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Abstract

The basic model for high-frequency data in finance is considered,

where an efficient price process is observed under microstructure noise.

It is shown that this nonparametric model is in Le Cam’s sense asymp-

totically equivalent to a Gaussian shift experiment in terms of the

square root of the volatility function σ. As an application, simple rate-

optimal estimators of the volatility and efficient estimators of the in-

tegrated volatility are constructed.
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1 Introduction

In recent years volatility estimation from high-frequency data has attracted a lot

of attention in financial econometrics and statistics. Due to empirical evidence that

the observed transaction prices of assets cannot follow a semi-martingale model, a

prominent approach is to model the observations as the superposition of the true (or

efficient) price process with some measurement error, conceived as microstructure

noise. The main features are already present in the basic model of observing

Yi = Xi/n + εi, i = 1, . . . , n, (1.1)

with an efficient price process Xt =
∫ t

0
σ(s) dBs, B a standard Brownian motion,

and εi ∼ N(0, δ2) all independent. The aim is to perform statistical inference on the

volatility function σ : [0, 1] → R
+, e.g. estimating the so-called integrated volatility

∫ 1

0
σ2(t) dt over the trading day.

The mathematical foundation on the parametric formulation of this model has

been laid by Gloter and Jacod (2001a) who prove the interesting result that the

model is locally asymptotically normal (LAN) as n → ∞, but with the unusual

rate n−1/4, while without microstructure noise the rate is n−1/2. Starting with

Zhang, Mykland, and Aı̈t-Sahalia (2005), the nonparametric model has come into

the focus of research. Mainly three different, but closely related approaches have

been proposed afterwards to estimate the integrated volatility: multi-scale estima-

tors (Zhang 2006), realized kernels or autocovariances (Barndorff-Nielsen, Hansen,

Lunde, and Shephard 2008) and preaveraging (Jacod, Li, Mykland, Podolskij, and

Vetter 2009). Under various degrees of generality, especially also for stochastic

volatility, all authors provide central limit theorems with convergence rate n−1/4

and an asymptotic variance involving the so-called quarticity
∫ 1

0 σ4(t) dt. Recently,

also the problem of estimating the spot volatility σ2(t) itself has found some interest

(Munk and Schmidt-Hieber 2009).

The aim of the present paper is to provide a thorough mathematical understand-
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ing of the basic model, to explain why statistical inference is not so canonical and

to propose a simple estimator of the integrated volatility which is efficient. To this

end we employ Le Cam’s concept of asymptotic equivalence between experiments.

In fact, our main theoretical result in Theorem 6.2 states under some regularity

conditions that observing (Yi) in (1.1) is for n → ∞ asymptotically equivalent to

observing the Gaussian shift experiment

dYt =
√
2σ(t) dt+ δ1/2n−1/4 dWt, t ∈ [0, 1],

with Gaussian white noise dW . Not only the large noise level δ1/2n−1/4 is appar-

ent, but also a non-linear
√
σ(t)-form of the signal, from which optimal asymp-

totic variance results can be derived. Note that a similar form of a Gaussian shift

was found to be asymptotically equivalent to nonparametric density estimation

(Nussbaum 1996). A key ingredient of our asymptotic equivalence proof are the

results by Grama and Nussbaum (2002) on asymptotic equivalence for generalized

nonparametric regression, but also ideas from Carter (2006) and Reiß (2008) play

a role. Moreover, fine bounds on Hellinger distances for Gaussian measures with

different covariance operators turn out to be essential.

Roughly speaking, asymptotic equivalence means that any statistical infer-

ence procedure can be transferred from one experiment to the other such that

the asymptotic risk remains the same, at least for bounded loss functions. Techni-

cally, two sequences of experiments E n and G n, defined on possibly different sample

spaces, but with the same parameter set, are asymptotically equivalent if the Le

Cam distance ∆(E n,G n) tends to zero. For Ei = (Xi,Fi, (P
i
ϑ)ϑ∈Θ), i = 1, 2, by

definition, ∆(E1, E2) = max(δ(E1, E2), δ(E1, E2)) holds in terms of the deficiency

δ(E1, E2) = infM supϑ∈Θ‖MP 1
ϑ − P 2

ϑ‖TV , where the infimum is taken over all ran-

domisations or Markov kernels M from (X1,F1) to (X2,F2), see e.g. Le Cam

and Yang (2000) for details. In particular, δ(E1, E2) = 0 means that E1 is more

informative than E2 in the sense that any observation in E2 can be obtained from

E1, possibly using additional randomisations. Here, we shall always explicitly con-
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struct the transformations and randomisations and we shall then only use that

∆(E1, E2) 6 supϑ∈Θ‖P 1
ϑ − P 2

ϑ‖TV holds when both experiments are defined on the

same sample space.

The asymptotic equivalence is deduced stepwise. In Section 2 the regression-

type model (1.1) is shown to be asymptotically equivalent to a corresponding white

noise model with signal X . Then in Section 3, a very simple construction yields

a Gaussian shift model with signal log(σ2(•) + c), c > 0 some constant, which is

asymptotically less informative, but only by a constant factor in the Fisher informa-

tion. Inspired by this construction, we present a generalisation in Section 4 where

the information loss can be made arbitrarily small (but not zero), before applying

nonparametric local asymptotic theory in Section 5 to derive asymptotic equiva-

lence with our final Gaussian shift model for shrinking local neighbourhoods of the

parameters. Section 6 yields the global result, which is based on an asymptotic

sufficiency result for simple independent statistics.

Extensions and restrictions are discussed in Section 7 before we use the theoret-

ical insight to construct in Section 8 a rate-optimal estimator of the spot volatility

and an efficient estimator of the integrated volatility by a locally-constant approx-

imation. Remarkably, the asymptotic variance is found to depend on the third

moment
∫ 1

0 σ3(t) dt and for non-constant σ2(•) our estimator outperforms previous

approaches applied to the basic model. Constructions needed for the proof are pre-

sented and discussed alongside the mathematical results, deferring more technical

parts to the Appendix, which in Section 9.1 also contains a summary of results on

white noise models, the Hellinger distance and Hilbert-Schmidt norm estimates.

2 The regression and white noise model

In the main part we shall work in the white noise setting, which is more intuitive

to handle than the regression setting, which in turn is the observation model in
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practice. Let us define both models formally. For that we introduce the Hölder ball

Cα(R) := {f ∈ Cα([0, 1]) | ‖f‖Cα 6 R} with ‖f‖Cα = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
|x− y|α .

2.1 Definition. Let E0 = E0(n, δ, α,R, σ2) with n ∈ N, δ > 0, α ∈ (0, 1), R > 0,

σ2 > 0 be the statistical experiment generated by observing (1.1). The volatility σ2

belongs to the class

S (α,R, σ2) :=
{
σ2 ∈ Cα(R)

∣∣∣ min
t∈[0,1]

σ2(t) > σ2
}
.

Let E1 = E1(ε, α,R, σ2) with ε > 0, α ∈ (0, 1), R > 0, σ2 > 0 be the statistical

experiment generated by observing

dYt = Xt dt+ ε dWt, t ∈ [0, 1],

with Xt =
∫ t

0 σ(s) dBs as above, independent standard Brownian motions W and

B and σ2 ∈ S (α,R, σ2).

From Brown and Low (1996) it is well known that the white noise and the

Gaussian regression model are asymptotically equivalent for noise level ε = δ/
√
n →

0 as n → ∞, provided the signal is β-Hölder continuous for β > 1/2. Since Brownian

motion and thus also our price processX is only Hölder continuous of order β < 1/2

(whatever α is), it is not clear whether asymptotic equivalence can hold for the

experiments E0 and E1. Yet, this is true. Subsequently, we employ the notation

An . Bn if An = O(Bn) and An ∼ Bn if An . Bn as well as Bn . An and obtain:

2.2 Theorem. For any α > 0, σ2 > 0 and δ, R > 0 the experiments E0 and E1

with ε = δ/
√
n are asymptotically equivalent ; more precisely:

∆(E0(n, δ, α,R, σ2), E1(δ/
√
n, h, α,R, σ2)) . Rδ−2n−α.

Interestingly, the asymptotic equivalence holds for any positive Hölder regu-

larity α > 0. In particular, the volatility σ2 could be itself a continuous semi-

martingale, but such that X conditionally on σ2 remains Gaussian. As the proof in
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Section 9.2 of the appendix reveals, we construct the equivalence by rate-optimal

approximations of the anti-derivative of σ2 which lies in C1+α. Similar techniques

have been used by Carter (2006) and Reiß (2008), but here we have to cope with

the random signal for which we need to bound the Hilbert-Schmidt norm of the

respective covariance operators. Note further that the asymptotic equivalence even

holds when the level of the microstructure noise δ tends to zero, provided δ2nα → ∞

remains valid.

3 Less informative Gaussian shift experiments

From now on we shall work with the white noise observation experiment E1, where

the main structures are more clearly visible. In this section we shall find easy

Gaussian shift models which are asymptotically not more informative than E1, but

already permit rate-optimal estimation results. The whole idea is easy to grasp

once we can replace the volatility σ2 by a piecewise constant approximation on

small blocks of size h. That this is no loss of generality, is shown by the subsequent

asymptotic equivalence result, proved in Section 9.3 of the appendix.

3.1 Definition. Let E2 = E2(ε, h, α,R, σ2) be the statistical experiment generated

by observing

dYt = Xh
t dt+ ε dWt, t ∈ [0, 1],

with Xh
t =

∫ t

0 σ(⌊s⌋h) dBs, ⌊s⌋h := ⌊s/h⌋h for h > 0 and h−1 ∈ N, and indepen-

dent standard Brownian motions W and B. The volatility σ2 belongs to the class

S (α,R, σ2).

3.2 Proposition. Assume α > 1/2 and σ2 > 0. Then for ε → 0, hα = o(ε1/2) the

experiments E1 and E2 are asymptotically equivalent ; more precisely:

∆(E1(ε, α,R, σ2), E2(ε, h, α,R, σ2)) . Rσ−3/2hαε−1/2.

In the sequel we always assume hα = o(ε1/2) to hold such that we can work

equivalently with E2. Recall that observing Y in a white noise model is equivalent
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to observing (
∫
em dY )m>1 for an orthonormal basis (em)m>1 of L2([0, 1]), cf. also

Subsection 9.1 below. Our first step is thus to find an orthonormal system (not a

basis) which extracts as much local information on σ2 as possible. For any ϕ ∈

L2([0, 1]) with ‖ϕ‖L2 = 1 we have by partial integration

∫ 1

0

ϕ(t)dYt =

∫ 1

0

ϕ(t)Xh
t dt+ ε

∫ 1

0

ϕ(t) dWt

= Φ(1)Xh
1 − Φ(0)Xh

0 −
∫ 1

0

Φ(t)σ(⌊t⌋h) dBt + ε

∫
ϕ(t) dWt

=
(∫ 1

0

Φ2(t)σ2(⌊t⌋h) dt+ ε2
)1/2

ζϕ (3.1)

where Φ(t) = −
∫ 1

t
ϕ(s) ds is the antiderivative of ϕ with Φ(1) = 0 and ζϕ ∼ N(0, 1)

holds. To ensure that Φ has only support in some interval [kh, (k+1)h], we require

ϕ to have support in [kh, (k + 1)h] and to satisfy
∫
ϕ(t) dt = 0. The function ϕk

with supp(ϕk) = [kh, (k + 1)h], ‖ϕk‖L2 = 1,
∫
ϕk(t) dt = 0 that maximizes the

information load
∫
Φ2

k(t) dt for σ
2(kh) is given by (use Lagrange theory)

ϕk(t) =
√
2h−1/2 cos

(
π(t− kh)/h

)
1[kh,(k+1)h](t), t ∈ [0, 1]. (3.2)

The L2-orthonormal system (ϕk) for k = 0, 1, . . . , h−1 − 1 is now used to construct

Gaussian shift observations. In E2 we obtain from (3.1) the observations

yk :=

∫
ϕk(t) dYt =

(
h2π−2σ2(kh) + ε2

)1/2

ζk, k = 0, . . . , h−1 − 1, (3.3)

with independent standard normal random variables (ζk)k=0,...,h−1−1. Observing

(yk) is clearly equivalent to observing

zk := log(y2kh
−2π2)− E[log(ζ2k)] = log

(
σ2(kh) + ε2h−2π2

)
+ ηk (3.4)

for k = 0, . . . , h−1 − 1 with ηk := log(ζ2k)− E[log(ζ2k)].

We have found a nonparametric regression model with regression function

log(σ2(•)+ ε2h−2π2) and h−1 equidistant observations corrupted by non-Gaussian,

but centered noise (ηk) of variance 2. To ensure that the regression function does

not change under the asymptotics ε → 0, we specify the block size h = h(ε) = h0ε

with some fixed constant h0 > 0.
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It is not surprising that the nonparametric regression experiment in (3.4) is

equivalent to a corresponding Gaussian shift experiment. Indeed, this follows read-

ily from results by Grama and Nussbaum (2002) who in their Section 4.2 derive

asymptotic equivalence already for our Gaussian scale model (3.3). Note, however,

that their Fisher information should be I(ϑ) = 1
2ϑ

−2 and we thus have asymptotic

equivalence of (3.3) with the Gaussian regression model

wk = 1√
2
log(σ2(kh) + h−2

0 π2) + γk, k = 0, . . . , h−1 − 1,

where γk ∼ N(0, 1) i.i.d. Since by the classical result of Brown and Low (1996)

the Gaussian regression is equivalent to the corresponding white noise experiment

(note that log(σ2(•)+h−2
0 π2) is also α-Hölder continuous), we have already derived

an important and far-reaching result.

3.3 Theorem. For α > 1/2 and σ2 > 0 the high frequency experiment

E1(ε, α,R, σ2) is asymptotically more informative than the Gaussian shift exper-

iment G1(ε, α,R, σ2, h0) of observing

dZt =
1√
2
log

(
σ2(t) + h−2

0 π2
)
dt+ h

1/2
0 ε1/2dWt, t ∈ [0, 1].

Here h0 > 0 is an arbitrary constant and σ2 ∈ S (α,R, σ2).

3.4 Remark. Moving the constants from the diffusion to the drift part, the exper-

iment G1 is equivalent to observing

dZ̃t = (2h0)
−1/2 log(σ2(t) + h−2

0 π2) dt+ ε1/2dWt, t ∈ [0, 1]. (3.5)

The Gaussian shift experiment is nonlinear in σ2 which is to be expected. Writing

ε = δ/
√
n gives us the noise level δ1/2n−1/4 which appears in all previous work on

the model E0.

To quantify the amount of information we have lost, let us study the LAN-

property of the constant parametric case σ2(t) = σ2 > 0 in G1. We consider the

local alternatives σ2
ε = σ2

0 + ε1/2 for which we obtain the Fisher information Ih0
=
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(2h0)
−1h4

0/(π
2 + h2

0σ
2
0)

2. Maximizing over h0 yields h0 =
√
3πσ−1

0 and the Fisher

information is at most equal to

sup
h0>0

Ih0
= σ−3

0 33/2/(32π) ≈ 0.0517σ−3
0 .

By the LAN-result of Gloter and Jacod (2001a) for E0 the best value is I(σ0) =
1
8σ

−3
0

which is clearly larger. Note, however, that the relative (normalized) efficiency is

already

√
33/2/(32π)√

1/8
≈ 0.64, which means that we attain about 64% of the precision

when working with G1 instead of E0 or E1.

4 A close sequence of simple models

In order to decrease the information loss in G1, we now take into account higher

frequencies in each block [kh, (k + 1)h]. In a frequency-location notation (j, k) we

consider for k = 0, 1, . . . , h−1 − 1, j > 1

ϕjk(t) =
√
2h−1/2 cos(jπ(t− kh)/h)1[kh,(k+1)h](t), t ∈ [0, 1]. (4.1)

This gives the corresponding antiderivatives

Φjk(t) =

√
2h

πj
sin(jπ(t− kh)/h)1[kh,(k+1)h](t), t ∈ [0, 1].

Not only the (ϕjk) and (Φjk) are localized on each block, also each single family

of functions is orthogonal in L2([0, 1]). Working again on the piecewise constant

experiment E2, we extract the observations

yjk :=

∫ 1

0

ϕjk(t) dYt =
(
h2π−2j−2σ2(kh) + ε2

)1/2

ζjk, j > 1, k = 0, . . . , h−1 − 1,

(4.2)

with ζjk ∼ N(0, 1) independent over all (j, k). The same transformation as before

leads for each j > 1 to the regression model for k = 0, . . . , h−1 − 1

zjk := log(y2jk)− log(h2π−2j−2)−E[log(ζ2jk)] = log(σ2(t)+ε2h−2π2j2)+ηjk . (4.3)

Applying the asymptotic equivalence result by Grama and Nussbaum (2002) for

each independent level j separately, we immediately generalize Theorem 3.3.
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4.1 Theorem. For α > 1/2 and σ2 > 0 the high frequency experiment

E1(ε, α,R, σ2) is asymptotically more informative than the combined experiment

G2(ε, α,R, σ2, h0, J) of independent Gaussian shifts

dZj
t = 1√

2
log(σ2(t) + h−2

0 π2j2) dt+ h
1/2
0 ε1/2dW j

t , t ∈ [0, 1], j = 1, . . . , J,

with independent Brownian motions (W j)j=1,...,J and σ2 ∈ S (α,R, σ2). The con-

stants h0 > 0 and J ∈ N are arbitrary, but fixed.

4.2 Remark. Let us again study the LAN-property of the constant parametric

case σ2(t) = σ2 > 0 for the local alternatives σ2
ε = σ2

0 + ε1/2. We obtain the Fisher

information

Ih0,J =
J∑

j=1

(2h0)
−1h4

0(π
2j2 + h2

0σ
2
0)

−2 =
J∑

j=1

h−1
0

2(π2(jh−1
0 )2 + σ2

0)
2
.

In the limit J → ∞ and h0 → ∞ we obtain by Riemann sum approximation

lim
h0→∞

lim
J→∞

Ih0,J =

∫ ∞

0

dx

2(π2x2 + σ2
0)

2
=

1

8σ3
0

.

This is exactly the optimal Fisher information, obtained by Gloter and Jacod

(2001a) in this case. Note, however, that it is not at all obvious that we may let

J, h0 → ∞, in the asymptotic equivalence result. Moreover, in our theory the re-

striction hα = o(ε1/2) is necessary, which translates into h0 = o(ε(1−2α)/2α). Still,

the positive aspect is that we can come as close as we wish to an asymptotically

almost equivalent, but much simpler model.

5 Localisation

We know from standard regression theory (Stone 1982) that in the experiment G1

we can estimate σ2 ∈ Cα in sup-norm with rate (ε log(ε−1))α/(2α+1), using that the

log-function is a C∞-diffeomorphism for arguments bounded away from zero and

infinity. Since E1 is for α > 1/2 asymptotically more informative than G1, we can

therefore localize σ2 in a neighbourhood of some σ2
0 . Using the local coordinate s2

in σ2 = σ2
0+vεs

2 for vε → 0 we define a localized experiment, cf. Nussbaum (1996).
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5.1 Definition. Let Ei,loc = Ei,loc(σ0, ε, α,R, σ2) for σ0 ∈ S (α,R, σ2) be the sta-

tistical subexperiment obtained from Ei(ε, α,R, σ2) by restricting to the parameters

σ2 = σ2
0 + vεs

2 with vε = εα/(2α+1) log(ε−1) and unknown s2 ∈ Cα(R).

We shall consider the observations (yjk) in (4.2) derived from E2,loc and mul-

tiplied by πj/h. The model is then a generalized nonparametric regression family

in the sense of Grama and Nussbaum (2002). On the sequence space (X ,F ) =

(RN,B⊗N) we consider for ϑ ∈ Θ = [σ2, R] the Gaussian product measure

Pϑ =
⊗

j>1

N
(
0, ϑ+ h−2

0 π2j2
)
. (5.1)

The parameter ϑ plays the role of σ2(kh) for each k. By independence and the

result for the one-dimensional Gaussian scale model, the Fisher information for ϑ

is given by

I(ϑ) :=
∑

j>1

1

2(ϑ+ h−2
0 π2j2)2

=
h0

8ϑ3/2

(1 + 4ϑ1/2h0e
−2ϑ1/2h0 − e−4ϑ1/2h0

(1− e−2ϑ1/2h0)2
− 2

ϑ1/2h0

)
,

(5.2)

where the series is evaluated in Section 9.6 using Fourier analysis. Since we shall

later let h0 tend to infinity, an essential point is the asymptotics I(ϑ) ∼ h0.

We split our observation design {kh | k = 0, . . . , h−1} into blocksAm = {kh | k =

(m − 1)ℓ, . . . ,mℓ − 1}, m = 1, . . . , (ℓh)−1, of length ℓ such that the radius vε of

our nonparametric local neighbourhood has the order of the parametric noise level

(I(ϑ)ℓ)−1/2 in each block:

vε ∼ (I(ϑ)ℓ)−1/2 ⇒ ℓ ∼ h−1
0 v−2

ε .

For later convenience we consider odd and even indices k separately, assuming

that h−1 and ℓ are even integers. This way, for each block m observing (yjkπj/h) for

j > 1 and k ∈ Am, k odd respectively k even, can be modeled by the experiments

E
odd
3,m =

(
X

ℓ/2,F⊗ℓ/2,
( ⊗

k∈Am odd

Pσ2

0
(k/n)+vεs2(k/n)

)
s2∈Cα(R)

)
, (5.3)

E
even
3,m =

(
X

ℓ/2,F⊗ℓ/2,
( ⊗

k∈Am even

Pσ2

0
(k/n)+vεs2(k/n)

)
s2∈Cα(R)

)
, (5.4)
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where all parameters are the same as for E2,loc. Using the nonparametric local

asymptotic theory developed by Grama and Nussbaum (2002) and the indepen-

dence of the experiments (E odd
3,m )m (resp. (E even

3,m )m), we are able to prove in Section

9.4 the following asymptotic equivalence.

5.2 Proposition. Assume α > 1/2, σ2 > 0 and h0 ∼ ε−p with p ∈ (0, 1− (2α)−1)

such that (2h)−1 ∈ N. Then observing {yj,2k+1 | j > 1, k = 0, . . . , (2h)−1 − 1} in

experiment E2,loc is asymptotically equivalent to the local Gaussian shift experiment

G3,loc of observing

dYt =
1

√
8σ

3/2
0 (t)

(
1− 2

σ0(t)h0

)1/2

vεs
2(t) dt+ (2ε)1/2dWt, t ∈ [0, 1], (5.5)

where the unknown s2 and all parameters are the same as in E2,loc. The Le Cam

distance tends to zero uniformly over the center of localisation σ2
0 ∈ S (α,R, σ2).

The same asymptotic equivalence result holds true for observing {yj,2k | j >

1, k = 0, . . . , (2h)−1 − 1} in experiment E2,loc.

Note that in this model, combining even and odd indices k, we can already infer

the LAN-result by Gloter and Jacod (2001a), but we still face a second order term

of order h−1
0 vε in the drift. This term is asymptotically negligible only if it is of

smaller order than the noise level ε1/2. To be able to choose h0 sufficiently large,

we have to require a larger Hölder smoothness of the volatility.

5.3 Corollary. Assume α > 1+
√
17

8 ≈ 0.64, σ2 > 0 and (2h)−1 ∈ N. Then observ-

ing {yj,2k+1 | j > 1, k = 0, . . . , (2h)−1 − 1} in experiment E2,loc is asymptotically

equivalent to the local Gaussian shift experiment G4,loc of observing

dYt =
1

√
8σ

3/2
0 (t)

vεs
2(t) dt+ (2ε)1/2dWt, t ∈ [0, 1], (5.6)

where the unknown s2 and all parameters are the same as in E2,loc. The Le Cam

distance tends to zero uniformly over the center of localisation σ2
0 ∈ S (α,R, σ2).

The same asymptotic equivalence result holds true for observing {yj,2k | j >

1, k = 0, . . . , (2h)−1 − 1} in experiment E2,loc.
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Proof. For α > 1+
√
17

8 the choice of h0 = ε−p for some p ∈ ( 1
4α+2 ,

2α−1
2α ) is possible

and ensures that hα = o(ε1/2) holds as well as h−2
0 = o(v−2

ε ε). Therefore the

Kullback-Leibler divergence between the observations in G loc
3 and in G loc

4 evaluates

by the Cameron-Martin (or Girsanov) formula to

ε−1

∫ 1

0

1

8σ3
0(t)

((
1− 2

σ0(t)h0

)1/2

− 1
)2

v2εs
4(t) dt . ε−1h2

0v
2
ε .

Consequently, the Kullback-Leibler and thus also the total variation distance tends

to zero.

In a last step we find local experiments G5,loc, which are asymptotically equiv-

alent to G4,loc and do not depend on the center of localisation σ2
0 . To this end we

use a variance-stabilizing transform, based on the Taylor expansion

√
2x1/4 =

√
2x

1/4
0 + 1√

8
x
−3/4
0 (x− x0) +O((x − x0)

2)

which holds uniformly over x, x0 on any compact subset of (0,∞). Inserting x =

σ2(t) = σ2
0(t) + vεs

2(t) and x0 = σ2
0 from our local model, we obtain

√
2σ(t) =

√
2σ0(t) +

1√
8
σ
−3/2
0 (t)vεs

2(t) +O(v2ε ). (5.7)

Since v2ε = o(ε1/2) holds for α > 1/2, we can add the uninformative signal
√
2σ

1/2
0 (t) to Y in G4,loc, replace the drift by

√
2σ1/2(t) and still keep convergence

of the total variation distance, compare the preceding proof. Consequently, from

Corollary 5.3 we obtain the following result.

5.4 Corollary. Assume α > 1+
√
17

8 ≈ 0.64, σ2 > 0 and (2h)−1 ∈ N. Then observ-

ing {yj,2k+1 | j > 1, k = 0, . . . , (2h)−1−1} in the experiment E2,loc is asymptotically

equivalent to the local Gaussian shift experiment G5,loc of observing

dYt =
√
2σ(t) dt+ (2ε)1/2 dWt, t ∈ [0, 1], (5.8)

where the unknown is σ2 = σ2
0 + vεs

2 and all parameters are the same as in E2,loc.

The Le Cam distance tends to zero uniformly over the center of localisation σ2
0 ∈

S (α,R, σ2).
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The same asymptotic equivalence result holds true for observing {yj,2k | j >

1, k = 0, . . . , (2h)−1 − 1} in experiment E2,loc.

6 Globalisation

The globalisation now basically follows the usual route, first established by Nuss-

baum (1996). Essential for us is to show that observing (yjk) for j > 1 is asymptot-

ically sufficient in E2. Then we can split the white noise observation experiment E2

into two independent sub-experiments obtained from (yjk) for k odd and k even,

respectively. Usually, a white noise experiment can be split into two independent

subexperiments with the same drift and an increase by
√
2 in the noise level. Here,

however, this does not work since the two diffusions in the random drift remain the

same and thus independence fails.

Let us introduce the L2-normalized step functions

ϕ0,k(t) := (2h)−1/2
(
1[(k−1)h,kh](t)− 1[kh,(k+1)h](t)

)
, k = 1, . . . , h−1 − 1,

ϕ0,0(t) := h−1/21[0,h](t).

We obtain a normalized complete basis (ϕjk)j>0,06k6h−1−1 of L2([0, 1]) such that

observing Y in experiment E2 is equivalent to observing

yjk :=

∫ 1

0

ϕjk(t) dYt, j > 0, k = 0, . . . , h−1 − 1.

Calculating the Fourier series, we can express the tent function Φ0,k with Φ′
0,k =

ϕ0,k and Φ0,k(1) = 0 as an L2-convergent series over the dilated sine functions Φjk

and Φj,k−1, j > 1:

Φ0,k(t) =
∑

j>1

(−1)j+1Φj,k−1(t) +
∑

j>1

Φjk(t), k = 1, . . . , h−1 − 1. (6.1)

We also have Φ0,0(t) = 2
∑

j>1 Φj,0(t). By partial integration, this implies (with
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L2-convergence)

β0,k := 〈ϕ0,k, X〉 = −
∫ 1

0

Φ0,k(t) dX(t) =
∑

j>1

(−1)j+1βj,k−1 +
∑

j>1

βjk,

where βjk := 〈ϕjk, X〉

for k > 1 and similarly β0,0 = 2
∑

j>1 βj,0. This means that the signal β0,k in

y0,k can be perfectly reconstructed from the signals in the yj,k−1, yjk. For jointly

Gaussian random variables we obtain the conditional law in E2

L (βjk | yjk) = N
(Var(βjk)

Var(yjk)
yjk,

ε2 Var(βjk)

Var(yjk)

)

Given the results by Stone (1982) and our less informative Gaussian shift ex-

periment G1 for α > 1/2, σ2 > 0, there is an estimator σ̂2
ε based on (y1,k)k in E2

with

lim
ε→0

inf
σ2∈S

Pσ2,ε(‖σ̂2
ε − σ2‖∞ 6 Rvε) = 1, (6.2)

where vε = εα/(2α+1) log(ε−1) as in the definitions of the localized experiments.

We can thus generate independent N(0, 1)-distributed random variables ρjk to

construct from (yjk)j>1,k

β̃jk :=
Varε(βjk)

Varε(yjk)
yjk +

εVarε(βjk)
1/2

Varε(yjk)1/2
ρjk,

where the variance Varε is the expression for Var where all unknown values σ2(kh)

are replaced by the estimated values σ̂2
ε (kh). From this we can generate artificial

observations (ỹ0,k) such that the conditional law L ((ỹ0,k)k | (β̃j,k)k) coincides with

L ((y0,k)k | (β0,k)k), which is just a multivariate normal law with mean zero and

tri-diagonal covariance matrix ε2(〈ϕ0,k, ϕ0,k′〉)k,k′ .

In Section 9.5 we shall prove that the Hellinger distance between the families

of centered Gaussian random variables Y := {yjk | j > 0, k = 0, . . . , h−1 − 1} and

Ỹ := {ỹ0,k | k = 0, . . . , h−1 − 1} ∪ {yjk | j > 1, k = 0, . . . , h−1 − 1} tends to zero,

provided h−1
0 v2ε = o(ε), which is possible when α > 1+

√
5

4 with the choice h0 = ε−p

for some p ∈ ( 1
2α+1 ,

2α−1
2α ).
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6.1 Proposition. Assume α > 1+
√
5

4 ≈ 0.81, σ2 > 0 and h−1 an even inte-

ger. Then the experiment E2 is asymptotically equivalent to the product experi-

ment E2,odd ⊗ E2,even where E2,odd is obtained from the observations {yj,2k+1 | j >

1, k = 0, . . . , (2h)−1 − 1} and E2,even from the observations {yj,2k | j > 1, k =

0, . . . , (2h)−1 − 1} in experiment E2.

This key result permits to globalize the local result. In the sequel we always

assume α > 1+
√
5

4 and σ2 > 0. We start with the asymptotic equivalence between

E2 and E2,odd⊗E2,even. Using again an estimator σ̂2
ε in E2,odd satisfying (6.2) we can

localize the second factor E2,even around σ̂2
ε and therefore by Corollary 5.4 replace

it by experiment G5,loc, see Theorem 3.2 in Nussbaum (1996) for a formal proof.

Since G5,loc does not depend on the center σ̂2
ε , we conclude that E2 is asymptotically

equivalent to the product experiment E2,odd⊗G5 where G5 has the same parameters

as E2 and is given by observing Y in (5.8). Now we use an estimator σ̂2
ε in G5 satis-

fying (6.2), whose existence is ensured by Stone (1982), to localize E2,odd. Corollary

5.4 then allows again to replace the localized E2,odd-experiment by G5 such that E2

is asymptotically equivalent to the product experiment G5 ⊗G5. Finally, taking the

mean of the independent observations (5.8) in both factors, which is a sufficient

statistics, (or, abstractly, due to identical likelihood processes) we see that G5 ⊗ G5

is equivalent to the experiment G0 of observing dYt =
√
2σ(t) dt+

√
ε dWt, t ∈ [0, 1].

Our final result then follows from the asymptotic equivalence between E0 and E1

as well as between E1 and E2.

6.2 Theorem. Assume α > 1+
√
5

4 ≈ 0.81 and δ, σ2, R > 0. Then the regression

experiment E0(n, δ, α,R, σ2) is for n → ∞ asymptotically equivalent to the Gaussian

shift experiment G0(δn
−1/2, α,R, σ2) of observing

dYt =
√
2σ(t) dt+ δ1/2n−1/4 dWt, t ∈ [0, 1], (6.3)

for σ2 ∈ S (α,R, σ2).



Asymptotic equivalence for volatility estimation 17

7 Discussion

Our results show that inference for the volatility in the high-frequency observa-

tion model under microstructure noise E0 is asymptotically as difficult as in the

well understood Gaussian shift model G0. Remark that the constructions in Gloter

and Jacod (2001a), Gloter and Jacod (2001b) rely on preliminary estimators at

the boundary of suitable blocks, while we require suppΦjk = [kh, (k + 1)h] to ob-

tain independence among blocks. In this context Proposition 6.1 shows asymptotic

sufficiency of observing only the pinned process Xt − (k+1)h−t
h Xkh − t−kh

h X(k+1)h,

t ∈ [kh, (k + 1)h], on each block due to
∫
(αt + β)ϕjk(t) dt = 0 for j > 1, α, β ∈ R.

Naturally, the (Φjk)j>1 form exactly the eigenfunctions of the covariance operator

of the Brownian bridge.

It is interesting to note that both, model E0 and model G0, are homogeneous

in the sense that factors from the noise (i.e. the dWt-term) can be moved to the

drift term and vice versa such that for example high volatility can counterbalance

a high noise level δ or a large observation distance 1/n. Another phenomenon is

that observing E0 m-times independently, in particular with different realisations

of the process X , is asymptotically as informative as observing E0 with m2 as many

observations: both experiments are asymptotically equivalent to dYt =
√
2σ(t)dt+

m1/2δ1/2n−1/4dWt. Similarly, by rescaling we can treat observations on intervals

[0, T ] with T > 0 fixed: Observing Yi = XiT/n + εi, i = 1, . . . , n, in E0 with

Xt =
∫ t

0
σ(s) dBs, t ∈ [0, T ], is under the same conditions asymptotically equivalent

to observing

dYu =
√
2σ(Tu)du+ δ1/2T−1/4n−1/4 dWu, u ∈ [0, 1],

or equivalently,

dỸv =
√
2σ(v) du + δ1/2T 1/4n−1/4 dWv, v ∈ [0, T ].

Concerning the various restrictions on the smoothness α of the volatility σ2, one

might wonder whether the critical index is α = 1/2 in view of the classical asymp-



18 Markus Reiß

totic equivalence results (Brown and Low 1996, Nussbaum 1996). In our approach,

we still face the second order term in (5.5) and using the localized results, a much

easier globalisation yields for α > 1/2 only that E0 is asymptotically not less infor-

mative than observing

dYt = F (σ2(t)) dt + δ1/2n−1/4dWt, t ∈ [0, 1],

with F (x) =
∫ x

1 (y
1/2 − 2h−1

0 )1/2y−1dy/
√
8, which includes a small, but non-

negligible second-order term since h0 cannot tend to infinity too quickly.

On the other hand, it is quite easy to see that for α 6 1/4 asymptotic equiva-

lence fails. In the regression model E0 with n observations we cannot distinguish be-

tween Xn(t) =
∫ t

0 σn(t) dBt with σ2
n(t) = 1+n−1/4 cos(πnt), ‖σ2

n‖C1/4 = 2+n−1/4,

and standard Brownian motion (σ2 = 1) since Xn(i/n)−Xn((i−1)/n) ∼ N(0, 1/n)

i.i.d. holds. On the other hand, we have
∫ 1

0
(
√
2σn(t) −

√
2)2 dt ∼ n−1/2, which

shows that the signal to noise ratio in the Gaussian shift G0 is of order 1 and a

Neyman-Pearson test between σ2
n and 1 can distinguish both signals with a posi-

tive probability. This different behaviour for testing in E0 and G0 implies that both

models cannot be asymptotically equivalent for α = 1/4. Note that Gloter and Ja-

cod (2001a) merely require α > 1/4 for their LAN-result, but our counterexample

is excluded by their parametric setting. In conclusion, the behaviour in the zone

α ∈ (1/4, (1 +
√
5)/4] remains unexplored.

8 Applications

Let us first consider the nonparametric problem of estimating the spot volatility

σ2(t). From our asymptotic equivalence result in Theorem 6.2 we can deduce, at

least for bounded loss functions, the usual nonparametric minimax rates, but with

the number n of observations replaced by
√
n provided σ2 ∈ Cα for α > (1+

√
5)/4

as the mapping
√
σ(t) 7→ σ2(t) is a C∞-diffeomorphism for volatilities σ2 bounded

away from zero. Since the results so far obtained only deal with rate results, it is even
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simpler to use our less informative model G1 or more concretely the observations

(yk) in (3.3) which are independent in E2, centered and of variance h2π−2σ2(kh)+ε2.

With h = ε a local (kernel or wavelet) averaging over ε−2π2y2k −π2 therefore yields

rate-optimal estimators for classical pointwise or Lp-type loss functions.

For later use we choose h = ε in E2 and propose the simple estimator

σ̂2
b (t) :=

ε

2b

∑

k:|kε−t|6b

(ε−2π2y2k − π2)

for some bandwidth b > 0. Since ζ2k is χ2(1)-distributed, it is standard (Stone 1982)

to show that with the choice b ∼ (ε log(ε−1))1/(2α+1) we have the sup-norm risk

bound

E[‖σ̂2
b − σ2‖2∞] . (ε log(ε−1))2α/(2α+1),

especially we shall need that σ̂2
b is consistent in sup-norm loss.

In terms of the regression experiment E0 we work (in an asymptotically equiv-

alent way) with the linear interpolation Ŷ ′ of the observations (Yi), see the proof

of Theorem 2.2. By partial integration we can thus take for any j, k

y0jk := −
∫ 1

0

Φjk(t)Ŷ
′′(t) dt =

n∑

i=1

(
−
∫ i/n

(i−1)/n

Φjk(t) dt
)
(Yi − Yi−1), (8.1)

setting Y0 := 0. Note that we have the uniform approximation y0jk =

−1
n

∑n
i=1 Φjk(i/n)(Yi − Yi−1) + O(h−1/2n−1) due to ‖ϕjk‖∞ 6 (2h)−1/2. We see

the relationship with the pre-averaging approach. The idea of using disjoint av-

erages is present in Podolskij and Vetter (2009), where in our terminology Haar

functions are used as Φk. They were aware of the fact that discretized sine func-

tions would slightly increase the Fisher information (personal communication, see

also their discussion after Corollary 2), but they have not used higher frequencies.

Since we use the concrete coupling by linear interpolation to define y0jk in E0 and

since convergence in total variation is stronger than weak convergence, all asymp-

totics for probabilities and weak convergence results for functionals F ((yjk)jk) in

E2 remain true for F ((y0jk)jk) in E0, uniformly over the parameter class. The formal
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argument for the latter is that whenever ‖Pn −Qn‖TV → 0 and P
Xn
n → P weakly

for some random variables Xn we have for all bounded and continuous g

EQn
[g(Xn)] = EPn

[g(Xn)] +O(‖g‖∞‖Pn −Qn‖TV )
n→∞−−−−→ EP[g(X)].

Thus, for α > 1/2, σ2 > 0 and b ∼ (n−1/2 logn)−1/(2α+1) the estimator

σ̃2
n(t) :=

δ

2b
√
n

∑

k:|kn−1/2−t|6b

(nδ−2π2(y0k)
2 − π2) (8.2)

satisfies in the regression experiment E0

lim
n→∞

inf
σ2∈S (α,R,σ2)

Pσ2,n(n
α/(4α+2)(log n)−1‖σ̃2

n − σ2‖∞ 6 R) = 1. (8.3)

The asymptotic equivalence can be applied to construct estimators for the inte-

grated volatility
∫ 1

0
σ2(t)dt or more generally p-th order integrals

∫ 1

0
σp(t)dt using

the approach developed by Ibragimov and Khas’minskii (1991) for white noise mod-

els like G0. In our notation their Theorem 7.1 yields an estimator ϑ̂p,n of
∫ 1

0 σp(t)dt

in G0 such that

Eσ2

[(
ϑ̂p,n −

∫ 1

0

σp(t) dt− δ1/2n−1/4
√
2p

∫ 1

0

σp−1/2(t) dWt

)2]
= o(n−1/2)

holds uniformly over σ2 ∈ S (α,R, σ2) for any α,R, σ2 > 0 since the functional
√
σ(•) 7→

∫ 1

0 σp(t)dt is smooth on L2. A LAN-result shows that asymptotic nor-

mality with rate n−1/4 and variance δ2p2
∫ 1

0 σ2p−1(t) dt is minimax optimal. Spe-

cializing to the case p = 2 for integrated volatility, the asymptotic variance is

8δ
∫ 1

0 σ3(t) dt. It should be stressed here that the existing estimation procedures for

integrated volatility are globally sub-optimal for our idealized model in the sense

that their asymptotic variances involve the integrated quarticity
∫ 1

0
σ4(t) dt which

can at most yield optimal variance for constant values of σ2, because otherwise
∫ 1

0
σ4(t) dt >

( ∫ 1

0
σ3(t) dt

)4/3
follows from Jensen’s inequality. The fundamental

reason is that all these estimators are based on quadratic forms of the increments

depending on global tuning parameters, whereas optimizing weights locally permits

to attain the above efficiency bound as we shall see.
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Instead of following these more abstract approaches, we use our analysis to

construct a simple estimator of the integrated volatility with optimal asymptotic

variance. First we use the statistics (yjk) in E2 and then transfer the results to E0

using (y0jk) from (8.1).

On each block k we dispose in E2 of independent N(0, h2j−2π−2σ2(kh) + ε2)-

observations yjk for j > 1. A maximum-likelihood estimator σ̂2(kh) in this expo-

nential family satisfies the estimating equation

σ̂2(kh) =
∑

j>1

wjk(σ̂
2)h−2j2π2(y2jk − ε2), (8.4)

where wjk(σ
2) :=

(σ2(kh) + h−2
0 π2j2)−2

∑
l>1(σ

2(kh) + h−2
0 π2l2)−2

. (8.5)

This can be solved numerically, yet it is a non-convex problem (personal communi-

cation by J. Schmidt-Hieber). Classical MLE-theory, however, asserts for fixed h, k

and consistent initial estimator σ̃2
n(kh) that only one Newton step suffices to ensure

asymptotic efficiency. Because of h → 0 this immediate argument does not apply

here, but still gives rise to the estimator

ÎV ε :=

h−1−1∑

k=0

h
∑

j>1

wjk(σ̃
2
n)h

−2j2π2(y2jk − ε2)

of the integrated volatility IV :=
∫ 1

0
σ2(t) dt. Assuming the L∞-consistency ‖σ̃2

n −

σ2‖∞ → 0 in probability for the initial estimator, we assert in E2 the efficiency

result

ε−1/2(ÎV ε − IV )
L−→ N

(
0, 8

∫ 1

0

σ3(t) dt
)
.

To prove this, it suffices by Slutsky’s lemma to show

ε−1/2
h−1−1∑

k=0

h
∑

j>1

wjk(σ
2)h−2j2π2(y2jk − ε2)

L−→ N
(
0, 8

∫ 1

0

σ3(t) dt
)
, (8.6)

sup
jk

|wjk(σ̃
2
n)− wjk(σ

2)| . wjk(σ
2)‖σ̃2

n − σ2‖∞. (8.7)

The second assertion (8.7) follows from inserting the Lipschitz property that

W (x) := (x + h−2
0 π2j2)−2 satisfies |W ′(x)| . W (x) and thus |W (x) − W (y)| .

W (x)|x − y| uniformly over x, y > σ2 > 0.
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For the first assertion (8.6) note that in E2 the estimator ÎV ε is unbiased and

Var
(∑

j>1

wjk(σ
2)h−2j2π2(y2jk − ε2)

)
=

2∑
j>1(σ

2(kh) + h−2
0 π2j2)−2

such that by formula (9.14) and Riemann sum approximation as h0 → ∞ (with

arbitrary speed)

ε−1 Var(ÎV ε) =

h−1−1∑

k=0

2hh0∑
j>1(σ

2(kh) + h−2
0 π2j2)−2

→ 8

∫ 1

0

σ3(t) dt.

Due to the independence and Gaussianity of the (yjk) we deduce also

E

[(∑

j>1

wjk(σ
2)h−2j2π2(y2jk − E[y2jk])

)4]
. Var

(∑

j>1

wjk(σ
2)h−2j2π2(y2jk − ε2)

)2

such that the central limit theorem under a Lyapounov condition with power p = 4

(e.g. Shiryaev (1995)) proves assertion (8.6), assuming h → 0 and h0 → ∞. A

feasible estimator is obtained by neglecting frequencies larger than some J = J(ε):

ÎV ε,J :=

h−1−1∑

k=0

h

J∑

j=1

wJ
jk(σ̃

2
n)h

−2j2π2(y2jk − ε2) (8.8)

where wJ
jk(σ

2) :=
(σ2(kh) + h−2

0 π2j2)−2

∑J
l=1(σ

2(kh) + h−2
0 π2l2)−2

. (8.9)

A simple calculation yields E[|ÎV ε,J−ÎV ε|2] . ε(h0/J)
3 such that for h0/J → 0

convergence in probability implies again by Slutsky’s lemma

ε−1/2(ÎV ε,J − IV )
L−→ N

(
0, 8

∫ 1

0

σ3(t) dt
)
.

By the above argument, weak convergence results transfer from E2 to E0 and we

obtain the following result where we give a concrete choice of the initial estimator,

the block size h and the spectral cut-off J (we just need some consistent estimator

σ̃2
n, h

2αn1/2 → 0 as well as hn1/2 → ∞ and J−1 = o(h−1n−1/2)).

8.1 Theorem. Let y0jk for j > 1, k = 0, h−1 − 1 be the statistics (8.1) from model

E0. For h ∼ n−1/2 log(n) and J/ log(n) → ∞ consider the estimator of integrated

volatility

ÎV n :=
h−1−1∑

k=0

h
J∑

j=1

wJ
jk(σ̃

2
n)h

−2j2π2((y0jk)
2 − δn−1)
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with weights wJ
jk from (8.9) and the initial estimator σ̃2

n from (8.2). Then ÎV n is

asymptotically efficient in the sense that

n1/4(ÎV n − IV )
L−→ N

(
0, 8δ

∫ 1

0

σ3(t) dt
)
as n → ∞,

provided σ2 is strictly positive and α-Hölder continuous with α > 1/2.

This might serve as a benchmark for more general models, whereas we, in the

spirit of Mykland (2009), focus on elucidating the underlying fundamental struc-

tures. In particular, we should dispense with the Gaussianity of the microstructure

noise (εi) as well as with the deterministic nature of the volatility σ2. The analysis

in both cases, however, cannot simply rely on model E2, since E0 is non-Gaussian.

Different tools are required.

9 Appendix

9.1 Gaussian measures, Hellinger distance and Hilbert-

Schmidt norm

We gather basic facts about cylindrical Gaussian measures, the Hellinger distance

and their interplay.

Formally, we realize the white noise experiments, as L2-indexed Gaussian vari-

ables, e.g. in experiment E1 we observe for any f ∈ L2([0, 1])

Yf := 〈f, dY 〉 :=
∫ 1

0

f(t)
( ∫ t

0

σ(s)dB(s)
)
dt+ ε

∫ 1

0

f(t) dWt.

Canonically, we thus define P
σ,ε on the set Ω = R

L2([0,1]) with product Borel σ-

algebra F = B
⊗L2([0,1]) (realizing a cylindrical centered Gaussian measure). Its

covariance structure is given by

E[YfYg] = 〈Cf, g〉, f, g ∈ L2([0, 1]),

with the covariance operator C : L2([0, 1]) → L2([0, 1]) given by

Cf(t) =

∫ 1

0

( ∫ t∧u

0

σ2(s) ds
)
f(u) du+ ε2f(t), f ∈ L2([0, 1]).



24 Markus Reiß

Note that C is not trace class and thus does not define a Gaussian measure on

L2([0, 1]) itself.

In the construction, it suffices to prescribe (Yem )m>1 for an orthonormal basis

(em)m>1 and to set

Yf :=

∞∑

m=1

〈f, em〉Yem .

This way, we can define Pσ,ε equivalently on the sequence space Ω = RN with

product σ-algebra F = B
⊗N. This is useful when extending results from finite

dimensions.

The Hellinger distance between two probability measures P and Q on (Ω,F ) is

defined as

H(P,Q) =
( ∫

Ω

(√
p(ω)−

√
q(ω)

)2
µ(dω)

)1/2

,

where µ denotes a dominating measure, e.g. µ = P+Q, and p and q denote the

respective densities. The total variation distance is smaller than the Hellinger dis-

tance:

‖P−Q‖TV 6 H(P,Q). (9.1)

The identity H2(P,Q) = 2− 2
∫ √

p
√
qdµ implies the bound for finite or countably

infinite product measures

H2
(⊗

n

Pn,
⊗

n

Qn

)
6

∑

n

H2(Pn,Qn). (9.2)

Moreover, the Hellinger distance is invariant under bi-measurable bijections T :

Ω → Ω′ since with the densities p ◦T−1, q ◦T−1 of the image measures PT and Q
T

with respect to µT we have

H2(PT ,QT ) =

∫

Ω′

(
√
p ◦ T−1 −

√
q ◦ T−1)2dµT =

∫

Ω

(
√
p−√

q)2dµ = H2(P,Q).

(9.3)

For the one-dimensional Gaussian laws N(0, 1) and N(0, σ2) we derive

H2(N(0, 1), N(0, σ2)) = 2−
√
8σ/(σ2 + 1) 6 2(σ2 − 1)2.
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For the multi-dimensional Gaussian laws N(0,Σ1) and N(0,Σ2) with invertible

covariance matrices Σ1,Σ2 ∈ R
d×d we obtain by linear transformation and inde-

pendence, denoting by λ1, . . . , λd the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 :

H2(N(0,Σ1), N(0,Σ2)) = H2(N(0, Id), N(0,Σ
−1/2
1 Σ2Σ

−1/2
1 )) 6

d∑

k=1

2(λk − 1)2.

The last sum is nothing, but the squared Hilbert-Schmidt (or Frobenius norm) of

Σ
−1/2
1 Σ2Σ

−1/2
1 − Id such that

H2(N(0,Σ1), N(0,Σ2)) 6 2‖Σ−1/2
1 (Σ2 − Σ1)Σ

−1/2
1 ‖2HS . (9.4)

Observing that (9.2) and (9.3) also apply to Gaussian measures on the sequence

space RN, the bound (9.4) is also valid for (cylindrical) Gaussian measures N(0,Σi)

with self-adjoint positive definite covariance operators Σi : L
2([0, 1]) → L2([0, 1]).

The Hilbert-Schmidt norm of a linear operator A : H → H on any separable

real Hilbert space H can be expressed by its action on an orthonormal basis (em)

via

‖A‖2HS =
∑

m,n

〈Aem, en〉2,

which for a matrix is just the usual Frobenius norm. For self-adjoint operators A,B

with |〈Av, v〉| 6 |〈Bv, v〉| for all v ∈ H we use the eigenbasis (em) of A and obtain

‖A‖2HS =
∑

m

〈Aem, em〉2 6
∑

m,n

〈Bem, en〉2 = ‖B‖2HS . (9.5)

Furthermore, it is straight-forward to see for any bounded operator T

‖TA‖HS 6 ‖T ‖‖A‖HS, ‖AT ‖HS 6 ‖T ‖‖A‖HS (9.6)

with the usual operator norm ‖T ‖ of T . Finally, for integral operators Kf(x) =
∫ 1

0
k(x, y)f(y) dy on L2([0, 1]) it is well known that

‖K‖HS = ‖k‖L2([0,1]2). (9.7)

For two Gaussian laws with different mean vectors µ1, µ2 and with the same

invertible covariance matrix Σ we can similarly use the transformation Σ−1/2 and
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the scalar case H2(N(m1, 1), N(m2, 1)) = 2(1− e−(m1−m2)
2/8) 6 (m1 −m2)

2/4 to

conclude by independence

H2(N(µ1,Σ), N(µ2,Σ)) 6
1
4‖Σ−1/2(µ1 − µ2)‖2. (9.8)

Combining (9.4) and (9.8) we obtain by the triangle inequality the bound

H2(N(µ1,Σ1), N(µ2,Σ2)) . ‖Σ−1/2
1 (µ1−µ2)‖2+‖Σ−1/2

1 (Σ2−Σ1)Σ
−1/2
1 ‖2HS . (9.9)

9.2 Proof of Theorem 2.2

We first show that E1 is asymptotically at least as informative as E0 for ε = δ/
√
n

and α > 0. From E1 with ε = δ/
√
n we can generate the observations (statistics)

Ỹi := n

∫ (2i+1)/2n

(2i−1)/2n

dYt = n

∫ (2i+1)/2n

(2i−1)/2n

Xtdt+ ε̃i, i = 1, . . . , n− 1,

Ỹn := 2n

∫ 1

(2n−1)/2n

dYt = 2n

∫ 1

(2n−1)/2n

Xtdt+ ε̃n,

with ε̃i = nε(W(2i+1)/2n −W(2i−1)/2n) ∼ N(0, δ2) and similarly ε̃n ∼ N(0, δ2), all

independent. In contrast to standard equivalence proofs, it turns out to be essential

here to take Ỹi as a mean symmetric around the point i/n. Since (Yi) and (Ỹi) are

defined on the same sample space, using inequality (9.1) it suffices to prove that

the Hellinger distance between the law of (Yi) and the law of (Ỹi) tends to zero as

n tends to infinity.

For the integrated volatility function we introduce the notation

a(t) :=

∫ t

0

σ2(s) ds, 0 6 t 6 1.

For notational convenience we also set a(1 + s) := a(1 − s) for s > 0.

The covariance matrix ΣY of the centered Gaussian vector (Yi) is given by

ΣY
kl := E[YkYl] = a(k/n) + δ21(k = l), 1 6 k 6 l 6 n.

Similarly, the covariance matrix ΣỸ of the centered Gaussian vector (Ỹi) is given

by

ΣỸ
kl := E[ỸkỸl] = n

∫ (2k+1)/2n

(2k−1)/2n

a(t) dt+ δ21(k = l), 1 6 k 6 l 6 n,
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where for k = l = n we used the convention for a(1 + s) above. We bound the

Hellinger distance using consecutively (9.4), ΣY > δ2 Id in (9.5) and (9.2), a Taylor

expansion for a and treating the case k = l = n by a Lipschitz bound separately:

H2(L (Yi, i = 1, . . . , n),L (Ỹi, i = 1, . . . , n))

6 2‖(ΣY )−1/2(ΣY − ΣỸ )(ΣY )−1/2‖2HS

6 2δ−4‖ΣỸ − ΣY ‖2HS

6 4δ−4
∑

16k6l6n

(
n

∫ (2k+1)/2n

(2k−1)/2n

(a(t)− a(k/n)) dt
)2

6 4δ−4
(
O(R2n−2) + n

n∑

k=1

(
n

∫ (2k+1)/2n

(2k−1)/2n

(a′(k/n)(t− k/n) +O(Rn−1−α)) dt
)2)

= 4δ−4
(
O(R2n−2) +O(R2n2−2−2α)

)

= O(δ−4R2n−2α).

Consequently, by (9.1) the total-variation and thus also the Le Cam distance be-

tween the experiments of observing (Yi) and of observing (Ỹi) tends to zero for

n → ∞, which proves that the white noise experiment E1 is asymptotically at least

as informative as the regression experiment E0.

To show the converse, we build from the regression experiment E0 a contin-

uous time observation by linear interpolation. To this end we introduce the lin-

ear B-splines (or hat functions) bi(t) = b(t − i/n) with b(t) = min(1 + nt, 1 −

tn)1[−1/n,1/n](t) and set

Ŷ ′
t :=

n∑

i=1

Yibi(t) =
n∑

i=1

Xi/nbi(t) +
n∑

i=1

εibi(t), t ∈ [0, 1].

Note that (Ŷ ′
t ) is a centered Gaussian process with covariance function

ĉ(t, s) := E[Ŷ ′
t Ŷ

′
s ] =

n∑

i,j=1

a((i ∧ j)/n)bi(t)bj(s) + δ2
n∑

i=1

bi(t)bi(s), 0 6 t, s 6 1.
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For any f ∈ L2([0, 1]) we thus obtain

E[〈f, Ŷ ′〉2] =
n∑

i,j=1

a((i ∧ j)/n)〈f, bi〉〈f, bj〉+ δ2
n∑

i=1

〈f, bi〉2

6

n∑

i,j=1

a((i ∧ j)/n)〈f, bi〉〈f, bj〉+ δ2n−1‖f‖2,

because
∫
nbi = 1 yields by Jensen’s inequality 〈f, nbi〉2 6 〈f2, nbi〉 and we have

∑
i bi 6 1. This means that the covariance operator Ĉ induced by the kernel ĉ is

smaller than

Cf(t) :=

n∑

i,j=1

a((i ∧ j)/n)〈f, bj〉bi(t) + δ2n−1f(t), f ∈ L2([0, 1])

in the sense that Ĉ − C is positive (semi-)definite. Now observe that C is the

covariance operator of the white noise observations

dȲt =
n∑

i=1

Xi/nbi(t) +
δ√
n
dWt, t ∈ [0, 1]. (9.10)

Hence, we can generate these observations from (Ŷ ′
t ) by randomisation, i.e. by

adding uninformative N(0, C− Ĉ)-noise to Ŷ ′. Now it is easy to see that observing

Ȳ in (9.10) and Y from E1 is asymptotically equivalent, since in terms of the respec-

tive covariance operators, using again (9.4), (9.5) and (9.2), the squared Hellinger

distance satisfies

H2(L (Ȳ ),L (Y )) 6 2‖(CY )−1/2(C − CY )(CY )−1/2‖2HS

6 2δ−4n2

∫ 1

0

∫ 1

0

(
a(t ∧ s)−

n∑

i,j=1

a((i ∧ j)/n)bi(t)bj(s)
)2

dtds

= 2δ−4n2

∫ 1

0

∫ 1

0

( n∑

i,j=0

(a(t ∧ s)− a((i ∧ j)/n))bi(t)bj(s)
)2

dtds,

where for the last line we have used
∑n

i=0 bi(t) = 1 and a(0) = 0. Since bi(t) 6= 0

can only hold when i − ⌊nt⌋ ∈ {0, 1}, the α-Hölder regularity of σ2 implies for
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t 6 s− 1/n:

( n∑

i,j=0

(a(t ∧ s)− a((i ∧ j)/n))bi(t)bj(s)
)2

=
( 1∑

k,l=0

(a′(⌊nt⌋/n)(t− (k + ⌊nt⌋)/n) +O(Rn−1−α))bk+⌊nt⌋(t)bl+⌊ns⌋(s)
)2

= O(R2n−2−2α) +
(
a′(⌊nt⌋/n)

1∑

k=0

(t− (k + ⌊nt⌋)/n)bk+⌊nt⌋(t)
)2

= O(R2n−2−2α).

A symmetric argument gives the same bound for s 6 t− 1/n. For |t− s| < 1/n we

use only the Lipschitz continuity of a to obtain the bound O(R2n−2). Altogether

we have found

H2(L (Ȳ ),L (Y )) 6 2δ−4n2
(
O(R2n−2−2α) + n−1O(R2n−2)

)
= O(δ−4R2n−2α),

which together with the transformation in the other direction shows that the Le

Cam distance between E0 and E1 is of order O(δ−2Rn−α).

9.3 Proof of Proposition 3.2

The main tool is Proposition 9.1 below. Together with the Hölder bound

|σ2(⌊s⌋h)− σ2(s)| 6 Rhα, s ∈ [0, 1],

it implies that for fixed σ the observation laws in E1 and E2 have a Hellinger distance

of order Rhασ−3/2ε−1/2. By inequality (9.1) this translates to the total variation

and thus to the Le Cam distance.

9.1 Proposition. For ε > 0 and continuous σ : [0, 1] → (0,∞) consider the law

P
σ,ε generated by

dYt =
(∫ t

0

σ(s)dB(s)
)
dt+ ε dWt, t ∈ [0, 1],
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with independent Brownian motions B and W . Then the Hellinger distance between

two laws P
σ1,ε and P

σ2,ε satisfies

H(Pσ1,ε,Pσ2,ε) . ‖σ2
1 − σ2

2‖∞
(
max
t∈[0,1]

σ−3
1 (t)

)
ε−1/2.

Proof. The covariance operator Cσ of Pσ,ε is for f, g ∈ L2([0, 1]) given by

〈Cσf, g〉 = E[〈f, dY 〉〈g, dY 〉] = E[〈f,X〉〈g,X〉] + ε2〈f, g〉 =
∫

FGσ2 + ε2
∫

fg.

For covariance operators corresponding to σ1, σ2 we have with F (t) = −
∫ 1

t
f(s)ds

by twofold partial integration

|〈(Cσ1
− Cσ2

)f, f〉| =
∣∣∣
∫ 1

0

∫ 1

0

∫ t∧s

0

(σ2
1 − σ2

2)(u) duf(t)f(s) ds dt
∣∣∣

=
∣∣∣
∫ 1

0

F (u)2(σ2
1 − σ2

2)(u) du
∣∣∣

6 ‖σ2
1 − σ2

2‖∞
∫ 1

0

F (u)2 du = ‖σ2
1 − σ2

2‖∞〈CBMf, f〉

with CBMg(t) :=
∫ 1

0 (t ∧ s)g(s) ds, the covariance operator of standard Brownian

motion. Using further the ordering Cσ1
> mint σ

2
1(t)CBM + ε2 Id and (9.5), (9.2)

we obtain

‖C−1/2
σ1

(Cσ2
− Cσ1

)C−1/2
σ1

‖HS

6 ‖σ2
1 − σ2

2‖∞‖C−1/2
σ1

CBMC−1/2
σ1

‖HS

6 ‖σ2
1 − σ2

2‖∞‖(min
t

σ2
1(t)CBM + ε2 Id)−1/2CBM (min

t
σ2
1(t)CBM + ε2 Id)−1/2‖HS

= ‖σ2
1 − σ2

2‖∞‖F (CBM )‖HS ,

employing functional calculus with F (x) = (mint σ
2
1(t)x + ε2)−1x. The spectral

properties of CBM imply that F (CBM ) has eigenfunctions ek(t) =
√
2 sin(π(k −

1/2)t), k > 1, with eigenvalues λk = 4
4mint σ2

1
(t)+(2k−1)2π2ε2

, whence its Hilbert-

Schmidt norm is of order maxt σ
−3
1 (t)ε−1/2. This yields the result.

9.4 Proof of Proposition 5.2

We only consider the case of odd indices k, both cases are treated analogously.

The result of Theorem 6.1 in conjunction with Theorem 5.2 of Grama and Nuss-
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baum (2002) establishes that E odd
3,m and the Gaussian regression experiment G3,m of

observing

Yk = vεs
2(kh) + I(σ2

0(kh))
−1/2γk, k ∈ Am odd, γk ∼ N(0, 1) i.i.d. (9.11)

are equivalent to experiments Ẽ3,m = (Y ,G , (P̃
m

s2)s2∈Cα(R)) and G̃3,m =

(Y ,G , (Q̃
m

s2)s2∈Cα(R)), respectively, on the same space (Y ,G ) such that

sup
s2∈Cα(R)

H2(P̃
m

s2 , Q̃
m

s2) . ℓ−2ρ (9.12)

holds for all ρ < 1.

To be precise, it must be checked that the regularity conditions R1 − R3 of

Grama and Nussbaum (2002) are satisfied for all values δ. One complication is

that in our parametric model the probabilities Pϑ and the Fisher information I(ϑ)

depend on h0 which tends to infinity. Yet, inspecting the proofs it becomes clear

that the results remain valid if (a) the conditions R1−R3 hold for varying models,

but with uniform constants and (b) the Fisher information is renormalized by the

localisation such that the parametric rate ℓ−1/2 (in our block length notation) is

attained. From the fact that Pϑ is the product of one-dimensional exponential family

models we easily check condition R1 for δ = 1 and condition R2 for any δ > 0. Both

conditions hold uniformly over h0 once the score l̇ has been renormalized through

multiplication by h
−1/2
0 . In (5.2) we have already calculated the Fisher information

and we infer directly condition R3 that h−1
0 I(ϑ) is uniformly bounded away from

zero and infinity. We thus infer (9.12).

In view of the independence among the experiments (E odd
3,m )m and equally among

the experiments (G3,m)m we infer from (9.12) and (9.2)

sup
s2∈Cα(R)

H2(⊗(ℓh)−1

m=1 P̃
m

s2 ,⊗
(ℓh)−1

m=1 Q̃
m

s2) . (ℓh)−1ℓ−2ρ . ε−1v2εh
2ρ
0 v4ρε .

Since we assume h0 = o(ε(1−2α)/2α), the right-hand side tends to zero provided

−1 + 2
α

2α+ 1
+

ρ(1− 2α)

α
+

4ρα

2α+ 1
=

ρ− α

α(2α+ 1)
> 0
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holds. Since ρ < 1 is arbitrary, this is always satisfied for α < 1. In the case α = 1

we use h0 . ε−p for some p < 1/2. We have derived asymptotic equivalence between

the product experiments ⊗mẼ loc
3,m and ⊗mG̃3,m. A fortiori, applying the Brown and

Low (1996) result, this leads to asymptotic equivalence between observing (yjk) in

experiments E2,loc and the corresponding Gaussian shift models of observing

dYt = I(σ2
0(t))

1/2vεs
2(t) dt+ (2h)1/2dWt, t ∈ [0, 1]. (9.13)

From the explicit form (5.2) of the Fisher information we infer for h0 → ∞

∣∣∣2ϑ
3/2

h0
I(ϑ)− 1

4
+

1

2ϑ1/2h0

∣∣∣ . e−σh0 .

Consequently, by the polynomial growth of h0 in ε−1, the Kullback-Leibler diver-

gence between the observation laws from (9.13) and the model G3,loc converges to

zero. This gives the result.

9.5 Proof of Proposition 6.1

Since the observations yjk for j > 1 are the same in Y and Ỹ , we can work

conditionally on those. Moreover, it suffices to consider only the event Ωε :=

{‖σ̂2
ε − σ2‖∞ 6 Rvε} because the squared Hellinger distance satisfies (with ob-

vious notation)

H2(L (Y ),L (Ỹ )) = E[H2(L ((y0k)k | (yjk)j>1,k),L ((ỹ0k)k | (yjk)j>1,k))]

6 E[H2(L ((y0k)k | (yjk)j>1,k),L ((ỹ0k)k | (yjk)j>1,k))1Ωε ] + 2P(Ω∁
ε)

with P(Ω∁
ε) → 0. Conditional on (yjk)j>1,k, both laws are Gaussian, (y0,k)k has

mean µ with

µ0 = 2
∑

j>1

Var(βjk)

Var(yjk)
yjk, µk =

∑

j>1

Var(βjk)

Var(yjk)

(
(−1)j+1yj,k−1 + yjk

)
, k > 1,
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and covariance matrix Σ with

Σk,k′ =





2ck
∑

j>1
ε2 Var(βjk)
Var(yjk)

+ ε2, if k′ = k,

ck∧k′

∑
j>1

ε2 Var(βjk)
Var(yjk)

− ε2

2 , if |k′ − k| = 1,

0, otherwise,

where ck := 1 ∨ (2 − k) ∈ {1, 2}. Conditional mean µ̃ and covariance matrix Σ̃ of

(ỹ0k)k have the same representation, but replacing Var each time by Varε.

From the tri-diagonal structure of Σ and from

∑

j>1

Var(βjk)

Var(yjk)
∼

∑

j>1

(h0/j)
2

(h0/j)2 + 1
∼ h0, h0 → ∞,

we infer Σ & (ε2h0 + ε2) Id > εh Id in matrix order. Combining this with the

Hellinger bound (9.9) we arrive at the estimate

E[H2(L ((y0k)k | (yjk)j>1,k),L ((ỹ0k)k | (yjk)j>1,k))]

. E

[‖µ− µ̃‖2
εh

]
+

‖Σ− Σ̃‖2HS

ε2h2

.
∑

j>1,k

(Var(βjk)

Var(yjk)
− Varε(βjk)

Varε(yjk)

)2Var(yjk)

εh
+

∑

j>1,k

(ε2Var(βjk)

Var(yjk)
− ε2 Varε(βjk)

Varε(yjk)

)2

ε−2h−2.

The function G(z) :=
‖Φjk‖2z

‖Φjk‖2z+ε2 has derivative G′(z) =
‖Φjk‖2ε2

(‖Φjk‖2z+ε2)2 and thus

satisfies uniformly over all z bounded away from zero |G(w)−G(z)| . ‖Φjk‖2ε2|w−z|
(‖Φjk‖2+ε2)2 .

Inserting |σ2 − σ2
0 | . vε and ‖Φjk‖ ∼ h/j, we thus find the uniform bound on Ωε

(Var(βjk)

Var(yjk)
− Varε(βjk)

Varε(yjk)

)2

.
v2εε

4h4/j4

(ε2 + h2/j2)4
∼ v2ε min(h0/j, j/h0)

4.

Putting the estimates together, we arrive at

H2(L (Y ),L (Ỹ )) . v2ε
∑

j>1,k

min(h0/j, j/h0)
4
(1 + h2

0/j
2

h0
+

1

h2
0

)
+ P(Ω∁

ε)

6 2v2εh
−1

∑

j>1

min(h0/j, j/h0)
2h−1

0 + P(Ω∁
ε)

∼ v2εh
−1
0 ε−1 + P(Ω∁

ε)

such that the Hellinger distance tends to zero uniformly if h−1
0 v2ε = o(ε), which

is ensured by our choice of h0. This implies asymptotic equivalence of observing
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Y and Ỹ and thus of experiment E2 and of just observing (yjk)j>1,k in E2. By

independence the latter is equivalent to E2,odd ⊗ E2,even.

9.6 An explicit series representation

We aim at deriving the formula

∑

j>1

λ3

(λ2 + π2j2)2
=

1 + 4λe−2λ − e−4λ

4(1− e−2λ)2
− 1

2λ
(9.14)

for any λ > 0. We employ Fourier techniques and consider the Fourier coefficients

of g(x) = e−λx/π:

ĝ(j) := (2π)−1/2

∫ 2π

0

g(x)eijxdx =
π(1− e−2λ)√
2π(λ − iπj)

, j ∈ Z .

For the 2π-periodic convolution g ∗ g(x) = xe−λx/π +(2π− x)e−λ(2+x/π) we obtain

the Fourier coefficient as a product:

ĝ ∗ g(j) = π2(1− e−2λ)2√
2π(λ − iπj)2

.

The Parseval formula therefore yields

∑

j∈Z

1

(λ2 + π2j2)2
=

2

π3(1− e−2λ)4

∑

j∈Z

|ĝ ∗ g(j)|2 =
2

π3(1− e−2λ)4
‖g ∗ g‖2L2 .

We infer that (λπ )
3‖g ∗ g‖2L2 equals

(λ
π

)3
∫ 2π

0

(
(1− e−2λ)2x2 + 4π2e−4λ + 4π(e−2λ − e−4λ)x

)
e−2λx/πdx

=
(
λe−2λ + (1 − e−4λ)/4

)
(1− e−2λ)2

and thus obtain

∑

j∈Z

λ3

(λ2 + π2j2)2
=

2

(1 − e−2λ)2

(
λe−2λ + (1− e−4λ)/4

)
.

Using the symmetry in j, we establish (9.14).
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