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Abstract

The classic N p chart gives a signal if the number of successes in a sequence of inde-

pendent binary variables exceeds a control limit. Motivated by engineering applications

in industrial image processing and, to some extent, financial statistics, we study a simple

modification of this chart, which uses only the most recent observations. Our aim is to

construct a control chart for detecting a shift of an unknown size, allowing for an unknown

distribution of the error terms. Simulation studies indicate that the proposed chart is su-

perior in terms of out-of-control average run length, when one is interest in the detection

of very small shifts. We provide a (functional) central limit theorem under a change-point

model with local alternatives which explains that unexpected and interesting behavior.

Since real observations are often not independent, the question arises whether these re-

sults still hold true for the dependent case. Indeed, our asymptotic results work under

the fairly general condition that the observations form a martingale difference array. This

enlarges the applicability of our results considerably, firstly, to a large class time series

models, and, secondly, to locally dependent image data, as we demonstrate by an example.

MSC 2000: Primary 62L10, 60F17, 62G20; Secondary 62P30, 68U10, 62P05.

1 Introduction

Detection of changes in the mean characteristic of produced items is still the most fre-

quently used tool in quality control. A large variety of control charts have been proposed

in the last fifty years. For comprehensive reviews we refer to Antoch and Jarušková (2002),

Antoch, Hušková M., and Jarušková (2002), the monograph Brodsky and Darkhovsky (2000),

1Address of correspondence: Prof. Dr. A. Steland, RWTH Aachen University, Institute of Statistics,

Wüllnerstr. 3, D-52056 Aachen, Germany.
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and also to the articles Woodall (1997), Chakraborti, van der Laan, and Bakir (2001), and

Montgomery (2001). Investigations of their properties indicate that one can not hope to select

one ”universally good” chart, which is uniformly sensitive to small, moderate and large shifts

in the mean and still robust against violating the normality of errors assumption. On the

other hand, a wide accessability of computer systems allows to run simultaneously several

control charts with different sensitivity ranges for the same process. It is well known, the

Shewart chart is well tuned to detect rather quickly large shifts, while EWMA and CUSUM

charts are faster in detecting smaller shifts of the order 0.5σ. If the aim is to detect moderate

to large jumps so called jump-preserving procedures are attractive, which are special cases

of the unifying vertically weighted regression approach studied by Pawlak and Rafaj lowicz

(1999), Steland (2005), and Pawlak, Rafaj lowicz, and Steland (2004, 2008). Nonparametric

kernel control charts and the optimization for certain out-of-control models covering mixing

processes have been studied in Steland (2004) and Steland (2005). Further, Wu and Spedding

(2000) combined a classic Shewhart chart and a conforming run length chart yielding smaller

ARLs for shifts larger than 0.8σ, but that method is inferior to the EWMA chart for smaller

shifts.

The purpose of this paper is to propose a new binary chart, which is easy to apply, has enlarged

sensitivity to very small shifts, and is robust with respect to deviations from normality. We

provide a comprehensive study covering the methodology, asymptotic theory, practical issues

of control chart design, and extensive Monte Carlo simulations.

Our study is motivated as follows: Although computing power has considerably increased,

many practical applications still require detection procedures which are extremely fast to

calculate. An example, which motivated our investigation, is the surveillance of copper pro-

duction as outlined in Pawlak, Rafaj lowicz, and Steland (2008). Here the problem is to detect

defects and cracks resulting in lower quality. The copper is surveyed by a camera taking many

high-resolution images per second, and each column of an image is analyzed in real time to

detect defects. Only detectors which are fast enough to calculate can be employed. In such

engineering image processing and image analysis applications one has to deal with the spatial

inhomogeneity of the grey level of pixels. One can either assume that the inhomogeneity is

compensated by a quite wiggly mean function which is disturbed by independent noise, or

assume a smooth mean function overlayed by dependent noise. In the latter case fitting com-

plex models to take account of dependencies is often not feasible in real-time applications.

Then it is important to know how the chosen method behaves for dependent data. Let us also

mention a further important area, namely the application of monitoring procedures to finan-

cial data. In financial statistics various empirical analyzes have revealed that asset returns are

usually uncorrelated but the squares are serially correlated and are affected by conditional

heteroscedasticity which produces the clusters of strongly dispersed returns seen in real data.

Various models for returns assume or imply the martingale difference property.
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Having in mind the above applications, we propose a simple method where one thresholds

the observations to obtain binary data and applies a control chart based on the number of

data points exceeding the threshold. In contrast to the classic N p-chart, the chart uses a

finite buffer storing only the most recent observations. Our simulation results indicate that

such a modified p-chart with a reduced number of observations reacts on average slower than

several control charts studied recently in Han and Tsung (2004) for shifts larger than 0.25σ,

but provides faster detection for very small shifts.

We provide an appropriate theoretical framework and prove a functional central limit theorem

which shows that the classic N p chart’s sensitivity with respect to very small shifts indeed can

be improved by taking less observations into account. As argued above, the question arises,

whether the result still holds true when the independence assumption underlying the classic p

chart is dropped. The answer is positive: Our main result and its interpretation holds true for

a large class of dependent processes, namely the class of triangular arrays of random variables

forming a martingale difference array with respect to some filtration. Thus, the benefits of

the modified p chart are also effective when monitoring dependent data.

The paper is organized as follows. In Section 2, we introduce the proposed control chart

and its relationship to the classic N p-chart. An appropriate change-point model with local

alternatives is introduced in Section 3 to study the problem from an asymptotic viewpoint.

We establish a functional central limit theorem for the underlying stochastic process which

induces the stopping time of interest. A proof of the main result is postponed to an appendix.

Practical issues of control chart design are discussed in detail in Section 4. Finally, an extensive

Monte Carlo study is presented in Section 5 providing a comparison with recently proposed

control charts.

2 Statistical model and a modified p-chart

Our aim is to construct a control chart for detecting a shift of an unknown size m allowing

for an unknown distribution F of the error terms. It is required that the in-control average

run length (in-control ARL) of the chart can be tuned to sufficiently large values in order to

reduce the number of false alarms. Simultaneously, the out-of-control ARL should be small,

leading to quick detection of the jump after its occurrence. For a discussion of the design

of control limits and their relationship to alarm rates and ARLs we refer to Margavio et al.

(1995).

Even if the underlying distribution is normal, the Shewhart control chart is not powerful

for detecting small changes, say m of the order of 0.1σ to 0.25σ, if σ denotes the standard

deviation of the errors. The EWMA (exponentially weighted moving average) control chart

is better suited to this purpose, but its performance is still not satisfactory in the range of

very small shifts. For this reason a number of modifications of the Shewhart, EWMA, and
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CUSUM charts have been proposed recently (see Han and Tsung (2004) and the bibliography

cited therein). However, the design of a concrete control procedure with specific properties

requires knowledge of the error distribution.

2.1 Change-point model

In this paper, we consider a classic change-point model, where the observations are of the

form

Yn = Y + m · 1(n− q) + εn, n = 1, 2, . . . (1)

Y denotes the desired level of quality (target value) which is disturbed by random errors εn’s.

The deterioration of quality is modelled by jump (permanent shift in the quality characteristic)

of height m 6= 0, which appears at time instant q > 0. q is called change-point and is assumed

to be non-stochastic but unknown. 1(t) denotes the indicator function on the set [0,∞), i.e.,

1(t) =

{
0 if t < 0

1 if t ≥ 0
. (2)

Thus, starting at the change-point q there is a jump of height m. In Section 3 we consider a

change-point model allowing for jump sizes tending to 0 at a certain rate.

To simplify the exposition, we shall assume Y = 0 in what follows. For the same reason, let us

tentatively assume that the error terms εn in (1) are independent and identically distributed

random variables. That assumption will be relaxed in the next section. Whereas classic proce-

dures are restricted to normally distributed noise, we allow for arbitrary distribution functions

F which are symmetric about 0, i.e.,

F (x) = 1 − F (−x), x ∈ R. (3)

Particularly, we allow for distributions having no finite expectations, e.g., the Cauchy distribu-

tion which has heavier tails than the normal distribution, or the Laplace (double exponential)

law with lighter tails. Note that we do not require the error terms to possess a density f , but

if they do, (3) implies f(x) = f(−x).

2.2 The binary control chart revisited

The classic nonparametric N p-chart is distribution-free under quite general assumptions,

and therefore is applicable when the error distribution is unknown. Although we confine our

discussion to the case that the change from the in-control to the out-of-control scenario is

given by a sharp jump, our approach can also be used for more general scenarios, because

the construction of the control chart does not require knowledge of the underlying error

distribution. As we shall see below, the chart proposed in this article provides noticeably
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smaller out-of-control ARL than the classical and recently proposed control charts, but only

for very small shifts, which are of the order 0.1-0.25 standard deviation – or its equivalent,

based on the interquartile range, if the variance does not exists. A large number of theoretical

investigations and computer simulations are witness of the fact that one can not expect

existence of one ”universal” chart with best performance in the whole range of shifts in the

mean, if underlying distribution jump height are not specified. From this point of view, the

binary chart occupies the region of small shifts.

Let us briefly review the definition and basic properties of the classic N p-chart. Obviously, if

the process (1) is in-control and (3) holds, then – roughly – half of the observations should be

positive and the rest are expected to be negative. In other words, having N > 1 observations

Zn
def
= sign(Yn) =

{
0 if Yn < 0

1 if Yn ≥ 0
, n = 1, 2, . . . , N (4)

and introducing the counting random variable

IN
def
= card{Zi = 1, i = 1, 2, . . . , N} =

N∑

i=1

Zi (5)

we have E(IN ) = N/2, since IN is a binomial random variable corresponding to N trials and

success probability p0 = 1/2. Here and in the sequel E denotes the expectation.

If a shift of size m occurred, then the distribution of subsequent Yn’s is no longer symmetric

around zero and the probability of Zn = 1 changes to

p1 = 1 − F (−m) (6)

where p1 can be larger or smaller than 1/2, depending on whether m is positive or negative.

Summarizing, one can detect a shift m by testing the hypothesis H0 : p0 = 1/2 against the

alternatives that the success probability in one trial is different than 1/2.

If the process is in-control, the dispersion of the binomial r.v. IN equals
√

N p0 (1 − p0).

Then, IN/N has expectation p0 and dispersion
√

p0 (1 − p0)/N . Approximating the binomial

distribution by the corresponding normal law we arrive at the well known N p-chart with

upper control limit

UCL = p0 + k
√
p0 (1 − p0)/N (7)

and the lower control limit (LCL)

LCL = p0 − k
√

p0 (1 − p0)/N, (8)

where k is selected according to required averaged run length (ARL) in-control, the standard

choice being k = 3. If IN/N is outside the interval (LCL,UCL), then the out-of-control state
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is claimed. Repeating the above reasoning, we can obtain the N p0 version of this chart with

the following control limits for IN

Np0 ± k
√

N p0 (1 − p0), (9)

where k is selected as above. For further discussions we refer to Montgomery (2001).

2.3 Modified p chart

The above chart is the starting point for our modifications. They are necessary, since the

classical chart (Montgomery, 2001, pp. 284-294) is based on counting nonconforming items

in samples of size N , which are either taken daily or at N consecutive days, if only one

observation is available at each day. In the latter case, which is the setting we have in mind,

the chart is applied only each Nth time instance. This can yield substantially larger delays

in detection. Obviously, such sampling schemes are not appropriate for our purposes. Thus,

we shall modify the chart in such a way that it counts a fixed number, M > 1 say, previous

individual observations Zn = 1 in a moving window. If the process is in-control, then we

expect that about M/2 observations correspond to Zn = 1.

More formally, we form a finite buffer of the length M , which contains only M past ob-

servations, excluding the latest one Zn. M is called buffer length. When observation Zn is

available, it replaces Zn−1, which is pushed to replace Zn−2 and so on. At each time instant

n the present buffer contents is used to verify whether the process is in-control. To fix this

idea, define the number of positive observations contained in the buffer in time n

Jn = card{Zi = 1, i = (n − 1), . . . , n−M} =
n−1∑

i=n−M

Zi. (10)

Note that the difficulty with an initial content of the buffer appears. The proposed modified

p-chart is built on the assumption that historical pre-run data are available which are known

to form a random sample of the in-control process. Thus, in the sequel we assume that at time

n = 0 the buffer contains past observations of the in-control process, which are numbered as

Z−1, . . . , Z−M . Formally, we start the chart at n = 0, when the observation Z0 arrives. Then,

for n = 1, 2, . . . it is verified whether the control statistic Jn lies between the control limits

UCL = M p0 + k
√

M p0 (1 − p0), (11)

and

LCL = M p0 − k
√

M p0 (1 − p0). (12)

Clearly, for p0 = 1/2 these formulas simplify to UCL = M/2 + k
√
M/2 and LCL = M/2 −

k
√
M/2. If Jn is smaller than LCLor larger than UCL, then out-of-control state is signaled.

Note that the difference between UCLand LCLis constant for this chart.
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The main difference between the proposed chart and the classical one can be summarized as

follows. The classical N p chart is based on samples of size N from non-overlapping production

intervals. In contrast, our chart counts events Zn = 1 in the buffer on length M , which is

moving forward with n, in such a way that new observation Zn enters the buffer, while the

oldest one is pushed out of it. In other words, the content of the buffer at time n and at time

n + 1 highly overlap.

3 Asymptotic results

We will now present some asymptotic theory for the proposed procedure providing an ex-

planation of the superiority of the modified p chart for small jumps. To simplify exposition,

we slightly change the setting: We confine our study to a truncated version of the one-sided

control chart which gives a signal if Jn exceeds UCL for some 1 ≤ n ≤ N . However, our

results can be extended to deal with the general case as outlined in Steland (2008). The small

jump setting will be modelled by an appropriate asymptotic change-point model assuming a

local alternative for the probabilities resp. jump heights.

To simplify our exposition, we introduce a maximum sample size N where monitoring stops

in any case. Let us also rescale time by the transformation t 7→ ⌊Nt⌋, t ∈ [0, 1], where ⌊x⌋
denotes the largest integer smaller or equal to x, x ∈ R. In the sequel, the current time point

n will correspond to t, i.e., n = ⌊Nt⌋.

Define the process

JN (t) =
1√
N

⌊Nt⌋−1∑

i=⌊Nt⌋−M

(Zi − p0), t ∈ [(M + 1)/N, 1].

Note that JN(n/N) is equal to the statistic Jn centered at its in-control expectation and

scaled by N−1/2. Now, the truncated version of the upper control chart of the last section,

which gives a signal if Jn exceeds UCL, corresponds to the stopping time

SN = min{M + 1 ≤ n ≤ N : Jn > Mp0 + k
√

Mp0(1 − p0)}.

We can represent SN via the process JN (t). Indeed, we have

SN = N inf

{
t ∈ [(M + 1)/N, 1] : JN (t) > k

√
M

N
p0(1 − p0)

}
, N ≥ 1. (13)

For the asymptotic framework in this section, let us assume that the buffer length, M , is

chosen as a N-valued function of n = ⌊Nt⌋, i.e., M = M⌊Nt⌋, satisfying the growth condition

M⌊Nt⌋

N
→ M(t), (14)
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as the maximum sample size N tends to ∞. Here M : [0, 1] → [0, 1] is a non-decreasing

function which is continuous on (0, 1] with M(0) = 0. We will call Masymptotic buffer length

(strategy). Condition (14) ensures that, asymptotically, the buffer length M is not too small

compared to N .

To ensure that the buffer is not longer than the available time series, we impose the following

condition.

Assumption (N): The buffer length strategy M : [0, 1] → [0, 1] satisfies the natural condition

M(t) ≤ t for all t ∈ [0, 1].

We shall show that under the following assumption the modified chart is superior to the

classic one.

Assumption (M): The buffer length strategy satisfies the modifier condition, if

M(t) < t for all t ∈ (0, 1], (15)

Let us now consider some examples.

Example 3.1. Put M(0) = 0 and M⌊Nt⌋ = ⌊ξtN⌋, t ∈ (0, 1], for some ξ ∈ (0, 1]. Obviously,

the natural condition (N) is satisfied, iff. ξ < 1. Particularly, the classic N p chart is given

by M⌊Nt⌋ = ⌊Nt⌋, t ∈ [0, 1], thus corresponding to ξ = 1 and M(t) = t, t ∈ [0, 1].

The following example considers the case that the buffer lengths Mn are constant with respect

to n.

Example 3.2. Suppose M⌊Nt⌋ = ⌊ηN⌋ for some constant η ∈ (0, 1]. For t ∈ [0, η/N ] the avail-

able data Y1, . . . , Y⌊Nt⌋ do not fill the buffer. One may assume that pre-run data Y−M+1, . . . , Y0

are available. However, to ensure a fair comparison with the classic N p chart, let us consider

the choice

M⌊Nt⌋ =

{
0, ⌊Nt⌋ < ⌊Nη⌋,
⌊ηN⌋, ⌊Nt⌋ ≥ Nη,

yielding M(t) = η1[η,1](t), t ∈ [0, 1]. Alternatively, one may set

M⌊Nt⌋ = min(⌊Nt⌋, ⌊Nη⌋)

yielding M(t) = min(t, η). Now the modified chart does not require historical data at the

beginning. It starts as the classic chart and is modified as time proceeds to catch small late

changes better.

Let us now consider an appropriate asymptotic change-point model for a small jump at

location q. Assume that

µNi = E(Zi) =

{
p0, i < q = ⌊Nϑ⌋,
p1, i ≥ q,

(16)
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for some constant ϑ ∈ (0, 1) which specifies the fraction of the maximum sample size N where

the jump occurs. We model the out-of-control probability p1 as a sequence of local alternatives

given by

p1 = pN1 = p0 + ∆/
√
N,

such that ∆ =
√
N(p1 − p0) > 0.

Note that this model yields a triangular array of observations,

ZNi, 1 ≤ i ≤ N, N ≥ 1,

where for each N the random variables ZN1, . . . , ZNN are independent with E(ZNi) = p0

for 1 ≤ i < q and E(ZNi) = pN1 for q ≤ i ≤ N . Below we shall drop the independence

assumption.

Remark 3.1. For our purposes it is appropriate to formulate the change-point model in

terms of the probabilities p0 and p1, but let us briefly discuss how it relates to a model for

the jump height m. Assume the underlying probability density f(x) is continuous and bounded

in a neighborhood of 0. If we consider a local alternative model for the jump height where

mN = ∆m/
√
N for a positive constant ∆m, (6) and the mean value theorem give

p1 − p0 = f(ξN)∆m/
√
N

for points ξN between 0 and ∆m/
√
N . Thus, in this case

p1 = p0 + (f(0) + o(1))∆m/
√
N.

In the sequel, B(t), t ∈ [0, 1], denotes a standard Brownian motion with B(0) = 0, i.e., a

centered Gaussian process with covariance function Cov(B(s), B(t)) = min(s, t), s, t ∈ [0, 1].

The process JN(t), t ∈ [0, 1], is an element of the Skorohod space D[0, 1] of all functions

f : [0, 1] → R which are right-continuous with existing limits from the left. We denote

distributional convergence (weak convergence) for a sequence {X,Xn} ⊂ D[0, 1] by Xn ⇒ X,

as n → ∞. For details we refer to Billingsley (1991) and Shorack (2000).

Our main result works under very general assumptions. Indeed, it just requires that the

random variables ZNi−µNi form a martingale difference array with E(Zr
Ni|FN,i−1) = µNi for

all i and r = 1, 2, for some filtration {FNi}. In this case, the expectation in (16) is replaced by

the conditional expectation E(ZNi|FN,i−1). Recall that an array {Xn,m : 1 ≤ m ≤ nk, n ≥ 1}
of random variables defined on a common probability space (Ω,F ,P) is called martingale

difference array with respect {Fn,m}, if {Fn,m} forms a filtration, i.e.,

Fn,0 = {∅,Ω} ⊂ Fn,1 ⊂ · · · ⊂ Fn,nk
⊂ F ,

each Xn,m is Fn,m-measureable, and E(Xn,m|Fn,m−1) = 0 for all 1 ≤ m ≤ nk and n ≥ 1.
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The martingale difference assumption is a natural approach to deal with time series. However,

it is also suited and general enough to treat (locally) dependent image data, as demonstrated

by the following example working with sliced rectangular neighborhoods.

Example 3.3. (A Model for Locally Dependent Image Data)

Suppose each column of an image consisting of I columns and J rows is analyzed from bottom

to top. Assume the origin (0, 0) corresponds to the lower left corner and the pixels are denoted

by (i, j) ∈ I × J = {0, . . . I} × {0, . . . , J} for integers I, J . Let {ξij : (i, j) ∈ I × J } be an

array of i.i.d. random variables with common d.f. F satisfying E(ξij) = 0 and Var (ξ2ij) = 1

for all (i, j) ∈ I×J , representing the background noise of an image. For h ≥ 1 define a sliced

h-neighborhood for the pixel (i, j) by

Nij = {(k, l) ∈ I × J : (k = i ∧ l ≤ j) ∨ (1 ≤ |i− k| ≤ h ∧ l ≤ j + h)}

and denote by Ξij = {ξkl : (k, l) ∈ Nij} the corresponding set of ξkl’s. Nij is a rectangle with

width 2h+1 and height j+h, sliced along the line from (i, j) to (i, j+h). Then Ni1 ⊂ · · · ⊂ NiJ ,

and consequently the family

Fi0 = {∅,Ω}, Fij = σ(Ξij) = σ(ξkl : (k, l) ∈ Nij),

defines a filtration. For what follows, notice that ξij is not an element of the set Ξi,j−1. Let

us now assume that the errors disturbing the true image are given by the model equations

εij = hijξij, (i, j) ∈ I × J , j = 2, . . . , J,

for Fi,j−1-measureable random variables hij with existing second moments. Then hij = Hij(Ξi,j−1)

for functions Hij. Obviously, εij is Fij-measureable and, since ξij is independent from the ran-

dom variables of the set Ξi,j−1, we have E(ξij |Fi,j−1) = E(ξij) = 0 yielding

E(εij |Fi,j−1) = hijE(ξij) = 0.

Thus, {εij : (i, j) ∈ I ×J } is a martingale difference array, and {εij : j ∈ J } is a martingale

difference sequence with respect to {Fij : j = 0, . . . , J} for each i ∈ I. Since

Var (εij |Fi,j−1) = h2ij ,

h2ij is the conditional variance given the neighboring pixels. Particularly, h2ij may depend on

the noise levels of these neighboring pixels. Recall that when the kth column is analyzed, ZNi

is given by ZNi = 1(εki ≤ 0) for i = 1, . . . , N = J . We have

E(ZNi|Fk,i−1) = P(hikξik ≤ 0|Fk,i−1) = F (0/hik) = p0 = 1/2.

and Var (ZNi|Fk,i−1) = p0(1−p0). Consequently, the random variables ZNi−p0, i = 1, . . . , N ,

also form a martingale difference array with respect to the filtration {Fki : i = 1, . . . , N} with

common conditional variance p0(1 − p0).
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We are now in a position to formulate our main result concerning the weak convergence of

the process JN (t) and the corresponding central limit theorem for the modified chart.

Theorem 3.1. Suppose (N) and that the random variables ξ∗Ni = (ZNi−µNi))/
√

µNi(1 − µNi)

form a martingale difference array with respect to some filtration FNi, such that

E(ξ∗Ni|FN,i−1) = 0 and Var (ξ∗Ni|FN,i−1) = 1,

for all 1 ≤ i ≤ N , N ≥ 1. Then the following conclusions hold true.

(i) If there is no change-point, the process JN converges weakly,

JN (t) ⇒ η0[B(t) −B(t−M(t))],

as N → ∞, where

η20 = lim
N→∞

V ar

(
N−1/2

N∑

i=1

(ZNi − E(Zi))

)
= p0(1 − p0).

The normed stopping time converges in distribution,

SN/N
d→ τM

where

τM = inf{t ∈ [0, 1] : B(t) −B(t−M(t)) > k
√

M(t)}

(ii) Under the local change-point model (16), the process JN converges weakly,

JN (t) ⇒ J (1)
M (t) =





η0[B(t) −B(t−M(t))], t < ϑ,

η0[B(t) −B(t−M(t))] + (t− ϑ)∆, ϑ ≤ t < ϑ + M(t),

η0[B(t) −B(t−M(t))] + M(t)∆, ϑ + M(t) ≤ t,

as N → ∞. The normed stopping time converges in distribution,

SN/N
d→ τ

(1)
M = inf{s ∈ [0, 1] : J (1)

M (s) > k
√

M(s)η0}.

Remark 3.2. Notice that the standard i.i.d. setting, where it is assumed that ZN1, . . . , ZNN

are independent and identically distributed Bernoulli variables with success probability p0, is

covered as a special case.

The above theorem says that, asymptotically, the control chart behaves as the stopping time

τM which is driven by the stochastic process

V(t) = B(t) −B(t−M(t)).
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Notice that the one-dimensional marginals of V(t) are distributed as B(M(t)). Further, for

s ≤ t we have

EV(s)V(t) =





0, s−M(s) ≤ s ≤ t−M(t) ≤ t,

s− t + M(t), s−M(s) ≤ t−M(t) ≤ s ≤ t,

M(s), t−M(t) ≤ s−M(s) ≤ s ≤ t.

For small values of |s−t|, i.e., locally, the process V (t) behaves similar as the process B(M(t)),

if M(t) is a smooth function.

The above theoretic results explain the benefits from using the modified binary chart: Assume

(M) and suppose a signal is given at time t ∈ [ϑ, ϑ + M(t)) where η ≤ ϑ (cf. Example 3.2.)

In this case
V(t)√
M(t)

+
(t− ϑ)∆

η0
√

M(t)
> k.

Right before the threshold k is hit, the behavior of the random part of the left hand side can

be approximated by the process B(M(t))/
√

M(t), which has expectation 0, variance 1 for

any function M(t), and covariance function

(s, t) 7→ min(M(s),M(t))√
M(s)M(t)

.

For small values of |s−t| and smooth M(t) this is approximately a Brownian motion. Consider

the drift term (t − ϑ)∆/(η0
√

M(t)), which mainly yields the detection power. The modifier

condition (M) ensures that the drift term is strictly larger than the drift term for the case

M(t) = t corresponding to the classic N p chart. This explains the superior performance of

the modified chart for small jumps.

If the change was not detected until time ϑ + M(t), a signal is given if

V(t)√
M(t)

+

√
M(t)∆

η0
> k.

For the random part the same arguments as given above apply. But now under condition (M)

the drift term is strictly smaller than the drift term for the case M(t) = t. We may summarize

that the limit theorem indicates that the modified p chart is preferable to detect very small

jumps right after the change-point.

Also notice that Theorem 3.1 yields well defined limit distributions for small jumps of the

order N−1/2. Clearly, for jumps of higher order, the drift diverges and dominates the random

part, such that the beneficial effect of the function M(t) is not visible.

4 Practical issues of control chart design

Unlike the classic N p-chart, the modified chart has two tunable parameters, namely, M and

k, which should be carefully selected in order to ensure small out-of-control ARLs (average

12



run length to detection) under the constraint that the in-control ARL (average run length to

false alarm) is not smaller than a given level.

We will now summarize our experience on tuning this chart by simulations, which are justified

to some extent by the theoretical results presented in the previous section. The major issue

is how to select the control limit.

(i) In practice, the 3σ rule is often advocated, i.e., k = 3. However, this is not advisable

here, since it leads to excessively long in-control ARLs. For our control chart, the in-

control ARL also depends on the buffer length M . Selecting k = 2.34 and M = 9 we

get first reasonable in-control ARL about 500.

(ii) For a given buffer length the same in-control ARL is attained for k from a certain

relatively long interval. This is due to the fact that Jn is always an integer.

(iii) Analysis of Figure 1, where log of in-control ARL is plotted as a function of k for

different buffer lengths, reveals that it is advisable to select k at the left end of that

interval. That choice ensures the specified in-control ARL and minimizes the distance

UCL−LCL.

In view of these remarks we suggest the following practical approach to select the parameters

M and k of the chart.

1. Select a desired in-control ARL, e.g., equal to 370.

2. Select the buffer length M > 1. A discussion on selecting M is presented below.

3. For a practical application one may simulate the in-control ARL for k varying from

1 to 3. It is not difficult to find a reasonable k in this way, but determining exactly

the smallest k, which guarantees the specified in-control ARL is a computationally

demanding task.

For the reader’s convenience Table 1 summarizes some pairs (M,k) with minimal k (accuracy

0.01) ensuring an in-control ARL of approximately 435. Notice that in general the fact that

Jn is integer-valued prevents the construction of a control chart with in-control ARL being

equal to the target in-control ARL.

One may also select M to minimize the out-of-control ARL for a given jump height m.

Figure 2 indicates that for jump heights m = 0.25, m = 0.5, and m = 0.75 there exist

optimal buffer lengths M . The choices M = 71, M = 28, M = 23 are optimal for m = 0.25,

m = 0.5, and m = 0.75, respectively, taking into account that the selection was made among

a rather limited number of buffer lengths. Clearly, an exhaustive search may yield slightly

better results. Note, however, that for m = 1 the plot is increasing and one might expect that
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Figure 1: Dependence of the logarithm of the in-control ARL on the threshold k for differ-

ent buffer sizes M . The results were obtained for Gaussian N(0, 1) errors by averaging 104

simulation runs.
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Figure 2: Dependence of the out-of-control ARL as a function of the buffer size M for different

jump heights m and normal errors.

M = 12 23 28 71 90 150 212 441

k = 2.31 2.30 2.27 2.02 2.0 1.8 1.65 1.39

ARL0 = 395 415 423 411 450 452 440 456

Table 1: Pairs of parameters (M,k) of the proposed chart ensuring an in-control ARL or the

order 435.

the best choice is for M < 12, but in this region one can not attain in-control ARL of order

435.

5 Simulation studies

We performed extensive simulations aiming at the following issues. Firstly, we were interested

in identifying pairs of the buffer length M and the threshold k ensuring a specified in-control

ARL (at least approximately). Secondly, we investigated the out-of-control ARL for various

jump heights, when the underlying observations are normally distributed. Third, we compared

the binary chart with other charts for the case of normally distributed error terms, focusing

on the out-of-control ARL as a performance measure. Finally, we studied the behavior of the

out-of-control ARL for the binary chart when the errors are non-normal.
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The simulation results are given in the tables below. All the results were obtained by averaging

30000 simulation runs. Simulated jump occured at time zero and the buffer was fed up by in-

control pre-run observations. The results of simulation studies can be summarized as follows.

(i) For Gaussian errors and an out-of-control ARL fixed at 435, our chart with buffer

length M = 150 (see Table 3) provides shorter out-of-control ARL’s than CUSUM,

Optimal EWMA, Shewhart-EWMA, GEWMA and GLR (see Han and Tsung (2004)

for definitions), provided the jump is small. To be precise, the out-of-control ARL of

our chart is about 243 for a jump m = 0.1σ, and about 97 for m = 0.25σ, while for the

above mentioned charts we have ARL’s between 295 and 324 and between 105 and 110,

respectively. Simultaneously, the dispersion of the RL time of our chart is considerably

smaller and equals 172 for m = 0.1σ and about 59 for m = 0.25σ, while for the charts

discussed in Han and Tsung (2004) we have RL time dispersions of the orders 267-324

and 79-102, respectively.

(ii) Qualitatively the same pattern can be observed when the out-of-control ARL is fixed

at 840 and errors are Gaussian (see Table 4 and Han and Tsung (2004)).

(iii) When the jump is larger than 0.5σ, the proposed chart is much slower than the above

mentioned charts, but this shortcoming can easily be handled by applying several charts

simultaneously and claiming an alarm when one of them gives a signal.

(iv) The proposed chart retains its advantages in the range of small jumps when the errors are

double exponentially distributed and even behaves quite well for difficult distributions

as the Cauchy one (see Table 5).
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A Proof of the main result

Under the change-point model of Section 3 we are given an array {ZNi : 1 ≤ i ≤ N,N ≥ 1}
of Bernoulli variables with conditional expectations E(ZNi|FN,i−1) = p0 if 1 ≤ i < ⌊Nϑ⌋, and

E(ZNi|FN,i−1) = pN1 = p0 + ∆/
√
N if ⌊Nϑ⌋ ≤ i ≤ N , N ≥ 1.
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Theorem A.1. (Durrett 2005, Theorem 7.3). Suppose {Xn,m} is a martingale difference

array with respect to {Fn,m}. Define

Sn,k =

k∑

i=1

Xn,i, Vn,k =
∑

1≤i≤k

E(X2
n,i|Fn,i−1), 0 ≤ k ≤ n.

If

(i) Vn,⌊nt⌋ → t in probability for all t ∈ [0, 1] and

(ii) for all ε > 0,
∑

m≤n E(X2
n,m1{|Xn,m|>ε}|Fn,m−1) → 0 in probability,

then Sn,⌊nt⌋ ⇒ B(t), where B denotes a standard Brownian motion.

Proof. (of Theorem 3.2) We first consider the case when there is no change. Let us introduce

the partial sum process,

ZN (t) =

⌊Nt⌋∑

i=1

ξNi, t ∈ [0, 1],

where ξNi = (ZNi − p0)/
√

Np0(1 − p0), 1 ≤ i ≤ N . Let us first verify that the array {ξNi :

1 ≤ i ≤ N,N ≥ 1} satisfies the assumptions of Theorem A.1. Clearly, E(ξNi|FN,i−1) = 0 and

E(ξ2Ni|FN,i−1) = Var (ξNi|FN,i−1) = N−1,

for all 1 ≤ i ≤ N , yielding

VN,⌊Nt⌋ =

⌊Nt⌋∑

i=1

E(ξ2Ni|FN,i−1) =
⌊Nt⌋
N

→ t,

as N → ∞. The conditional Lindeberg condition is shown as follows. Since E((ZNi −
p0)

2|FN,i−1) ≤ 1, 1 ≤ i ≤ N , we obtain for any ε > 0

LN (ε) =
N∑

i=1

E(ξ2Ni1(|ξNi| > ε)|FN,i−1)

1

N

N∑

i=1

E

(
(ZNi − p0)2

p0(1 − p0)
1

(
|ZNi − p0|√
p0(1 − p0)

> ε
√
N

)∣∣∣∣FN,i−1

)

≤ 1

Np0(1 − p0)

N∑

i=1

P

(
|ZNi − p0|√
p0(1 − p0)

> ε
√
N

∣∣∣∣FN,i−1

)
.

The conditional Markov inequality yields for 1 ≤ i ≤ N

P

(
|ZNi − p0|√
p0(1 − p0)

> ε
√
N

∣∣∣∣FN,i−1

)
≤ 1

ε2N
,
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which implies

lim
N→∞

LN (ε) = 0.

Hence, by Theorem A.1

ZN ⇒ B, N → ∞.

Now, as will be shown below for a more involved setting,

JN (t) =
√

p0(1 − p0)

[
ZN (t− 1

N
) − ZN (t− M⌊Nt⌋

N
− 1

N
)

]

⇒ η0[B(t) −B(t−M(t))],

as N → ∞. Having in mind the rule (13), we conclude

JN (t) − k
√

M⌊Nt⌋N−1p0(1 − p0) ⇒ η0[B(t) −B(t−M(t))] − k
√

M(t)η0, N → ∞,

which yields

SN/N
d→ inf{s ∈ (0, 1] : B(t) −B(t−M(t)) > k

√
M(s)},

as N → ∞.

To establish (ii), we consider three cases.

Case 1: ⌊Nt⌋ ≤ ⌊Nϑ⌋ is handled as above.

Case 2: ⌊Nϑ⌋ < ⌊Nt⌋ < ⌊Nϑ⌋ + M⌊Nt⌋. Denote the set of corresponding values of t by T2.
JN (t) equals

1√
N

⌊Nϑ⌋−1∑

i=⌊Nt⌋−M⌊Nt⌋

(Zi − p0) +
1√
N

⌊Nt⌋−1∑

i=⌊Nϑ⌋

(ZNi − pN1) +
1√
N

⌊Nt⌋−1∑

i=⌊Nϑ⌋

(pN1 − p0). (17)

Since p1 − p0 = ∆/
√
N , the third term converges (pointwise) to the continuous function

∆(t− ϑ), which implies that the convergence is also uniform in t ∈ [ϑ, ϑ + M(t)]. To handle

the random terms put

ξ̃Ni =





(Zi − p0)/
√

p0(1 − p0)N, 0 ≤ i ≤ ⌊Nϑ⌋ − 1,

(ZNi − pN1)/
√

pN1(1 − pN1)N, ⌊Nϑ⌋ ≤ i ≤ N.

Again, the conditions of the functional martingale central limit theorem are satisfied, such

that Z̃N (t) =
∑⌊Nt⌋

i=1 ξ̃Ni ⇒ B(t). The first and second term in (17) are now given by

√
p0(1 − p0)

[
Z̃N (ϑ− 1

N
) − Z̃N (t− M⌊Nt⌋

N
− 1

N
)

]

+
√

pN1(1 − pN1)

[
Z̃N (t− 1

N
) − Z̃N (ϑ− 1

N
)

]
,
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which equals ϕN (Z̃N )(t), if we define the sequence of functionals ϕN : (D[0, 1], d) → (D[0, 1], d),

N ≥ 1, by

ϕN (z)(t) =
√

p0(1 − p0)

[
z(ϑ− 1/N) − z(t−

M⌊Nt⌋

N
− 1

N
)

]

+
√

pN1(1 − pN1)

[
z(t− 1

N
) − z(ϑ− 1

N
)

]
.

Also define

ϕ(z) =
√

p0(1 − p0)[z(t) − z(t−M(t))], z ∈ C[0, 1].

By linearity, ϕN is uniformly Lipschitz continuous, i.e.,

sup
N≥1

‖ϕN (z1) − ϕN (z2)‖∞ ≤ L‖z1 − z2‖∞,

for all z1, z2 ∈ D[0, 1], where L = 2 supN≥1

√
pN1(1 − pN1) < ∞. Further, since any z ∈ C[0, 1]

is uniformly continuous,

‖ϕN (z) − ϕ(z)‖∞ → 0, N → ∞.

Let {z, zN} ⊂ D[0, 1] be a sequence with zN → z ∈ C[0, 1] in the Skorohod metric, which

implies ‖zN − z‖∞ → 0. Apply the triangle inequality to obtain

‖ϕN (zN ) − ϕ(z)‖∞ ≤ ‖ϕN (zN ) − ϕN (z)‖∞ + ‖ϕN (z) − ϕ(z)‖∞.

The first term is bounded by L‖zN −z‖∞ → 0, N → ∞, and the second one tends to 0 by the

uniform Lipschitz continuity. For z ∈ C[0, 1] we have ϕ(z)(t) =
√

p0(1 − p0)[z(t)−z(t−M(t))].

Due to the Shorohod/Dudley/Wichura representation theorem, Z̃N ⇒ B, N → ∞, implies

that there exists a probability space and equivalent version of Z̃N and B defined on that new

space, which we again denote by Z̃N and B, such that ‖Z̃N − B‖∞ → 0, N → ∞, a.s. The

above arguments ensure that

ϕN (Z̃N )(t) ⇒ ϕ(B)(t) = η0[B(t) −B(t−M(t))],

as N → ∞.

Case 3: ⌊Nϑ⌋ + M⌊Nt⌋ ≤ t is obvious.

Putting things together yields the result for JN (t). Since the process J (1)
M is a.s. continuous,

we may further conclude that

SN/N
d→ τ

(1)
M = inf{t ∈ [0, 1] : J (1)

M (t) > k
√

M(t)η0},

as N → ∞.
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M= 12, k =2.31

Jump ARL RL Disp,

0 395.27 171.09

0.1 328.33 144.18

0.25 168.09 72.47

0.5 58.65 24.52

0.75 27.84 10.91

1 17.51 6.35

1.25 12.98 4.41

1.5 10.96 3.54

1.75 10.00 3.14

2 9.46 2.94

2.25 9.19 2.84

2.5 9.09 2.80

2.75 9.05 2.79

3 9.01 2.77

M= 23, k =2.3

Jump ARL RL Disp,

0 415.66 181.42

0.1 305.80 133.14

0.25 131.89 56.00

0.5 43.78 17.08

0.75 23.76 8.35

1 17.60 5.76

1.25 14.99 4.76

1.5 13.66 4.31

1.75 12.88 4.05

2 12.45 3.91

2.25 12.26 3.84

2.5 12.12 3.80

2.75 12.04 3.77

3 11.96 3.75

M= 28, k =2.27

Jump ARL RL Disp,

0 423.12 185.75

0.1 303.43 133.17

0.25 122.90 51.72

0.5 41.66 15.73

0.75 24.18 8.27

1 18.53 6.00

1.25 16.10 5.12

1.5 14.76 4.68

1.75 13.99 4.42

2 13.54 4.28

2.25 13.25 4.18

2.5 13.14 4.14

2.75 12.96 4.09

3 13.09 4.12

Table 2: Binary chart applied to observations with Gaussian errors. Chart tuned to in-control

ARL about 435. Short buffer length.
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M= 71, k =2.02

Jump ARL RL Disp,

0 411.23 301.39

0.1 254.91 182.71

0.25 95.12 60.68

0.5 43.03 23.33

0.75 30.75 16.08

1 25.23 13.06

1.25 22.11 11.39

1.5 20.28 10.41

1.75 19.22 9.83

2 18.61 9.50

2.25 18.13 9.25

2.5 17.91 9.14

2.75 17.83 9.08

3 17.69 9.03

M= 150, k =1.8

Jump ARL RL Disp,

0 452.05 337.19

0.1 243.54 172.58

0.25 97.58 58.68

0.5 53.50 29.52

0.75 38.80 21.12

1 31.60 17.07

1.25 27.71 14.87

1.5 25.20 13.50

1.75 23.82 12.74

2 23.10 12.30

2.25 22.64 12.05

2.5 22.31 11.86

2.75 22.17 11.80

3 22.15 11.77

M= 212, k =1.65

Jump ARL RL Disp,

0 440.32 334.70

0.1 234.27 166.92

0.25 101.26 60.62

0.5 56.87 32.41

0.75 41.30 23.18

1 33.77 18.76

1.25 29.38 16.24

1.5 26.92 14.81

1.75 25.38 13.93

2 24.57 13.48

2.25 24.17 13.19

2.5 23.76 13.00

2.75 23.70 12.95

3 23.70 12.94

Table 3: Binary chart applied to observations with Gaussian errors. Chart tuned to in-control

ARL about 435. Moderate and long buffer length.
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M= 111, k =2.19

Jump ARL RL Disp,

0 836.64 370.04

0.1 398.04 170.64

0.25 122.34 46.80

0.5 57.56 19.21

0.75 41.71 13.77

1 34.13 11.17

1.25 29.78 9.72

1.5 27.12 8.84

1.75 25.66 8.35

2 24.76 8.04

2.25 24.24 7.88

2.5 24.00 7.78

2.75 23.97 7.78

3 23.79 7.73

M= 131, k =1,84

Jump ARL RL Disp,

0 841.83 370.73

0.1 399.22 171.86

0.25 124.06 46.98

0.5 57.63 19.18

0.75 42.10 13.83

1 34.18 11.20

1.25 29.60 9.66

1.5 27.18 8.84

1.75 25.61 8.32

2 24.66 8.02

2.25 24.21 7.87

2.5 23.96 7.77

2.75 23.78 7.74

3 23.69 7.70

M= 453, k =1.35

Jump ARL RL Disp,

0 840.02 650.13

0.1 337.79 226.64

0.25 149.54 87.46

0.5 82.94 47.32

0.75 59.05 33.34

1 48.22 27.03

1.25 42.12 23.43

1.5 38.14 21.23

1.75 36.05 20.03

2 34.93 19.38

2.25 34.33 18.98

2.5 33.79 18.71

2.75 33.36 18.48

3 33.55 18.57

Table 4: Binary chart applied to observations with Gaussian errors. Chart tuned to in-control

ARL about 840. Moderate and long buffer length.
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Laplace (DblExp)

M= 40, k =2.22

Jump ARL RL Disp,

0 437.69 315.91

0.1 191.35 133.31

0.25 59.51 37.02

0.5 28.51 15.02

0.75 22.04 11.13

1 19.33 9.69

1.25 17.70 8.84

1.5 16.85 8.37

1.75 16.15 8.02

2 15.78 7.83

2.25 15.55 7.69

2.5 15.34 7.59

2.75 15.19 7.52

3 15.07 7.46

Cauchy

M= 28, k =2.28

Jump ARL RL Disp,

0 420.79 300.12

0.1 334.82 240.04

0.25 167.28 116.28

0.5 64.17 41.76

0.75 37.52 22.47

1 27.27 15.21

1.25 22.70 12.03

1.5 20.51 10.58

1.75 18.86 9.55

2 17.93 9.00

2.25 17.23 8.58

2.5 16.67 8.28

2.75 16.29 8.07

3 15.98 7.90

Table 5: Comparison of ARLs of the binary chart with in-control ARL 435 when applied to

non-Gaussian distributions. 30, 000 independent simulation trials.
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