for a wind-like density distribution, αρ = 2, this reduces to

xesc =
3− 2αΓ

αΓ − 1
+

1 + αΓ

1− αΓ
x, (A5)

and

xesc =
1− 2αΓ

αΓ + 1
− x (A6)

respectively. Below we tabulate the expected spectral indexes, xesc, for various physical scenarios.

TABLE 1
Spectral indexes of escaping CRs for different relativistic scenarios

Scenario Conserved quantity αΓ xesc [ρ ∝ R0] xesc [ρ ∝ R−2]

Impulsive, Energy conserving E ∼ Γ2ρR3 (3− αρ)/2 −5x −x

Impulsive, Radiative MΓ ∼ ΓρR3 3− αρ −3/2− 2x −1/2− x

Continuous injection with constant L L ∼ 4πρΓ4c3R2 (2− αρ)/4 -4+3x 2-x

The value of the spectral index xesc is given by Eqs. (A5) and (A6) for the various scenarios. The escaping spectrum is given by
N(ε) ∝ ε−2−xesc .
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