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Abstract

This paper describes limiting behaviour of tail empirical process associated with
long memory stochastic volatility models. We show that such process has dichoto-
mous behaviour, according to an interplay between a Hurst parameter and a tail
index. In particular, the limit may be non-Gaussian and/or degenerate, indicating
an influence of long memory. On the other hand, tail empirical process with random
levels never suffers from long memory. This is very desirable from a practical point
of view, since such the process may be used to construct Hill estimator of the tail
index. To prove our results we need to establish several new results for regularly
varying distribution functions, which may be of independent interest.

1 Introduction

The goal of this article is to study weak convergence results for the tail empirical process
associated to some long memory sequences. Besides theoretical interests on its own, the
results are applicable in different statistical procedures based on several extremes. The
similar problem was studied in case of independent, identically distributed random variables
in [11], or for weakly dependent sequences in [10], [9], [8], [17].

Our set-up is as follows. Assume that {Xi , i ∈ Z}, is a stationary Gaussian process
with the unit variance and covariance

ρi−j = cov(Xi, Xj) = |i− j|2H−2ℓ0(|i− j|) , (1)

where H ∈ [1/2, 1) is the Hurst exponent and ℓ0 is a slowly varying function at infinty, i.e.
limt→∞ ℓ0(tx)/ℓ0(x) = 1 for all x > 0. The case H = 1/2 can be informally thought of as
the case of weakly dependent Gaussian sequences. We shall consider a stochastic volatility
process defined as

Yi = σ(Xi)Zi, i ∈ Z,

where σ(·) is a nonnegative, deterministic function and that {Z,Zi, i ∈ Z}, is a sequence
of i.i.d. random variables, independent of the process {Xi}. We note, in particular, that
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if E[Z2] < ∞ and E[Z] = 0, then the Yis are uncorrelated, no matter what are the
assumptions on dependence structure of the underlying Gaussian sequence.

Stochastic volatility models have become popular in financial time series modeling.
In particular, if H ∈ (1/2, 1), these models are believed to capture two standardized
feature of financial data: long memory of squares or absolute values, and heteroscedascity.
If σ(x) = exp(x), then the model is called in econometrics literature Long Memory in
Stochastic Volatility and was introduced in [3]. For an overview of stochastic volatility
models with long memory we refer to [6].

Let F = Fi, i ≥ 1, be the marginal distribution of Yi. In extreme value literature the
following assumption on F is commonly made: with un, n ≥ 1, un → ∞, and σn, n ≥ 1,
its associated conditional tail distribution function

Tn(x) :=
F̄ (un + σnx)

F̄ (un)
, x ≥ 0, n ≥ 1, (2)

satisfies
Tn(x) → T (x) = (1 + x)−1/γ . (3)

For the stochastic volatility model, we will need a further specification. Let FZ be the
marginal distribution of the noise sequences. We will assume that for some α ∈ (0,∞),

F̄Z(z) = P(Z > x) = x−αℓ(x) , (4)

where ℓ is again a slowly varying function. Having (4) and E[σα+ǫ(X1)] < ∞ for some
ǫ > 0, we conclude by Breiman’s Lemma [4] (see also [16, Proposition 7.5]) that

F̄ (x) = P(Y1 > x) = P(σ(X1)Z1 > x) ∼ E[σα(X1)]P(Z1 > x) , as x→ ∞.

Consequently, F̄ (·) satisfies (3) with σn = un and γ = 1/α.

Similarly to [17], we define the tail empirical distribution function and the tail empirical
process, respectively, as

T̃n(s) =
1

nF̄ (un)

n
∑

j=1

1{Yj>un+uns} ,

and
en(s) = T̃n(s) − Tn(s) , s ∈ [0,∞) . (5)

From [17] we conclude that under appropriate mixing and other conditions on a stationary
sequence Yi, i ≥ 1, the tail empirical process converges weakly and the limiting covariance
is affected by dependence. In our case, the results [17] do not seem applicable. In fact, it

will be shown that we have two different modes of convergence. If un is big, then
√

nF̄ (un)
is the proper scaling factor and the limiting process is Gaussian with the same covariance
structure as in case of i.i.d. random variables Yi. Otherwise, if un is small, then the limit
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is affected by long memory of the Gaussian sequence. A scaling is different and the limit
may be non-normal. These results are presented in Section 2.1. Note that the similar
dichotomous phenomenon was observed in a context of sums of extreme values associated
with long memory moving averages, see [14] for more details. On the other hand, this di-
chotomous behaviour is in contrast with convergence of point processes based on stochastic
volatility models with regularly varying innovations, [5], where (long range) dependence
does not affect the limit.

The process en(·) is rather not practical, since the parameter un depends on the un-
known distribution F . Also, un being big or small depends on a delicate balance between
the tail index α and the Hurst parameter H . In order to overcome this, we consider as in
[17] a process with random levels. There, we set k = nF̄ (un) and replace the deterministic
level un by Yn−k:n, where Yn:n ≥ Yn−1:n ≥ · · · ≥ Y1:n are the increasing order statistics of
the sample Y1, . . . , Yn. The number k can be thought as the number of extremes used in a
construction of the tail empirical process. It turns out, that if the number of extremes is
small (which corresponds to a big un above), then the limiting process changes as compared
to the one associated with en(·), but the speed of convergence remains the same. This has
been already noticed in [17] in weakly dependent case. On the other hand, if k is big, then
the scaling from en(·) is no longer correct (see Corollary 2.5). In fact, the process with
random levels has faster rates of convergence and we claim in Theorem 2.6 that the rate
of convergence and the limiting process are not affected at all by long memory, provided
that a technical second order regular variation condition is fulfilled. The reader is referred
to Section 2.2. On the other hand, it should be pointed out that our results are for the
long memory stochastic volatility models. It is not clear for us whether such phenomena
will be valid for example for subordinated long memory Gaussian sequences with infinite
variance.

The results for the tail empirical process en(·) allow to obtain asymptotic normality
and non-normality of intermediate quantiles, as described in Corollary 2.4. On the other
hand, the tail empirical process with random levels allows to study the Hill estimator of
the tail index α (Section 2.3). Consequently, as it is shown in Corollary 2.7, long memory
does not have influence on its asymptotic behaviour. These theoretical observations are
justified by simulations in Section 3.

Last but not least, we have some contribution to theory of regular variation. To estab-
lish our results in random level case, we need to work under second order regular variation
condition. Consequently, one has to establish Breiman’s-type lemma, that such condition
is transferable from F̄Z to F̄ . This has been done in Section 2.4.
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2 Results

2.1 Tail empirical process

Let us define a function Gn on (−∞,∞) × [0,∞) by

Gn(x, s) =
P(σ(x)Z1 > (1 + s)un)

P(Z1 > un)
. (6)

By Breiman’s Lemma and the regular variation of F̄Z , we conclude that for each s ∈
[0, 1], this function converges pointwise to T (s)G(x), where G(x) = σα(x). A stronger
convergence can actually be proved (see Section 4.6 for a proof).

Lemma 2.1. If (4) holds and E[σα+ǫ(X)] <∞ for some ǫ > 0, then

lim
n→∞

E

[

sup
s≥0

|Gn(X, s) − σα(X)T (s)|p
]

= 0 (7)

for all p such that pα < α + ǫ.

In order to introduce our assumptions, we need to define the Hermite rank of a function.
Recall that Hermite polynomials Hm, m ≥ 0, form an orthonormal basis of the set of
functions h such that E[h2(X)] <∞, where X denotes a generic standard Gaussian random
variable (independent of all other random variables considered here), and have the following
properties:

E[Hm(X)] = 0 , m ≥ 1 , cov(Hj(X), Hk(X)) = δj,kk!

where δj,k is Kronecker’s delta, equal to 1 if j = k and zero otherwise. Then h can be
expanded as

h =
∞
∑

m=0

cm
m!
Hm ,

with cm = E[h(X)Hm(X)] and the series is convergent in the mean square. The smallest
index m ≥ 1 such that cm 6= 0 is called the Hermite rank of h. Note that with this
definition, the Hermite rank is always at least equal to one and the Hermite rank of a
function h is the same as that of h− E[h(X)].

Let Jn(m, s) denote the Hermite coefficients of the function Gn. Since the Hermite
polynomials Hm are in Lr(µ) for all r ≥ 1, Lemma 2.1 implies that the Hermite coefficients
Jn(m, s) converge to J(m)T (s), where J(m) is the m-th Hermite coefficient of G, uniformly
with respect to s ≥ 0. This implies that for large n, the Hermite rank of Gn(·, s) is not
bigger than the Hermite rank of G. In order to simplify the proof of our results, we will
use the following assumption, which is not very restrictive.
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Assumption (H) Denote by Jn(m, s), m ≥ 1, the Hermite coefficients of Gn(·, s) and
let qn(s) be the Hermite rank of Gn(·, s). Define

qn = inf
s≥0

qn(s) ,

the Hermite rank of the class of functions {Gn(·, s), s ≥ 0}. In other words, the number
qn is the smallest m such that Jn(m, s) 6= 0 for at least one s. Furthermore, let q be the
Hermite rank of G. We assume that qn = q for n large enough.

Remark. Since for large enough n it holds that qn(s) ≤ q for all s, the assumption is
fulfilled, for example, when G has Hermite rank 1 (as is the case for the function x→ ex),
or if the function σ is even with the Hermite rank 2.

In order to prove tightness, we will also need the following condition.

∃C > 0 , ∀t ≥ s ≥ 1 ,
P(sy < Y ≤ ty)

P(Y > y)
≤ C(t− s) . (8)

The result for the general tail empirical process is as follows.

Theorem 2.2. Assume (H) with q(1−H) 6= 1/2, (1), (4), and that there exists ǫ > 0 such
that

0 < E[σ2α+ǫ(X1)] <∞ . (9)

(i) If nF̄ (un)ρqn → 0 as n→ ∞, then
√

nF̄ (un) en converges weakly in the sense of finite
dimensional distributions to the Gaussian process W ◦ T , where W is the standard
Brownian motion. If moreover (8) holds, then the convergence holds in D([0,∞)).

(ii) If nF̄ (un)ρqn → ∞ as n → ∞ then ρ
−q/2
n en converges weakly in the sense of finite

dimensional distributions to the process (E[σα(X1)])
−1J(q)TLq, where the random

variable Lq is defined in (30). If moreover (8) holds, then the convergence holds in
D([0,∞)).

Remarks

- We rule out the borderline case q(1 −H) = 1/2 for the sake of brevity and simplicity of

exposition. It can be easily shown that if q(1−H) = 1/2, then
√

nF̄ (un)en converges to
W ◦ T provided 1/F̄ (un) tends to infinity faster than a certain slowly varying function
(e.g. if un = nγ for some γ > 0), even though it may hold in this case that nρqn → ∞.
The reason is that the variance of the partial sums of G(Xk) is of order n times a slowly
varying function which dominates ℓq0(n).

- Here D([0,∞) is endowed with Skorohod’s J1 topology, which is checked by applying
the Komogorov-Cencov criterion see [1, Theorem 15.6]. Since the limiting processes
have almost surely continuous paths, this convergence implies uniform convergence on
compact sets of [0,∞). See also [20].
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- The meaning of the above result is that for un big, long memory does not play any
role. However, if un is small, long memory comes into play and the limit is degenerate.
Furthermore, in the case of Theorem 2.2, small and big depends on the relative behaviour
of the tail of Y1 and the memory parameter. Note that the condition nF̄ (un)ρqn → ∞
implies that 1 − 2q(1 − H) > 0, in which case the partial sums of the subordinate
process {G(Xi)} weakly converge to the Hermite process of order q (see Section 4.1).
The cases (i), (ii) will be referred to as the limits in the i.i.d. zone and in the LRD zone,
respectively.

- Condition E[σα+ǫ(X1)] < ∞ is standard when one deals with regularly varying tails.
However, here we need the condition E[σ2α+ǫ(X1)] < ∞, which is needed for Hermite
expansion in the proof of limit in Section 4.3.1 and tightness.

- The result should be extendable to general, not necessary Gaussian, long memory linear
sequences. Instead of limit theorems and covariance bounds in Section 4.1, one can use
limit theorems from [13], and the covariance bounds of [12, Lemma 3].

- The condition (8) is unprimitive since it is expressed in terms of Y . It holds if E[σα+ǫ(X)] <
∞ for some ǫ > 0 and Z satisfies the following condition

∃C > 0 , ∀y ≥ 1 , ∀t ≥ s > 0 ,
P(sy < Z ≤ ty)

P(Z > y)
≤ C(s ∧ 1)−α−1−ǫ(t− s) . (10)

This condition holds in particular if Z has an ultimately monotone density, which is
then necessarily regularly varying at infinity with index −α−1 by the monotone density
Theorem, see [2, Theorem 1.7.2]. See Section 2.4 for a second order regular condition
that implies (10).

- Let un be such that nF̄ (un) → 1, as n→ ∞. Then with some rn → ∞,

n

rn
∑

j=1

P(σ(X0)Z0 > un, σ(Xj)Zj > un) ∼ nF̄ 2(un)

rn
∑

j=1

cov(σα(X0), σ
α(Xj))

∼ F̄ (un)var

(

rn
∑

j=1

σα(Xj)

)

/rn ∼ F̄ (un)q1−q(2−2H)
n ℓ2q0 (qn) .

Consequently, Case (i) guarantees Leadbetter’s condition D′(un). Therefore (see [17,
Section 4]) the condition C3 of Rootzen is fulfilled and in principle our result in the i.i.d.
zone could be concluded from [17], provided we can verify also Rootzen’s conditions C1,
C2 and β(un) mixing, which could be more difficult, than proving convergence via our
approach. Nevertheless, results in the LRD zone are not related to Rootzen’s results for
weakly dependent sequences.
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2.2 Random levels

Similarly to [17], we consider the case of random levels. Let ⇒ denote weak convergence
in D([0,∞)). Define the increasing function U on [1,∞) by U(t) = F←(1 − 1/t), where
F← is the left-continuous inverse of F . Let k denote a sequence of integers depending on
n, where the dependence in n is omitted from the notation as customary, and such that

lim
n→∞

k = lim
n→∞

n/k = ∞ . (11)

Such a sequence is usually called an intermediate sequence. Define un = U(n/k). If F
is continuous, then nF̄ (un) = k, otherwise, since F̄ is regularly varying, it holds that
limn→∞ k

−1nF̄ (un) = 1. Thus, we will assume without loss of generality that k = nF̄ (un)
holds. Then the statements of Theorem 2.2 may be written respectively as

√
k(T̃n − Tn) ⇒W ◦ T , (12)

ρ−q/2n (T̃n − Tn) ⇒ J(q)

E[σα(X1)]
T · Lq . (13)

Let us rewrite the statements of (12), (13) as

wn(T̃n − Tn) ⇒ w ,

where

wn =
√
k if lim

n→∞
kρqn = 0 , (14)

wn = ρ−q/2n if lim
n→∞

kρqn = ∞ , (15)

and w = W ◦ T if (14) holds (i.i.d. zone) and w = (E[σα(X1)])
−1J(q)TLq if (15) holds

(LRD zone).

We now want to center the tail empirical process at T instead of Tn. To this aim, we
introduce an unprimitive second order condition.

lim
n→∞

wn‖Tn − T‖∞ = 0 , (16)

where

‖Tn − T‖∞ = sup
t≥1

∣

∣

∣

∣

P(σ(X)Z > unt)

P(σ(X)Z > un)
− t−α

∣

∣

∣

∣

.

The following result is a straightforward corollary of Theorem 2.2.

Corollary 2.3. Under the assumptions of Theorem 2.2, if moreover (16) holds, then
wn(T̃n − T ) converges weakly in D([0,∞)) to the process w.
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Let Yn:1 ≤ · · · ≤ Yn:n be the increasing order statistics of Y1, . . . , Yn. The former
result and Verwaat’s Lemma [16, Proposition 3.3] yield the convergence of the intermediate
quantiles.

Corollary 2.4. Under the assumptions of Corollary 2.3, wn(Yn:n−k − un)/un converges
weakly to γw(1).

Define

T̂n(s) =
1

k

n
∑

j=1

1{Yj>Yn−k:n(1+s)} .

In this section we consider the practical process

ê∗n(s) = T̂n(s) − T (s), s ∈ [0,∞) .

For the process ê∗n(·), the previous results yield the following corollary.

Corollary 2.5. Assume (H), (1), (4), (8), (9) and (16). Then wnê
∗
n converges weakly in

D([0,∞)) to w − T · w(0), i.e.

• If limn→∞ kρ
q
n = 0, then √

kê∗n ⇒ B ◦ T (17)

where B is the Brownian bridge.

• If limn→∞ kρ
q
n → ∞, then

ρ−q/2n ê∗n ⇒ 0 .

The convergence of wn(T̂n − T ) to w − T · w(0) is standard. The surprising result is
that in the LRD zone the limiting process is 0, because the limiting process of wn(T̂n−Tn)
has the degenerate form T · Lq (up to constants). In fact, as we will see below, there is
no dichotomy for the process with random levels, and the rate of convergence of ê∗n is the
same as in the i.i.d. case.

To proceed, we need to introduce a more precise second order conditions on the distri-
bution function FZ of Z. Several types of second order assumptions have been proposed
in the literature. We follow here [7].

Assumption (SO) There exists a bounded non increasing function η∗ on [0,∞), regu-
larly varying at infinity with index −αβ for some β ≥ 0, and such that limt→∞ η

∗(t) = 0
and there exists a measurable function η such that for z > 0,

P(Z > z) = cz−α exp

∫ z

1

η(s)

s
ds , (18)

∃C > 0 , ∀s ≥ 0 , |η(s)| ≤ Cη∗(s) . (19)

If (18) and (19) hold, we will say that F̄Z is second order regularly varying with index −α
and rate function η∗, in shorthand F̄Z ∈ 2RV (−α, η∗).
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Theorem 2.6. Assume (H), (1), (4), (SO) with rate function η∗ regularly varying at
infinity with index −αβ and there exists ǫ > 0 such that

0 < E[σ2α(β+1)+ǫ(X1)] <∞ .

If
lim
n→∞

√
kη∗(U(n/k)) = 0 , (20)

then
√
kê∗n converges weakly in D([0,∞)) to B ◦ T , where B is the Brownian bridge (re-

gardless of the behaviour of kρqn).

Remark 1. Before, in Corollaries 2.3 and 2.5, we needed conditions (8) and (16) to establish
weak convergence. In Theorem 2.6, they are replaced with (S0) and (20); see Section 2.4
for more details.

The behaviour described in Theorem 2.6 is quite unexpected, since the process with
estimated levels Yn−k:n has a faster rate of convergence than the one with the deterministic
levels un. A similar phenomenon was observed in the context of LRD based empirical
processes with estimated parameters. We refer to [15] for more details.

2.3 Tail index estimation

A natural application of the asymptotic results for tail empirical process ê∗n is the asymp-
totic normality of the Hill estimator of the extreme value index γ defined by

γ̂n =
1

k

k
∑

i=1

log

(

Yn−i+1:n

Yn−k:n

)

=

∫ ∞

0

T̂n(s)

1 + s
ds .

Since γ =
∫∞

0
(1 + s)−1T (s) ds, we have

γ̂n − γ =

∫ ∞

0

ê∗n(s)

1 + s
ds .

Thus we can apply Theorem 2.6 to obtain the asymptotic distribution of the Hill estimator.

Corollary 2.7. Under the assumptions of Theorem 2.6,
√
k(γ̂n − γ) converges weakly to

the centered Gaussian distribution with variance γ2.

It is known that the above result gives the best possible rate of convergence for the Hill
estimator (see [7]). The surprising result is that it is possible to achieve the i.i.d. rates
regardless of H .
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2.4 Second order conditions

Whereas the transfer of the tail index of Z to Y is well known, the transfer of the second
order property seems to have been less investigated. We state this in the next proposition,
as well as the rate of convergence of Tn to T and Gn to G× T .

Proposition 2.8. If F̄Z ∈ 2RV (−α, η∗), where η∗ is regularly varying at infinity with
index −αβ, for some β ≥ 0, and if

E[σα(β+1)+ǫ(X)] <∞ , (21)

for some ǫ > 0, then F̄ ∈ 2RV (−α, η∗), (8) holds and

‖Tn − T‖∞ = O(η∗(un)) . (22)

Moreover, for any p ≥ 1 such that pα(β + 1) < α(β + 1) + ǫ,

E
[

sups≥0 |Gn(X, s) − σα(X)T (s)|p
]

= O(η∗(un)p) . (23)

Examples The most commonly used second order assumption is that η∗(s) = O(s−αβ)
for some β > 0. Then

F̄Z(x) = cx−α(1 +O(x−αβ)) as x→ ∞ , (24)

for some constant c > 0. Then, ‖Tn − T‖∞ = O((k/n)β), and the second order condi-
tion (16) becomes

lim
n→∞

k

(

k

n

)2β

= 0 , if lim
n→∞

kρqn = 0 (25)

and

lim
n→∞

ρ−qn

(

k

n

)2β

= 0 if lim
n→∞

kρqn = ∞ . (26)

Condition (25) holds if both k ≪ n(2β)/(2β+1) and k ≪ n2(1−H). The central limit theorem
with rate

√
k holds if k ≍ nγ with

γ < 2(1 −H) ∨ 2β

2β + 1
.

Condition (26) holds if n2(1−H) ≪ k ≪ n1−(1−H)/β . This may happen only if

β >
1 −H

2H − 1

or equivalently

1 > H >
1 + β

2β + 1
.
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As β → 0, only for very long memory processes (i.e. H close to 1) will the LRD zone be
possible.

The extreme case is the case β = 0, i.e. η∗ slowly varying. For instance, if η∗(x) =
1/ log(x) (for x large), then the tail F̄ (x) = x−α log(x) belongs to 2RV (−α, η∗) and U(t) ∼
{t log(t)/α}−1/α. The second order condition (16) holds if

k1/2 log−1(n) → 0 .

If this condition holds, then kρqn → 0 for any H > 1/2 and the LRD zone never arises (i.e.
it is dominated by bias).

3 Numerical results

We conducted some simulation experiments to illustrate our results. We used R functions
HillMSE() and HillPlot available on the authors webpages.

Our experiment deals with Mean Squared Error.

1. Using R-fracdiff package we simulated fractional Gaussian noise Xi(d) with pa-
rameters d = 0, 0.2, 0.4, 0.45. Here, d = H − 1/2, so that d = 0 corresponds to i.i.d.
case.

2. We simulated n = 1000 i.i.d. Pareto random variables Zi with parameters α = 1 and
2.

3. We set Yi(d) = exp(Xi(d))Zi.

4. Hill estimator was constructed for different number of extremes.

5. This procedure was repeated 10000 times.

6. The results are displayed on Figure 1. On each plot, we visualise Mean Square
Error (with the true centering) w.r.t. the number of extremes. Solid lines represent
different LRD parameters, starting with d = 0 (at the bottom).

We note that for small number of extremes there is no influence of LRD parameter. Also,
there is no difference for large number of extremes. This agrees with our findings in
Corollary 2.7. It seems that long memory appears for average number of extremes, which
does not seem to agree with Corollary 2.7. This can be explained as follows: for small
number of extremes i.i.d. type of behaviour dominates (see Rn(·) in (32); for large number
of extremes long memory of the term Sn in (32) starts to dominate. It contributes in the
asymptotic behaviour of en(·), but is reduced in the asymptotic behaviour of ê∗n(·). For
average number of extremes influence of long memory may not be strong enough to force
the aforementioned reduction.
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Figure 1: α = 1 (left panel), α = 2 (right panel)

4 Proofs

4.1 Gaussian long memory sequences

Recall that each function G(·) in L2(dµ), with µ(dx) = (2π)−1/2 exp(−x2/2) dx can be
expanded as

G(X) = E[G(X)] +
∞
∑

m=1

J(m)

m!
Hm(X) ,

where J(m) = E[G(X)Hm(X)] and X is a standard Gaussian random variable. The
smallest q ≥ 1 such that J(q) 6= 0 is called the Hermite rank of G. We have

E[G(X0)G(Xk)] = E[G(X0)] +

∞
∑

m=q

J2(m)

m!
ρmk , (27)

where ρk = cov(X0, Xk). Thus, the asymptotic behaviour of E[G(X0)G(Xk)] is determined
by the leading term ρqn. In particular, if 1−q(1−H) > 1/2, which implies that n2ρqn → ∞,

var

(

n
∑

j=1

G(Xj)

)

∼ J2(q)

q!

n2ρqn
1 − 2q(1 −H)

(28)

and

1

nρ
q/2
n

n
∑

j=1

G(Xj)
d→ J(q)Lq , (29)
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where

Lq = (q!(1 − 2q(1 −H))−1/2ZH,q(1) (30)

and ZH,q is the so-called Hermite or Rosenblatt process of order q, defined as a q-fold
stochastic integral

ZH,q(t) =

∫ ∞

−∞

. . .

∫ ∞

−∞

eit(x1+···+xq) − 1

x1 + · · · + xq

q
∏

i=1

x
−H+1/2
i W (dx1) . . .W (dxq) ,

where W is an independently scattered Gaussian random measure with Lebesgue control
measure. For more details, the reader is referred to [19]. On the other hand, if 1−q(1−H) <
1/2, then

1√
n

n
∑

j=1

G(Xj)
d→ N (0,Σ2

0), (31)

where Σ2
0 = var(G(X0)) + 2

∑∞
j=1 cov(G(X0), G(Xj)) <∞.

4.2 Decomposition of the tail empirical process

The main ingredient of the proof of our results will be the following decomposition. Let X
be the σ-field generated by the Gaussian process {Xn}.

en(s) =
1

nF̄ (un)

n
∑

j=1

{1{Yj>(1+s)un} − P(Yj > (1 + s)un|X )
}

+
1

nF̄ (un)

n
∑

j=1

{

P(Yj > (1 + s)un|X ) − F̄ (un)
}

=: Rn(s) + Sn(s) . (32)

Conditionnaly on X , Rn is the sum of independent random variables, so it will be referred
to as the i.i.d. part; the term Sn is the partial sum process of a subordinated Gaussian
process, so it will be referred to as the LRD part.

4.3 Proof of Theorem 2.2

We first prove convergence of the finite dimensional distributions of the i.i.d. and LRD
parts, then prove tightness and asymptotic independence.
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4.3.1 Finite dimensional limits

Let
d→ denote weak convergence of finite dimensional distributions. It will be shown in

Section 4.3.1 and 4.3.1, respectively, that for each m ≥ 1 and sl ∈ [0, 1], l = 1, . . . ,M ,
s1 < · · · < sM ,

√

nF̄ (un) (Rn(s1), Rn(sl) −Rn(sl−1), l = 2, . . . ,M)

d→ (N (0, T (s1)),N (0, T (sl) − T (sl−1)), l = 2, . . . ,M) , (33)

where the normal random variables are independent, and

ρ−qn (Sn(s1), . . . , Sn(sM))
d→ J(q)

E[σα(X1)]
(T (s1), . . . , T (sM))Lq , (34)

if 1 − q(1 − H) > 1/2. On the other hand, if 1 − q(1 − H) < 1/2, then the second term
Sn(·) is of smaller order than the first one, Rn(·).

The i.i.d. limit

Define

Ln,j(x, s) = 1{σ(x)Zj>(1+s)un} − P(σ(x)Z1 > (1 + s)un) .

Then

Rn(s) =

n
∑

j=1

Ln,j(Xj, s) .

Set Ln,j(x) = Ln,j(x, 0) and V
(m)
n (x) = E[Lm

n,j(x)]. Note that E[V
(1)
n (Xj)] = 0 and

V (2)
n (x) = P(σ(x)Z1 > un) − P

2(σ(x)Z1 > un) .

Let Rn := Rn(0). Therefore, for fixed t,

logE
[

eit
√

nF̄ (un)Rn |X
]

=

n
∑

j=1

logE

[

exp

(

it
√

nF̄ (un)
{1{Yj>un} − P(Yj > un | X )}

)

| X
]

=

n
∑

j=1

logE

[

1 − it
√

nF̄ (un)
Ln,j(Xj) −

t2

2nF̄ (un)
L2
n,j(Xj) + L3

n,j(Xj)O

(

1

(nF̄ (un))3/2

)

| X
]

=
−t2

2nF̄ (un)

n
∑

j=1

V (2)
n (Xj) + o

(

1

nF̄ (un)

) n
∑

j=1

V (2)
n (Xj) +O

(

1

(nF̄ (un))3/2

) n
∑

j=1

|V (3)
n (Xj)| .

(35)
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We will show that
1

nF̄ (un)

n
∑

j=1

V (2)
n (Xj)

p→ 1, (36)

given that E[σα+δ(X1)] < ∞. This also shows that the second term in (35) is negligible.
Furthermore, since for sufficiently large n and δ > 0 (cf. (56)),

|V (3)
n (x)| ≤ CP(σ(x)Z1 > un) ≤ C(σ(x) ∨ 1)α+δP (Z1 > un) ,

the expected value of the last term in (35) is

O

(

nP (Z1 > un)

(nF̄ (un))3/2

)

E[1 ∨ σα+δ(X1)] .

Consequently, the last term in (35) converges to 0 in L1 and in probability. Therefore, on
account of (36) and the negligibility, we obtain,

E

[

eit
√

nF̄ (un)Rn|X
]

p→ −t2/2 (37)

and from bounded convergence theorem we conclude (33) (for M = 1 and s = 0). It
remains to prove (36). By Lemma 2.1, for each j ≥ 1, Gn(Xj, s) converges in probability
and in L1 to σα(Xj). Therefore,

lim
n→∞

E

[
∣

∣

∣

∣

∣

1

n

n
∑

j=1

P(σ(Xj)Z1 > un | X )

P(Z1 > un)
− σα(Xj)

∣

∣

∣

∣

∣

]

= 0 . (38)

Next, since σα(Xj), j ≥ 1, is ergodic, we have

1

n

n
∑

j=1

σα(X1)
p→ E[σα(X1)] . (39)

Thus, (38), (39) and Breiman’s Lemma yields

1

nF̄ (un)

n
∑

j=1

P(σ(Xj)Z1 > un | X )
p→ 1 . (40)

Write now

1

nF̄ (un)

n
∑

j=1

V (2)
n (Xj) = 1 + oP (1) +

1

nF̄ (un)

n
∑

j=1

P
2(σ(Xj)Z1 > un | X ) .

By Lemma 2.1, we have, for some δ > 0 small enough,

1

nF̄ (un)

n
∑

j=1

P
2(σ(Xj)Z1 > un | X ) ≤ CP(Z > un)

1

n

n
∑

j=1

(σ(Xj) ∨ 1)2α+δ p→ 0 . (41)

This proves (36) and (33) follows with M = 1 and s1 = 0. The case of a general M ≥ 1 is
obtained analogously.
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Long memory limit

Recall the definition (6) of Gn(·, s) and that G(x) = σα(x). Define

Jn(m, s) = E[Hm(X1)Gn(X1, s)], J(m) = E[Hm(X1)G(X1)],

the Hermite coefficients of Gn(·, s) and G(·), respectively. Let q be the Hermite rank of
G(·). We write (recall Assumption (H)),

n
∑

j=1

(Gn(Xj, s) − E[Gn(Xj , s)])

=
n
∑

j=1

∞
∑

m=q

T (s)J(m)

m!
Hm(Xj) +

n
∑

j=1

∞
∑

m=q

Jn(m, s) − T (s)J(m)

m!
Hm(Xj)

=: T (s)S∗n + S̃n(s) , (42)

with S∗n =
∑n

j=1G(Xj). On account of Rozanov’s equality (27), we have that the variance
of the second term is

var(S̃n(s)) =

n
∑

i,j=1

∞
∑

m=q

(Jn(m, s) − T (s)J(m))2

m!
covm(Xi, Xj)

≤
n
∑

i,j=1

|covq(Xi, Xj)|
∞
∑

m=q

(Jn(m, s) − T (s)J(m))2

m!

= ‖Gn(·, s) − T (s)G(·)‖2L2(dµ)

n
∑

i,j=1

|covq(Xi, Xj)|

≤ Cn2ρqn ‖Gn(·, s) − T (s)G(·)‖2L2(dµ) . (43)

Since E[σ2α+δ(X)] < ∞, by Lemma 2.1, Gn(·, s) converges T (s)G(·) in L2(dµ), uniformly
with respect to s. We conclude that the second term on the right handside of (42) is

oP

(

nρ
q/2
n

)

, i.e. it is asymptotically smaller than the first term. Furthermore,

Sn(s) =
P (Z1 > un)

nF̄ (un)

n
∑

j=1

(Gn(Xj , s) − E[Gn(Xj , s)]) , (44)

so that via (29) and (57)

ρq/2n Sn(s)
d→ J(q)T (s)

E[σα(X1)]
Lq , (45)

if 1 − q(1 −H) > 1/2. Consequently, (34) holds for M = 1. The multivariate case follows
immediately. On the other hand, if 1 − q(1 −H) < 1/2, then via (31) and (57),

√
n sup

s∈[0,1]

Sn(s)
d→ 1

E[σα(X1)]
N (0,Σ2

0) ,

which proves negligibility with respect to the term Rn(·).
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4.3.2 Asymptotic independence

In this section we prove asymptotic independence of Rn(·) and Sn(·). We will carry out
a proof for the joint characteristic function of (Rn, Sn) = (Rn(0), Sn(0)). Extension to
multivariate case is straightforward. On account of (37), (45) and the bounded convergence
theorem, we have

E

[

exp

{

is
√

nF̄ (un)Rn + itρ−q/2n Sn

}]

= E

[

E[exp{is
√

nF̄ (un)Rn} | X ] exp
(

itρ−q/2n Sn

)

]

→ exp(−s2/2)ψLq

(

J(q)

E[σα(X1)]
t

)

as n→ ∞ ,

where ψLq
(·) is the characteristic function of Lq. This proves asymptotic independence.

4.3.3 Tightness

We prove tightness for Rn(s), s ≥ 0. Let

Ln,j(x, s, t) = Ln,j(x, t) − Ln,j(x, s) .

The random variables Ln,j(Xj, s, t) are conditionally independent given X . Therefore,

E[|Rn(s2) − Rn(s1)|4] = E
[

E[|Rn(s2) − Rn(s1)|4 | X ]
]

=
1

(nF̄ (un))2
E



E





(

n
∑

j=1

Ln,j(Xj , s1, s2)

)4

| X









=
1

(nF̄ (un))2

n
∑

i,j=1

E
[

E[L2
n,i(Xi, s1, s2) | X ]E[L2

n,j(Xj , s1, s2) | X ]
]

=
1

nF̄ (un)2
E[L4

n,1(X1, s1, s2)] +
1

F̄ (un)2
{E[L2

n,1(X1, s1, s2)]}2 . (46)

Applying assumption (8), we have, for p = 2, 4

E[|Ln,1(X1, s1, s2)|p] ≤ C|s2 − s1|F̄ (un) ,

which, together with (46), yields

E[|Rn(s2) −Rn(s1)|4] ≤
C|s2 − s1|
nF̄ (un)

+ C|s2 − s1|2 .

Arguing as in [18, Theorem 2.1 and Remark 2.1], this proves the tightness of Rn(·).
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To prove the tightness of Sn(s), recall that by (42) we have Sn(s) = T (s)S∗n + S̃n(s) and

the finite dimensional distributions of nρ
q/2
n S̃n converge weakly to zero. We thus only have

to prove the tightness of S̃n which is done by computing second moments of the increments.
By the same arguments leading to (43), we have

var(S̃n(s) − S̃n(s′)) ≤ Cn2ρqn‖Gn(·, s2) −Gn(·, s1) − (T (s2) − T (s1))G(·)‖2L2(dµ)

≤ Cn2ρqn{‖Gn(·, s2) −Gn(·, s1)‖2L2(µ) + |T (s2) − T (s1)|2} .

By condition (16), we have

E[|Gn(X1, s1) −Gn(X1, s2)|2] ≤ C|s2 − s1|2

and thus tightness follows.

4.4 Proof of Corollary 2.5 and Theorem 2.6

Denote T̄n = Tn − T and ξn =
Yn−k:n−un

un
= T̃←n (1). Then T̃n(ξn) = 1, and we have

1 = en(ξn) + Tn(ξn) = en(ξn) + T̄n(ξn) + T (ξn) .

Thus,

T (ξn) − 1 = −en(ξn) − T̄n(ξn) . (47)

For any s ≥ 0, T̂n(s) = T̃n(s+ ξn(1 + s)) and T (s+ ξn(1 + s)) = T (s)T (ξn), thus

ê∗n(s) = en(s+ ξn(1 + s)) + T̄n(s+ ξn(1 + s)) + T (s+ ξn(1 + s)) − T (s)

= en(s+ ξn(1 + s)) + T (s){T (ξn) − 1} + T̄n(s+ ξn(1 + s)) .

Plugging (47) into this decomposition of ê∗n, we get

ê∗n(s) = en(s+ ξn(1 + s)) − T (s)en(ξn) + T̄n(s+ ξn(1 + s)) − T (s)T̄n(ξn) . (48)

In order to prove Corollary 2.5, we write

wnê
∗
n(s) = wn{en(s+ ξn(1 + s)) − T (s)en(ξn)} +O(wn‖Tn − T‖∞) . (49)

Since the convergence in Theorem 2.2 is uniform, and by Corollary 2.4 ξn = oP (1), the first
term in (49) converges in D([0,∞)) to w−T ·w(0). Under the second order condition (16),
the second term is o(1). This concludes the proof of Theorem 2.5.

We now prove Theorem 2.6. In order to study the second-order asymptotics of wnê
∗
n(s),

we need precise expansion for en(s+ξn(1+s)) and en(ξ). For this we will use the expansions
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of the tail empirical process in Section 4.3.1. Since F̄ (un) = k/n, using (32), (42) and (44),
we have

en(s) = Rn(s) +
F̄Z(un)

nF̄ (un)
T (s)S∗n +

F̄Z(un)

nF̄ (un)
S̃n(s) , (50)

which, noting again that T (s+ ξn(1 + s)) = T (s)T (ξn), yields

en(s+ ξn(1 + s)) − T (s)en(ξn) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn)

+
F̄Z(un)

nF̄ (un)
{S̃n(s+ ξn(1 + s)) − T (s)S̃n(ξn)}

and

ê∗n(s) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn)

+
F̄Z(un)

nF̄ (un)
{S̃n(s+ ξn(1 + s)) − T (s)S̃n(ξn)} + T̄n(s+ ξn(1 + s)) − T (s)T̄n(ξn) . (51)

Similarly to (43), and utilising F̄Z(un)/F̄ (un) = O(1),

var

(

F̄Z(un)

nF̄ (un)
S̃n(s)

)

≤ C{ρqn ∨ ℓ1(n)n−1}‖Gn(·, s) − T (s)G(·)‖2L2(µ) .

Using the second order Assumption (SO) through (23), we obtain

var

(

F̄Z(un)

nF̄ (un)
S̃n(s)

)

= O
(

{ρqn ∨ ℓ1(n)n−1}η∗(un)2
)

= o
(

η∗(un)2
)

. (52)

Using (50) in the representation (48) and since Proposition 2.8 implies that ‖Tn − T‖∞ =
O(η∗(un)), we obtain:

ê∗n(s) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn) +OP (η∗(un)) .

Since we have already proved that the convergence of
√
kRn is uniform, we obtain that√

ke∗n converges in the sense of finite dimensional distribution to B ◦ T , where B is the
Brownian bridge, if the second order condition (20) holds. To prove tightness, we only have
to prove that k1/2n−1Sn converges uniformly to zero on compact sets. For s ≥ 0 and x ∈ R,
denote Ḡn(x, s) = Gn(x, s)−T (s)G(x) and recall that we have shown in Section 4.3.3 that

n−2var(S̃n(s) − S̃n(s′)) ≤ C‖Ḡn(·, s2) − Ḡn(·, s1)‖2L2(dµ) .

Applying (61), we get

n−2var(S̃n(s) − S̃n(s′)) ≤ C(η∗(un))2E
[

(σ(x) ∨ 1)2α(β+1)+ǫ
]

(s− s′)2 ,

which proves that k1/2n−1S̃n converges uniformly to zero on compact sets.
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4.5 Proof of Corollary 2.7

Using the decomposition (51), and the identity
∫∞

0
(1 + s)−1 T (s) ds = γ, we have

γ̂n − γ =

∫ ∞

0

ê∗n(s)

1 + s
ds =

∫ ∞

0

Rn(s+ ξn(1 + s))

1 + s
ds− γRn(ξn)

+
F̄Z(un)

nF̄ (un)

∫ ∞

0

S̃n(s+ ξn(1 + s))

1 + s
ds− γ

F̄Z(un)

nF̄ (un)
S̃n(ξn) (53)

+

∫ ∞

0

T̄n(s+ ξn(1 + s))

1 + s
ds− γT̄n(ξn) . (54)

We must prove that the terms in (53) and (54) are OP (η∗(un)) and that

√
k

∫ ∞

0

(1 + s)−1Rn(s+ ξn(1 + s)) ds
d→
∫ ∞

0

W ◦ T (s)

1 + s
ds = γ

∫ 1

0

W (t)

t
dt . (55)

To prove (55), we follow the lines of [16, Section 9.1.2]. We must prove that we can apply
continuous mapping. To do this, it suffices to establish that for any δ > 0 we have

lim
M→∞

lim sup
n→∞

An,M = 0 ,

where

An,M = P

(

√
k

∫ ∞

M

∣

∣

∣

∣

∣

1

k

n
∑

j=1

(

1{Yj>uns} − P (Yj > uns|X )
)

∣

∣

∣

∣

∣

ds

s
> δ

)

.

By Markov’s inequality, conditional independence and Potter’s bound [2, Theorem 1.5.6] ,
we have, for some ǫ > 0,

An,M ≤ C

√
n√
k

∫ ∞

M

P
1/2(Y > uns)

s
ds ≤ C

√

nF̄ (un)

k

∫ ∞

M

s−1−α/2+ǫ ds ≤ CM−α/2+ǫ → 0

as M → ∞, since k = nF̄ (un). This proves (55). To get a bound for (54), we use (58)
which yields, for all t ≥ 0,

|T̄n(t)| ≤ Cη∗(un)(1 + t)−α+ρ±ǫ .

Thus T̄n(ξn) = OP (η∗(un)) and |T̄n(s+ ξn(1 + s))| ≤ Cη∗(un)(1 + s)−α+ρ+ǫ(1 + ξn)−α, thus

∫ ∞

0

|Tn(s+ ξn(1 + s))|
1 + s

ds = OP (η∗(un)) .

We finally bound (53).

∫ ∞

0

n−1S̃n(s+ ξn(1 + s))

1 + s
ds =

∫ ∞

ξn

n−1S̃n(u)

1 + u
du .
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Since ξn = oP (1), we can write

P

(

k1/2
∫ ∞

ξn

n−1S̃n(u)

1 + u
du > ǫ

)

≤ P(ξn > 1) + P

(

k1/2
∫ ∞

1

n−1|S̃n(u)|
1 + u

du > ǫ

)

≤ o(1) +
k1/2

nǫ

∫ ∞

1

E
1/2[S̃2

n(s)]

1 + s
ds

Applying (43) and (67) yields

∫ ∞

1

n−1E1/2[S̃2
n(s)]

1 + s
ds ≤ Cρq/2n η∗(un)

∫ ∞

0

s−α(β+1)/2+ǫ−1 ds = oP (k−1/2) .

Thus the first term in (53) is oP (k−1/2), and so is the second term since k1/2n−1S̃n converges
uniformly to zero on compact sets. This concludes the proof of Corollary 2.7.

4.6 Second order regular variation

The main tool in the study of the tail of the product Y Z is the following bound. For any
ǫ > 0, there exists a constant C such that, for all y > 0,

P(yZ1 > x)

P(Z1 > x)
≤ C(1 ∨ yα+ǫ) . (56)

This bound is trivial if y < 1 and follows from Potter’s bounds if y > 1.

Proof of Lemma 2.1. By Breiman’s Lemma, we know that for any sequence un such that
un → ∞,

lim
n→∞

Gn(x, s) = lim
n→∞

P(σ(x)Z1 > (1 + s)un)

P(Z > un)
) = σα(x)(1 + s)−α = σα(x)T (s) . (57)

If E[σα+ǫ(X)] <∞, then the bound (56) implies that the convergence (57) holds in Lp(µ)
for any p such that pα < α + ǫ, uniformly with respect to s, i.e.

lim
n→∞

E[sup
s≥0

|Gn(X, s) − σα(X)T (s)|p] = 0 .

Before proving Proposition 2.8, we need the following lemma which gives a non uniform
rate of convergence.

Lemma 4.1. If (4), (18) and (19) hold, if η∗ is regularly varying at infinity with index ρ,
for some ρ ≤ 0, then (8) holds and for any ǫ > 0, there exists a constant C such that

∀t ≥ 1 , ∀z > 0 ,

∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

≤ Cη∗(t)z−α+ρ(z ∨ z−1)ǫ . (58)
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Proof. Since η∗ is decreasing, using the bound |eu − 1| ≤ ueu+ with u+ = max(u, 0), we
have, for all z > 0,

∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

= z−α
∣

∣

∣

∣

exp

∫ z

1

η(ts)

s
ds− 1

∣

∣

∣

∣

≤ Cz−α
∫ z∨1

z∧1

η∗(st)

s
ds exp

∫ z∨1

z∧1

η∗(st)

s
ds

≤ Cz−α log(z) η∗(t(z ∧ 1)) exp

∫ z∨1

z∧1

η∗(st)

s
ds

≤ Cz−α(z ∧ 1)ρ−ǫ/2 η∗(t) exp

∫ z∨1

z∧1

η∗(st)

s
ds . (59)

We now distinguish three cases. Recall that η∗ is decreasing.

• If z ≥ 1, then z → exp
∫ z

1
s−1η∗(s) ds is a slowly varying function by Karamata’s

representation Theorem, and is O(zǫ/2) for any ǫ > 0. Plugging this bound into (59)
yields (58).

• If z < 1 and tz ≥ 1, then

exp

∫ 1

z

η∗(st)

s
ds = exp

∫ 1/z

1

η∗(stz)

s
ds ≤ exp

∫ 1/z

1

η∗(s)

s
ds = O(z−ǫ/2)

for any ǫ > 0 by the same argument as above and this yields (58).

• If tz < 1, then tr ≤ z−r for any r > 0 and tρ−ǫ = O(η∗(t)) for any ǫ > 0. Thus

∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

≤ 1

P(Z > t)
+ z−α ≤ Ctα+ǫ/2 + z−α ≤ Cz−α−ǫ/2

≤ Cz−α+ρ−ǫtρ−ǫ/2 ≤ Cz−α+ρ−ǫη∗(t) .

This concludes the proof of (58). We now prove (10). In order to prove Theorem 2.6,
we will prove that for any ǫ > 0, there exists a constant C such that for all t ≥ 1 and
b > a > 0,

∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t)(a ∧ 1)−α−1−ǫ(b− a) . (60)

Since η∗ is decreasing, the bound (10) is a consequence of (60). Applying (56), the latter
yields the bound

∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗(t)(a ∧ 1)−α+ρ−ǫ(b− a) . (61)
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which is used in the proof of Theorem 2.6. Let ℓ be the function slowly varying at infinity
that appears in (4), defined on [0,∞) by ℓ(t) = tαP(Z > t). Assumption (SO) implies that

ℓ(t) = ℓ(1) exp

∫ t

1

η(s)
ds

s
(62)

where the function η is measurable and bounded. This implies that the function ℓ is the
solution of the equation

ℓ(t) = ℓ(1) +

∫ t

1

η(s)ℓ(s)
ds

s
. (63)

Conversely, if ℓ satisfies (63) then (62) holds. We first prove the following useful bound.
For any ǫ > 0, there exists a constant C such that for any t ≥ 1 and all a > 0,

ℓ(at)

ℓ(t)
≤ Ca±ǫ , (64)

where we denote a±ǫ = max(aǫ, a−ǫ). Indeed, if at ≥ 1, then, η∗ being decreasing, we have

ℓ(at)

ℓ(t)
≤ C exp

∫ a∨1

a∧1

η∗(ts)

s
ds ≤ C exp

∫ a∨(1/a)

1

η∗(ts)

s
ds ≤ Ca±ǫ ,

since the latter function is slowly varying by Karamata’s representation theorem. If at < 1,
then ℓ(at) ≤ 1 and ℓ−1(t) = o(tǫ) = o(a−ǫ). This proves (64). Next, applying (63) and (64),
for any ǫ > 0 and 0 < a < b, we have

∣

∣

∣

∣

ℓ(bt)

ℓ(at)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

η(st)
ℓ(st)

ℓ(at)

ds

s

∣

∣

∣

∣

≤ Ca±ε
∣

∣

∣

∣

∫ b

a

η(st)
ℓ(st)

ℓ(t)

ds

s

∣

∣

∣

∣

≤ Cη∗(at)

∫ b

a

s±2ǫ−1 ds ≤ Cη∗(at) a±ǫ−1(b− a) . (65)

Applying (64) and (65), we also obtain
∣

∣

∣

∣

ℓ(at)

ℓ(t)
− 1

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t) a±ǫ . (66)

For ǫ > 0 and 0 < a < b, we have

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α) = a−α

{

ℓ(at)

ℓ(t)
− 1

}

− b−α
{

ℓ(bt)

ℓ(t)
− 1

}

= (a−α − b−α)

{

ℓ(at)

ℓ(t)
− 1

}

− b−α
ℓ(at)

ℓ(t)

{

ℓ(bt)

ℓ(at)
− 1

}

,

which yields
∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t)aα−1±ǫ(b− a) .
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Proof of Proposition 2.8. Define the function σ̄ by σ̄(x) = σ(x) ∨ 1. Applying (58) with
(1 + s)/σ(x) instead of z and un for t, we get

|Gn(x, s) − σα(x)T (s)| =

∣

∣

∣

∣

P(σ(x)Z > un(1 + s))

P(Z > un)
− σα(x)T (s)

∣

∣

∣

∣

≤ Cη∗(un)σ̄(x)α(β+1)+ǫ(1 + s)−α(β+1)+ǫ . (67)

This implies, for all p such that E[σpα(β+1)+ǫ(X)] <∞, that

E

[

sup
s≥1

|Gn(X, s) − T (s)σα(X)|p
]

= O({η∗(un)}p) .

This proves (23) which in turn implies (22) since Tn(s) = F̄ (un)
F̄Z(un)

E[Gn(X, s)]. In order to

prove that F̄Y ∈ 2RV (−α, η∗), denote ℓ̃(y) = yαP(Y > y). We will prove that there exists a
measurable function η̃ such that (63) holds with ℓ̃ and η̃. Denote ξ = σ(X). Applying (63)
and using the independence of ξ and Z, we have

ℓ̃(y) = E[ξαℓ(y/σ)] = ℓ(1)E[ξα] + E

[

ξα
∫ y/ξ

1

η(s)ℓ(s)
ds

s

]

= ℓ(1)E[ξα] + E

[

ξα
∫ y

ξ

η(s/ξ)ℓ(s/ξ)
ds

s

]

= E

[

ξα
{

ℓ(1) −
∫ ξ

1

η(s/ξ)ℓ(s/ξ)
ds

s

}]

+ E

[

ξα
∫ y

1

η(s/ξ)ℓ(s/ξ)
ds

s

]

= E

[

ξα
{

ℓ(1) +

∫ 1

1/ξ

η(s)ℓ(s)
ds

s

}]

+

∫ y

1

E[ξαη(s/ξ)ℓ(s/ξ)]
ds

s

= E [ξαℓ(1/ξ)] +

∫ y

1

E[ξαη(s/ξ)ℓ(s/ξ)]
ds

s
= ℓ̃(1) +

∫ t

1

η̃(s)ℓ̃(s)
ds

s
,

where we have defined

η̃(s) =
E[ξαη(s/ξ)ℓ(s/ξ)]

E[ξαℓ(s/ξ)]
=

E[ξαη(s/ξ)ℓ(s/ξ)/ℓ(s)]

E[ξαℓ(s/ξ)/ℓ(s)]
.

The denominator of the last expression is bounded away from zero. Indeed, let ǫ > 0 be
such that P(ξ ≥ ǫ) > 0. Then

E[ξαℓ(s/ξ)/ℓ(s)] =
P(ξZ > s)

P(Z > s)
≥ P(ξ ≥ ǫ)P(Z > s/ǫ)

P(Z > s)
.

Since Z has a regularly varying tail, it holds that infs≥0 P(Z > s/ǫ)/P(Z > s) > 0. This
proves our claim. Thus, applying (56) with the regularly varying function η∗, we get, for
ǫ > 0 such that exp[ξα−ρ+ǫ] <∞,

|η̃(s)| ≤ Cη∗(s)E[ξα{η∗(s/ξ)/η∗(s)}{ℓ(s/ξ)/ℓ(s)}] ≤ Cη∗(x)E[ξα(ξ ∨ 1)−ρ+ǫ] .

Thus ℓ̃ satisfies equation (63) with η̃ such that |η| ≤ Cη∗, thus Y ∈ 2RV (−α, η∗). Since
Condition (SO) implies (8), this concludes the proof of Proposition 2.8.
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