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FUNCTIONAL REGRESSION FOR GENERAL EXPONENTIAL
FAMILIES

BY WEI DOU∗ , DAVID POLLARD† AND HARRISON H. ZHOU‡

Yale University

The paper derives a minimax lower bound for rates of convergence for
an infinite-dimensional parameter in an exponential familymodel. An esti-
mator that achieves the optimal rate is constructed by maximum likelihood
on finite-dimensional approximations with parameter dimension that grows
with sample size.

1. Introduction. Our main purpose in this paper is to extend the theory devel-
oped byHall and Horowitz(2007)—for regression with mean a linear functional of
an unknown square integrable functionB defined on a compact interval of the real
line—to observationsyi from an exponential famly whose canonical parameter is
of the form

∫ 1
0 B(t)Xi(t) dt for observed Gaussian processesXi.

Our methods introduce several new technical devices. We establish a sharp ap-
proximation for maximum likelihood estimators for exponential families parametr-
ized by linear functions ofm-dimensional parameters, for anm that grows with
sample size. We develop a change of measure argument—inspired by ideas from
Le Cam’s theory of asymptotic equivalence of models—to eliminate the effect of
bias terms from the asymptotics of maximization estimators. And we obtain im-
proved bounds for projections onto subspaces defined by eigenfunctions of pertur-
bations of compact operators, bounds that simplify arguments involving estimates
of unknown covariance kernels.

More precisely, we consider problems where the observed data consist of inde-
pendent, identically distributed pairs(yi,Xi) where eachXi is a Gaussian process
indexed by a compact subinterval of the real line, which withno loss of generality
we take to be[0, 1]. We writem for Lebesgue measure on the Borel sigma-field
of [0, 1]. We denote the corresponding norm and inner product in the spaceL2(m)
by ‖ · ‖ and〈·, ·〉.

We assume the conditional distribution ofyi given the processXi comes from
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an exponential family{Qλ : λ ∈ R} with parameter

λi = a+

∫ 1

0
Xi(t)B(t) dt(1)

for an unknown constanta and an unknownB ∈ L2(m).

We focus on estimation ofB using integrated squared error loss:

L(B, B̂n) = ‖B − B̂n‖2 =
∫ 1

0

(
B(t)− B̂n(t)

)2
dt.

In a companion paper we will show that our methods can be adapted to treat
the problem of prediction of a linear functional

∫ 1
0 x(t)B(t) dt for a knownx, ex-

tending theory developed byCai and Hall(2006). In that paper we also consider
some of the practical realities in applying the results to the economic problem of
predicting occurence of recessions from the U.S. Treasury yield curve.

Our models are indexed by a setF of parametersf = (a,B,K, µ), whereµ is
the mean andK is the covariance kernel of the Gaussian process. Under assump-
tions onF (see Section3) analogous to the assumptions made byHall and Horowitz
(2007) for a problem of functional linear regression, we find a sequence{ρn} that
decreases to zero for which

(2) lim inf
n→∞

sup
f∈F

Pn,f‖B− B̂n‖2/ρn > 0 for every estimating sequence{B̂n}

and construct one particular estimating sequence ofB̂n’s for which: for eachǫ > 0
there exists a finite constantCǫ such that

(3) sup
f∈F

Pn,f{‖B− B̂n‖2 > Cǫρn} < ǫ for large enoughn.

For the collection of modelsF = F(R,α, β) defined in Section3, the rateρn
equalsn(1−2β)/(α+2β).

In Section9 we establish a minimax lower bound by means of a variation on
Assouad’s Lemma.

We begin our analysis of the rate-optimal estimator in Section4, with an approx-
imation theorem for maximum likelihood estimators in exponential family mod-
els for parameters whose dimensions change with sample size. The main result is
stated in a form slightly more general than we need for the present paper because
we expect the result to find other sieve-like applications. The approximations from
this section lie at the heart of our construction of an estimator that achieves the
minimax rate from Section9.

As an aid to the reader, we present our construction of the estimating sequence
for (3) in two stages. First (Section5) we assume that both the meanµ and the
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FUNCTIONAL REGRESSION 3

covariance kernelK are known. This allows us to emphasize the key ideas in our
proofs without the many technical details that need to be handled whenµ andK
are estimated in the natural way. Many of those details involve the spectral theory
of compact operators.

We have found some of the results that we need quite difficult to dig out of
the spectral theory literature. In Section6 we summarize the theory that we use to
control errors when approximatingK: some of it is a rearrangement of ideas from
Hall and Horowitz(2007) and Hall and Hosseini-Nasab(2006); some is adapted
from the notes byBosq(2000) and the monograph byBirman and Solomjak(1987);
and some, such as the material in subsection6.3 on approximation of projections,
we believe to be new.

Armed with the spectral theory, we proceed in Section7 to the case whereµ
andK are estimated. We emphasize the parallels with the argumentfor knownµ
andK, postponing the proofs of the extra approximation arguments (mostly col-
lected together as Lemma28) to the following section.

The final two sections of the paper establish a bound on the Hellinger distance
between members of an exponential family, the key to our change of measure ar-
gument, and a maximal inequality for Gaussian processes.

2. Notation. For each matrixA, the spectral norm is defined as‖A‖2 :=

sup|u|≤1 |Au| and the Frobenius norm by‖A‖F :=
(∑

i,j A
2
i,j

)1/2
. If A is sym-

metric, with eigenvaluesλ1, . . . , λk, then

‖A‖2 = maxi |λi| = sup|u|≤1 |u′Au| ≤ ‖A‖F.

If A is also positive definite then the absolute values are superfluous for the first
two equalities.

When we want to indicate that a bound involving constantsc, C, C1, . . . holds
uniformly over all models indexed by a set of parametersF, we writec(F), C(F),
C1(F), . . . . By the usual convention for eliminating subscripts, the values of the
constants might change from one paragraph to the next: a constantC1(F) in one
place needn’t be the same as a constantC1(F) in another place.

For sequences of constantscn that might depend onF, we writecn = OF(1)
andoF(1) and so on to show that the asymptotic bounds hold uniformly overF.

We writeh(P,Q) for the Hellinger distance between two probability measuresP
andQ. If bothP andQ are dominated by some measureν, with densitiesp andq,
thenh2(P,Q) = ν

(√
p−√

q
)2

. We use Hellinger distance to bound total varia-
tion distance,

‖P −Q‖TV := supA |PA−QA| = 1
2ν|p− q| ≤ h(P,Q).
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For product measures we use the bound

h2(⊗i≤nPi,⊗i≤nQi) ≤
∑

i≤n
h2(Pi, Qi).

To avoid confusion with transposes, we use the dot notation or superscript nota-
tion to denote derivatives. For example,

...
ψ or ψ(3) both denote the third derivative

of a functionψ,

3. The model. Let {Qλ : λ ∈ R} be an exponential family of probabil-
ity measures with densitiesdQλ/dQ0 = fλ(y) = exp (λy − ψ(λ)). Remember
that eψ(λ) = Q0e

λy and that the distributionQλ has meanψ(1)(λ) and vari-
anceψ(2)(λ).

We assume:

(ψ3) There exists an increasing real functionG onR+ such that

|ψ(3)(λ+ h)| ≤ ψ(2)(λ)G(|h|) for all λ andh

Without loss of generality we assumeG(0) ≥ 1.
(ψ2) For eachǫ > 0 there exists a finite constantCǫ for whichψ(2)(λ) ≤ Cǫ exp(ǫλ

2)
for all λ ∈ R. Equivalently,ψ(2)(λ) ≤ exp

(
o(λ2)

)
as|λ| → ∞.

As shown in Section10, these assumptions on theψ function imply that

(4) h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ) (1 + |δ|)G(|δ|) for all λ, δ ∈ R.

Remark. We may assume thatψ(2)(λ) > 0 for every realλ. Otherwise we
would have0 = ψ(2)(λ0) = varλ0

(y) = νfλ0
(y)(y−ψ(1)(λ0))

2 for someλ0,
which would makey = ψ(1)(λ0) for ν almost ally andQλ ≡ Qλ0

for everyλ.

We assume the observed data are iid pairs(yi,Xi) for i = 1, . . . , n, where:

(a) Each{Xi(t) : 0 ≤ t ≤ 1} is distributed like{X(t) : 0 ≤ t ≤ 1}, a Gaussian
process with meanµ(t) and covariance kernelK(s, t).

(b) yi | Xi ∼ Qλi with λi = a+ 〈Xi,B〉 for an unknown{B(t) : 0 ≤ t ≤ 1} in
L2(m) anda ∈ R.

DEFINITION 5. For real constantsα > 1 and β > (α + 3)/2 andR > 0,
defineF = F(R,α, β) as the set of allf = (a,B, µ,K) that satisfy the following
conditions.

(K) The covariance kernel is square integrable with respecttom⊗m and has an
eigenfunction expansion (as a compact operator onL2(m))

K(s, t) =
∑

k∈N
θkφk(s)φk(t)

where the eigenvaluesθk are decreasing withRk−α ≥ θk ≥ θk+1+(α/R)k−α−1.
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FUNCTIONAL REGRESSION 5

(a) |a| ≤ R
(µ) ‖µ‖ ≤ R
(B) B has an expansionB(t) =

∑
k∈N bkφk(t) with |bk| ≤ Rk−β, for the eigen-

functions defined by the kernelK.

Remarks. The awkward lower bound forθk in Assumption (K) implies, for
all k < j,

(6) θk − θj ≥ R−1

∫ j

k

αx−α−1dx = R−1
(
k−α − j−α

)
.

If K andµ were known, we would only need the lower boundθk ≥ R−1k−α

and not the lower bound forθk − θk+1. As explained byHall and Horowitz
(2007, page 76), the stronger assumption is needed when one estimates the in-
dividual eigenfunctions ofK. Note that the subsetBK of L2(m) in whichB

lies depends onK. We regard the need for the stronger assumption on the
eigenvalues and the irksome Assumption (B) as artifacts of the method of
proof, but we have not yet succeeded in removing either assumption.

More formally, we writePµ,K for the distribution (a probability measure onL2(m))
of each Gaussian processXi. The joint distribution ofX1, . . . ,Xn is thenPn,µ,K =
Pnµ,K . We identify theyi’s with the coordinate maps onRn equipped with the prod-
uct measureQn,a,B,X1,...,Xn := ⊗i≤nQλi , which can also be thought of as the
conditional joint distribution of(y1, . . . , yn) given (X1, . . . ,Xn). Thus thePn,f
in equations (2) and (3) can be rewritten as an iterated expectation,

Pn,f = Pn,µ,KQn,a,B,X1,...,Xn ,

the second expectation on the right-hand side averaging outover y1, . . . , yn for
givenX1, . . . ,Xn, the first averaging out overX1, . . . ,Xn.

To simplify notation, we will often abbreviateQn,a,B,X1,...,Xn to Qn,a,B.

4. Maximum likelihood estimation. The theory in this section combine ideas
from Portnoy(1988) and fromHjort and Pollard(1993). We write our results in a
notation that makes the applications in Section5 and7 more straightforward. The
notational cost is that the parameters are indexed by{0, 1, . . . , N}. To avoid an
excess of parentheses we writeN+ for N + 1. In the applicationsN changes with
the sample sizen andQ is replaced byQn,a,B,N or Q̃n,a,B,N .

Supposeξ1, . . . , ξn are (nonrandom) vectors inRN+ . SupposeQ = ⊗i≤nQλi
with λi = ξ′iγ for a fixedγ = (γ0, γ1, . . . , γN ) in RN+. UnderQ, the coordinate
mapsy1, . . . , yn are independent random variables withyi ∼ Qλi .

The log-likelihood for fitting the model is

Ln(g) =
∑

i≤n
(ξ′ig)yi − ψ(ξ′ig) for g ∈ RN+,
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which is maximized (overRN+) at the MLEĝ (= ĝn).

Remark. As a small amount of extra bookkeeping in the following argument
would show, we do not need̂g to exactly maximizeLn. It would suffice to have
Ln(ĝ) suitably close tosupg Ln(g). In particular, we need not be concerned
with questions regarding existence or uniqueness of the argmax.

Define

(i) Jn =
∑

i≤n ξiξ
′
iψ

(2)(λi), anN+ ×N+ matrix

(ii) wi := J
−1/2
n ξi, an element ofRN+

(iii) Wn =
∑

i≤nwi
(
yi − ψ(1)(λi)

)
, an element ofRN+

Notice thatQWn = 0 and varQ(Wn) =
∑

i≤nwiw
′
iψ

(2)(λi) = IN+
and

Q|Wn|2 = trace (varQ(Wn)) = N+.

LEMMA 7. Suppose0 < ǫ1 ≤ 1/2 and0 < ǫ2 < 1 and

maxi≤n |wi| ≤
ǫ1ǫ2

2G(1)N+
with G as in Assumption (ψ3).

Thenĝ = γ + J
−1/2
n (Wn + rn) with |rn| ≤ ǫ1 on the set{|Wn| ≤

√
N+/ǫ2},

which hasQ-probability greater than1− ǫ2.

PROOF. The equalityQ|Wn|2 = N+ and Tchebychev giveQ{|Wn| >
√
N+/ǫ2} ≤

ǫ2.
Reparametrize by definingt = J

1/2
n (g − γ). The concave function

Ln(t) := Ln(γ + J−1/2
n t)− Ln(γ) =

∑
i≤n

yiw
′
it+ ψ(λi)− ψ(λi + w′

it)

is maximized at̂tn = J
1/2
n (ĝ − γ). It has derivative

L̇n(t) =
∑

i≤n
wi

(
yi − ψ(1)(λi + w′

it)
)
.

For a fixed unit vectoru ∈ RN+ and a fixedt ∈ RN+ , consider the real-valued
function of the real variables,

H(s) := u′L̇n(st) =
∑

i≤n
u′wi

(
yi − ψ(1)(λi + sw′

it)
)
,

which has derivatives

Ḣ(s) = −
∑

i≤n
(u′wi)(w

′
it)ψ

(2)(λi + sw′
it)

Ḧ(s) = −
∑

i≤n
(u′wi)(w

′
it)

2ψ(3)(λi + sw′
it).
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FUNCTIONAL REGRESSION 7

Notice thatH(0) = u′Wn andḢ(0) = −u′∑i≤nwiw
′
iψ

(2)(λi)t = −u′t.
WriteMn for maxi≤n |wi|. By virtue of Assumption (ψ3),

|Ḧ(s)| ≤
∑

i≤n
|u′wi|(w′

it)
2ψ(2)(λi)G

(
|sw′

it|
)

≤MnG (Mn|st|) t′
∑

i≤n
wiw

′
iψ

(2)(λi)t

=MnG (Mn|st|) |t|2.
By Taylor expansion, for some0 < s∗ < 1,

|H(1) −H(0)− Ḣ(0)| ≤ 1
2 |Ḧ(s∗)| ≤ 1

2MnG (Mn|t|) |t|2.
That is,

(8)
∣∣∣u′

(
L̇n(t)−Wn + t

)∣∣∣ ≤ 1
2MnG (Mn|t|) |t|2.

Approximation (8) will control the behavior of̃L(s) := Ln(Wn+su), a concave
function of the real arguments, for each unit vectoru. By concavity, the derivative

˙̃
L(s) = u′L̇n(Wn + su) = −s+R(s)

is a decreasing function ofs with

|R(s)| ≤ 1
2MnG (Mn|Wn + su|) |Wn + su|2

On the set{|Wn| ≤
√
N+/ǫ2} we have

|Wn ± ǫ1u| ≤
√
N+/ǫ2 + ǫ1.

Thus
Mn|Wn ± ǫ1u| ≤

ǫ1ǫ2
2G(1)N+

(√
N+/ǫ2 + ǫ1

)
< 1,

implying

|R(±ǫ1)| ≤ 1
2MnG(1)|Wn ± ǫ1u|2

≤ ǫ1ǫ2
G(1)N+

(
N+/ǫ2 + ǫ21

)

≤ ǫ1
(
1 + ǫ21ǫ2/N+

)
< 5

8ǫ1.

Deduce that

˙̃
L(ǫ1) = −ǫ1 +R(ǫ1) ≤ −3

8ǫ1

˙̃
L(−ǫ1) = ǫ1 +R(−ǫ1) ≥ 3

8ǫ1

The concave functions 7→ Ln(Wn+ su) must achieve its maximum for somes in
the interval[−ǫ1, ǫ1], for each unit vectoru. It follows that|t̂n −Wn| ≤ ǫ1. �
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COROLLARY 9. Supposeξi = Dηi for some nonsingular matrixD, so that

Jn = nDAnD whereAn :=
1

n

∑
i≤n

ηiη
′
iψ

(2)(λi).

If Bn is another nonsingular matrix for which

(10) ‖An −Bn‖2 ≤ (2‖B−1
n ‖2)−1

and if

(11) maxi≤n |ηi| ≤
ǫ
√
n/N+

G(1)
√

32‖B−1
n ‖2

for some0 < ǫ < 1

then for each set of vectorsκ0, . . . , κN in RN+ there is a setYκ,ǫ with QYcκ,ǫ < 2ǫ
on which

∑
0≤j≤N

|κ′j(ĝ − γ)|2 ≤ 6‖B−1
n ‖2
nǫ

∑
0≤j≤N

|D−1κj |2.

Remark. For our applications of the Corollary in Sections5 and7, we need
D = diag(D0, D1, . . . , DN) andκj = ej , the unit vector with a1 in its jth
position, forj ≤ m andκj = 0 for j > m. In our companion paper we will
need the more generalκj ’s.

PROOF. First we establish a bound on the spectral distance betweenA−1
n andB−1

n .
DefineH = B−1

n An−I. Then‖H‖2 ≤ ‖B−1
n ‖2‖An−Bn‖2 ≤ 1/2, which justifies

the expansion

‖A−1
n −B−1

n ‖2 = ‖
(
(I +H)−1 − I

)
B−1
n ‖2 ≤

∑
j≥1

‖H‖k2‖B−1
n ‖2 ≤ ‖B−1

n ‖2.

As a consequence,‖A−1
n ‖2 ≤ 2‖B−1

n ‖2.
Chooseǫ1 = 1/2 andǫ2 = ǫ in Lemma7. The bound onmaxi≤n |ηi| gives the

bound onmaxi≤n |wi| needed by the Lemma:

n|wi|2 = η′iD(Jn/n)
−1Dηi = η′iA

−1
n ηi ≤ ‖A−1

n ‖2|ηi|2.

DefineKj := J
−1/2
n κj , so that|κ′j(ĝ − γ)|2 ≤ 2(K ′

jWn)
2 + 2(K ′

jrn)
2. By

Cauchy-Schwarz,
∑

j
(K ′

jrn)
2 ≤

∑
j
|Kj |2|rn|2 = Uκ|rn|2

where

Uκ :=
∑

j
κ′jJ

−1
n κj =

∑
j
n−1(D−1κj)

′A−1
n D−1κj

≤ 2n−1‖B−1
n ‖2

∑
j
|D−1κj |2.
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FUNCTIONAL REGRESSION 9

For the contributionVκ :=
∑

j |K ′
jWn|2 the Cauchy-Schwarz bound is too crude.

Instead, notice thatQVκ = Uκ, which ensures that the complement of the set

Yκ,ǫ := {|Wn| ≤
√
N+/ǫ} ∩ {Vκ ≤ Uκ/ǫ}

hasQ probability less that2ǫ. On the setYκ,ǫ,
∑

0≤j≤N
|κ′j(ĝ − γ)|2 ≤ 2Vκ + 2Uκ|rn|2 ≤ 3Uκ/ǫ.

The asserted bound follows. �

5. Known Gaussian distribution. Initially we suppose thatµ andK are known.
We can then calculate all the eigenvaluesθk, the eigenfunctionsφk for K, and the
coefficientszi,k := 〈Zi, φk〉 for the expansion

Xi − µ = Zi =
∑

k∈N
zi,kφk.

The random variableszi,k are independent withzi,k ∼ N(0, θk). The random vari-
ablesηi,k := zi,k/

√
θk are independent standard normals.

UnderQn = Qn,a,B, theyi’s are independent, withyi ∼ Qλi and

λi = a+ 〈Xi,B〉 = b0 +
∑

k∈N
zi,kbk whereb0 = a+ 〈µ,B〉.

Our task is to estimate thebk ’s with sufficient accuracy to be able to estimate
B(t) =

∑
k∈N bkφk(t) within an error of orderρn = n(1−2β)/(α+2β). In fact

it will suffice to estimate the componentHmB of B in the subspace spanned by
{φ1, . . . , φm} with m ∼ n1/(α+2β) because

(12) ‖H⊥
mB‖2 =

∑
k>m

b2k = OF(m
1−2β) = OF(ρn).

We might try to estimate the coefficients(b0, . . . , bm) by choosinĝg = (ĝ0, . . . , ĝm)
to maximize a conditional log likelihood over allg in Rm+1,

∑
i≤n

yiλi,m − ψ(λi,m) with λi,m = g0 +
∑

1≤k≤m
zi,kgk.

To this end we might try to appeal to Corollary9 in Section4, with κj equal to the
unit vector with a1 in its jth position forj ≤ m andκj = 0 otherwise. That would
give a bound for

∑
j≤m(ĝj − γj)

2. Unfortunately, we cannot directly invoke the
Corollary withN = m to estimateγ = (b0, b1, . . . , bN ) when

Q = Qn,a,B and D = diag(1, θ1, . . . , θN )
1/2

ξ′i = (1, zi,1, . . . , zi,N ) and η′i = (1, ηi,1, . . . , ηi,N )(13)

becauseλi 6= ξ′iγ.
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Remark. We could modify Corollary9 to allow ℓi = ξ′iγ + biasi, for a
suitably small bias term, but at the cost of extra regularityconditions and a
more delicate argument. The same difficulty arises wheneverone investigates
the asymptotics of maximum likelihood with the true distribution outside the
model family.

Instead, we use a two-stage estimation procedure that eliminates the bias term
by a change of measure. Condition on theXi’s. Consider anN much larger thanm
for which

N ∼ nζ with (2 + 2α)−1 > ζ > (α+ 2β − 1)−1,

Such aζ exists because the assumptionsα > 1 andβ > (α+3)/2 imply α+2β−
1 > 2 + 2α. Defineξi, D, andηi as in equation (13). ForQ use the probability
measure

Qn,a,B,N := ⊗i≤nQλi,N with λi,N := ξ′iγ andγ′ = (b0, b1, . . . , bN ).

ChooseBn := Pn,µ,KAn. DefineXn = XZ,n ∩ Xη,n ∩ XA,n, where

XZ,n := {maxi≤n ‖Zi‖2 ≤ C0 log n}(14)

Xη,n := {maxi≤n |ηi|2 ≤ C0N log n}(15)

XA,n := {‖An −Bn‖2 ≤ (2‖B−1
n ‖2)−1}(16)

If we choose a large enough constantC0 = C0(F), Lemma41and its Corollary in
Section11 ensure thatPn,µ,KXcZ,n ≤ 2/n andPn,µ,KXcη,n ≤ 2/n; and in subsec-
tion 5.1we show that

‖B−1
n ‖2 = OF(1) and Pn,µ,K‖An −Bn‖22 = oF(1).

ThusPn,µ,KXcn = oF(1). Moreover, on the setXn, inequality (10) holds by con-
struction and inequality (11) holds for large enoughn because

maxi≤n |ηi|2 ≤ OF(N log n) = oF(
√
n/N).

Estimateγ by theĝ = (ĝ0, . . . , ĝN ) defined in Section4. Then discard most of
the estimates by defininĝBn :=

∑
1≤k≤m ĝkφk. For each realization of theXi’s

in Xn, the Lemma gives a setYm,ǫ with Qn,a,B,NY
c
m,ǫ < 2ǫ on which

∑
1≤k≤m

|ĝk − γk|2 = OF

(∑
1≤k≤m

θ−1
k

)
= OF(m

1+α/n) = OF(ρn),

which implies

‖B̂n − B‖2 =
∑

1≤k≤m
|ĝk − γk|2 +

∑
k>m

b2k = OF(ρn).
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FUNCTIONAL REGRESSION 11

In replacingQn,a,B byQn,a,B,N we eliminate the bias problem but now we have
to relate the probability bounds forQn,a,B,N to bounds involvingQn,a,B. As we
show in subsection5.2, there exists a sequence of nonnegative constantscn of
orderoF(log n), such that

(17) ‖Qn,a,B −Qn,a,B,N‖2TV ≤ e2cn
∑

i≤n
|λi − λi,N |2 onXn.

From this inequality it follows, for a large enough constantCǫ, that

Pn,µ,KQn,a,B{‖B̂n − B‖2 > Cǫρn}
≤ Pn,µ,KX

c
n + Pn,µ,KXn

(
‖Qn,a,B −Qn,a,B,N‖TV +Qn,a,B,NY

c
m,ǫ

)

≤ oF(1) + 2ǫ+ ecn
(∑

i≤n
Pn,µ,K |λi − λi,N |2

)1/2
.

By construction,
λi − λi,N =

∑
k>N

zi,kbk

with thezi,k ’s independent andzi,k ∼ N(0, θk). Thus
∑

i≤n
Pn,µ,K |λi − λi,N |2 ≤ n

∑
k>N

θkb
2
k = OF(nN

1−α−2β) = oF(e
−2cn)

becauseζ > (α + 2β − 1)−1. That is, we have an estimator that achieves the
OF(ρn) minimax rate.

5.1. Approximation ofAn. Throughout this subsection abbreviatePn,µ,K toP.
Remember that

An = n−1
∑

i≤n
ηiη

′
iψ

(2)(λi,N ) with λi,N = γ′Dηi,

where

γ′ = (ā, b1, . . . , bN )

D = diag(1,
√
θ1, . . . ,

√
θN )

ηi = (1, ηi,1, . . . , ηi,N )
′

With Bn = PAn, we need to show‖B−1
n ‖2 = OF(1) andP‖An −Bn‖22 = oF(1).

The matrixAn is an average ofn independent random matrices each of which is
distributed likeNN′ψ(2)(γ′DN), whereN′ = (N0,N1, . . . ,NN ) with N0 ≡ 1 and
the otherNj ’s are independentN(0, 1)’s. Moreover, by rotational invariance of the
spherical normal, we may assume with no loss of generality thatγ′DN = ā+κN1,
where

κ2 =
∑N

k=1
θkb

2
k = OF(1).
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Thus
Bn = PNN′ψ(2)(ā+ κN1) = diag(F, r0IN−1)

where

rj := PN
j
1ψ

(2)(ā+ κN1) and F =

[
r0 r1
r1 r2

]
.

The block diagonal form ofBn simplifies calculation of spectral norms.

‖B−1
n ‖2 = ‖diag(F−1, r−1

0 IN−1)‖2

≤ max
(
‖F−1‖2, ‖r−1

0 IN−1‖2
)
≤ max

(
r0 + r2
r0r2 − r21

, r−1
0

)
.

Assumption (ψ2) ensures that bothr0 andr2 areOF(1).
Continuity and strict positivity ofψ(2), together withmax(|ā|, κ) = OF(1),

ensure thatc0 := inf ā,κ inf |x|≤1ψ
(2)(ā+ κx) > 0. Thus

√
2πr0 ≥ c0

∫ +1

−1
e−x

2/2dx > 0

Similarly
√
2π(r0r2 − r21) =

√
2πr0Pψ

(2)(ā+ κN1)(N1 − r1/r0)
2

≥ c0r0

∫ +1

−1
(x− r1/r0)

2e−x
2/2dx ≥ c0r0

∫ +1

−1
x2e−x

2/2dx.

It follows that‖B−1
n ‖2 = OF(1).

The random matrixAn − Bn is an average ofn independent random matrices
each distributed likeNN′ψ(2)(ā+ κN1) minus its expected value. Thus

P‖An −Bn‖22 ≤ P‖An −Bn‖2F = n−1
∑

0≤j,k≤N
var

(
NjNkψ

(2)(γ′DN)
)
.

Assumption (ψ2) ensures that each summand isOF(1), which leaves us with a
OF(N

2/n) = oF(1) upper bound.

5.2. Total variation argument. To establish inequality (17) we use the bound

‖Qn,a,B − Q̃n,a,B‖2TV ≤ h2(Qn,a,B, Q̃n,a,B) ≤
∑

i≤n
h2(Qλi , Qλi,N )

By Lemma4

h2(Qλi , Qλi,N ) ≤ δ2i ψ
(2)(λi) (1 + |δi|) g(|δi|)
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FUNCTIONAL REGRESSION 13

where

|δi| = |λi − λi,N | = |〈Zi,B〉 − 〈HNZi,B〉|
= |〈Zi,H⊥

NB〉|
≤ ‖Zi‖‖H⊥

NB‖
≤ OF

(√
N1−2β log n

)

= oF(1)

Thus all the(1 + |δi|) g(|δi|) factors can be bounded by a singleOF(1) term.
For (a,B, µ,K) ∈ F(R,α, β) and with the‖Zi‖’s controlled byXn,

|λi| ≤ |a|+ (‖µ‖+ ‖Zi‖)‖B‖ ≤ C2

√
log n

for some constantC2 = C2(F). Assumption (ψ2) then ensures that all theψ(2)(λi)
are bounded by a singleexp (oF(log n)) term.

6. Approximation of compact operators. SupposeT is a positive, (self-adjoint)
compact operator on a Hilbert spaceHwith eigenvectors{ek} and eigenvalues{θk}.
That is,Tei = θiei with θ1 ≥ θ2 ≥ · · · ≥ 0. For eachx in H,

T =
∑

k∈N
θkek ⊗ ek,

a series that converges in operator norm.
Let T̃ be another positive, (self-adjoint) compact operator onH with corre-

sponding representation
T̃ =

∑
k∈N

θ̃kẽk ⊗ ẽk.

Define∆ := T̃ − T andδ = ‖∆‖. The operator̃T also has a representation

(18) T̃ =
∑

j,k∈N
T̃j,kej ⊗ ek.

Note thatT̃j,k = T̃j,k becausẽT is self-adjoint. This representation gives

∆ =
∑

j,k∈N

(
T̃j,k − θj{j = k}

)
ej ⊗ ek

and

‖∆‖2 = sup‖x‖=1〈x,∆x〉2 ≤
∑

j,k∈N

(
T̃j,k − θj{j = k}

)2
.

The last inequality will lend itself to the calculation of the expected value of‖∆‖2
whenT̃ is random, leading to probabilistic bounds forδ.
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In this section we collect some general consequences ofδ being small. In the
next section we draw probabilistic conclusions whenT̃ is random, for the special
case whereT = K andT̃ = K̃, the usual estimate of the covariance kernel, both
acting onH = L2(m). The eigenvectors will become eigenfunctionsφ1, φ2, . . .
and φ̃1, φ̃2, . . . . We feel this approach makes it easier to follow the overall argu-
ment.

Both {ej : j ∈ N} and{ẽk : k ∈ N} are orthonormal bases forH. Define
σj,k := 〈ej , ẽk〉. Then

ej =
∑

k∈N
σj,kẽk and ẽk =

∑
j∈N

σj,kej

and
{j = j′} = 〈ej , ej′〉 =

∑
k∈N

σj,kσj′,k.

6.1. Approximation of eigenvalues.The eigenvalues have a variational charac-
terization (Bosq, 2000, Section 4.2):

(19) θj = inf
dim(L)<j

sup{〈x, Tx〉 : x ⊥ L and‖x‖ = 1}.

The first infimum runs over all subspacesL with dimension at mostj−1. (Whenj
equals1 the only such subspace is∅.) Both the infimum and the supremum are
achieved: byLj−1 = span{ei : 1 ≤ i < j} andx = ej . Similar assertions hold
for T̃ and its eigenvalues.

By the analog of (19) for T̃ ,

θ̃j ≥ sup{〈x, T̃ x〉 : x ⊥ Lj−1 and‖x‖ = 1}
≥ sup{〈x, Tx〉 − δ : x ⊥ Lj−1 and‖x‖ = 1} = θj − δ.

Argue similarly with the roles ofT andT̃ reversed to conclude that

(20) |θj − θ̃j | ≤ δ for all j ∈ N.

6.2. Approximation of eigenvectors.We cannot hope to find a useful bound
on ‖ẽk − ek‖, because there is no way to decide which of±ẽk should be approxi-
matingek. However, we can bound‖fk‖, where

fk = σkẽk − ek with σk := sign(σk,k) :=

{
+1 if σk,k ≥ 0

−1 otherwise
,

which will be enough for our purposes.
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FUNCTIONAL REGRESSION 15

We also need to assume that the eigenvalueθk is well separated from the otherθj ’s,
to avoid the problem that the eigenspace ofT̃ for the eigenvaluẽθk might have di-
mension greater than one. More precisely, we consider ak for which

ǫk := min{|θj − θk| : j 6= k} > 5δ,

which implies

|θ̃k − θj| ≥ |θk − θj| − δ ≥ 4
5 |θk − θj| ≥ 4

5ǫk.

The starting point for our approximations is the equality

(21) 〈∆ẽk, ej〉 = 〈T̃ ẽk, ej〉 − 〈ẽk, T ej〉 = (θ̃k − θj)σj,k.

For j 6= k we then have

16

25
(θk − θj)

2σ2j,k ≤ 〈σk∆ẽk, ej〉2 ≤ 2〈∆fk, ej〉2 + 2〈∆ek, ej〉2,

which implies

σ2j,k ≤
25

8
〈∆fk, ej〉2/ǫ2k +2T̃ 2

j,k/(θk − θj)
2 because〈Tek, ej〉 = 0 for j 6= k.

To simplify notation, write
∑∗

j for
∑

j∈N{j 6= k}.
The introduction of theσk also ensures that

‖fk‖2 = ‖ek‖2 + ‖ẽk‖2 − 2σk〈ek, ẽk〉 = 2− 2|σk,k|
≤ 2− 2σ2k,k because|σk,k| ≤ 1

= 2
∑∗

j
σ2j,k

≤
∑∗

j

25

4
〈∆fk, ej〉2/ǫ2k +

25

4

∑∗

j
T̃ 2
j,k/(θk − θj)

2.

The first sum on the right-hand side is less than

25

4
‖∆fk‖2/ǫ2k ≤ ‖∆‖2‖fk‖2/(4δ2) ≤ ‖fk‖2/4.

The second sum can be written as25‖Λk‖2/4 for

Λk :=
∑

j∈N

Λk,jej with Λk,j :=

{
T̃j,k/(θk − θj) if j 6= k

0 if j = k
.
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Our bound for‖fk‖2 (with an untidy25/3 increased to9) then takes the convenient
form

(22) ‖fk‖2 ≤ 9‖Λk‖2 if ǫk > 5‖∆‖.

For our applications,P‖Λk‖2 will be of orderO(k2/n).
Whenδ is much smaller thanǫk we can get an even better approximation forfk

itself. Start once more from equality (21), still assuming thatǫk > 5δ. Forj 6= k,

σkσj,k = σk〈∆ẽk, ej〉/(θ̃k − θj)

= 〈∆(ek + fk), ej〉/(θk + γk − θj) whereγk = θ̃k − θk

= Λk,j

(
1− γk

θj − θk

)−1

+
〈∆fk, ej〉
θ̃k − θj

because〈Tek, ej〉 = 0

= Λk,j + rk,j whererk,j :=
θ̃k − θk
θj − θk

Λk,j +
〈∆fk, ej〉
θ̃k − θj

.

Therk,j ’s are small:

|rk,j| ≤
5

4

(
δ|Λk,j|+ |〈∆fk, ej〉|

|θk − θj|

)
for j 6= k, if ǫk > 5δ

≤ 5δ‖Λk‖
|θk − θj|

by inequality (22).(23)

Define rk,k = |σk,k| − 1 = −1
2‖fk‖2 and rk =

∑
j∈N rk,jej. We then have a

representation (cf.Hall and Hosseini-Nasab, 2006, equation 2.8 andCai and Hall,
2006, §5.6)

(24) fk = σkẽk − ek = (σk〈ẽk, ek〉 − 1) ek +
∑∗

j
σkσj,kej = Λk + rk.

6.3. Approximation of projections. The operatorHJ =
∑

k∈J ek⊗ek projects

elements ofH orthogonally onto span{ek : k ∈ J}; the operator̃HJ =
∑

k∈J ẽk⊗
ẽk projects elements ofH orthogonally onto span{ek : k ∈ J}. We will be inter-
ested in the caseJ = {1, 2, . . . , p} with p equal to either them or theN from
Section5. In that case, we also writeHp andH̃p for the projection operators.

In this subsection we establish a bound for‖H̃JB −HJB‖ for aB =
∑

j bjej
in H.
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FUNCTIONAL REGRESSION 17

The differenceH̃J −HJ equals

∑
k∈J

(σkẽk)⊗ (σkẽk)− ek ⊗ ek

=
∑

k∈J
σkẽk ⊗ rk +

∑
k∈J

(ek + fk)⊗ Λk

+
∑

k∈J
((ek + Λk + rk)⊗ ek − ek ⊗ ek)

= RJ +
∑

k∈J
ek ⊗ Λk + Λk ⊗ ek

whereRJ :=
∑

k∈J
σkẽk ⊗ rk + fk ⊗ Λk + rk ⊗ ek.

Self-adjointness of̃T implies T̃j,k = T̃k,j and henceΛj,k = −Λj,k. The anti-
symmetry eliminates some terms from the main contribution to H̃J −HJ :

∑
k∈J

ek ⊗ Λk + Λk ⊗ ek =
∑

k∈J

∑
j∈Jc

Λk,j (ek ⊗ ej + ej ⊗ ek) .

With this simplification we get the following bound for‖(H̃J −HJ)B‖2:

3‖
∑

k∈J
ek

∑
j∈Jc

Λk,jbj‖2 + 3‖
∑

j∈Jc
ej

∑
k∈J

Λk,jbk‖2 + 3‖RJB‖2

The first two sums contribute

3
∑

k∈J

(∑
j∈Jc

Λk,jbj

)2
+ 3

∑
j∈Jc

(∑
k∈J

Λk,jbk

)2

In the next section the expected value of both sums will simplify becausePΛk,jΛk,j′
will be zero if j 6= j′.

For the three contributions to the bound for‖RJB‖2 we make repeated use of
the inequality, based on equations (22) and (23),

|〈rk, x〉| ≤
81

2
‖Λk‖2|xk|+ 5δ‖Λk‖

∑∗

j

|xj |
|θk − θj|

,

which is valid wheneverǫk > 5δ. To avoid an unnecessary calculation of precise
constants, we adopt the convention of the variable constant: we writeC for a uni-
versal constant whose value might change from one line to thenext. The first two
contributions are:

‖
∑

k∈J
σkẽk〈rk,B〉‖2 =

∑
k∈J

〈rk,B〉2

≤ C
∑

k∈J
b2k‖Λk‖4 + Cδ2

∑
k∈J

‖Λk‖2
(∑∗

j

|bj|
|θk − θj|

)2
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and

‖
∑

k∈J
fk〈Λk,B〉‖2 ≤

(∑
k∈J

‖fk‖ |〈Λk,B〉|
)2

≤ C
(∑

k∈J
‖Λk‖2

)∑
k∈J

(∑∗

j
Λk,jbj

)2
.

For the third contribution, letx =
∑

j xjej be an arbitrary unit vector inH. Then

(∑
k∈J

〈rk ⊗ ekB, x〉
)2

=
(∑

k∈J
bk〈rk, x〉

)2

≤ C
(∑

k∈J
|bkxk|‖Λk‖2

)2
+ Cδ2

(∑
k∈J

‖Λk‖bk
∑∗

j

|xj |
|θk − θj|

)2

≤ C
(∑

k∈J
|bk|‖Λk‖2

)2
+Cδ2

(∑
k∈J

‖Λk‖2
)∑

k∈J
b2k

(∑∗

j

1

|θk − θj|

)2

take the supremum overx, which doesn’t even appear in the last line, to get the
same bound for‖∑k∈J bkrk‖2.

In summary: ifmink∈J ǫk > 5δ then‖(H̃J −HJ)B‖2 is bounded by a universal
constant times

∑
k∈J

(∑
j∈Jc

Λk,jbj

)2
+

∑
j∈Jc

(∑
k∈J

Λk,jbk

)2
+

∑
k∈J

b2k‖Λk‖4

+
(∑

k∈J
|bk|‖Λk‖2

)2
+

(∑
k∈J

‖Λk‖2
)∑

k∈J

(∑∗

j
Λk,jbj

)2

+ δ2
∑

k∈J
‖Λk‖2

(∑∗

j

|bj |
|θk − θj|

)2

+ δ2
(∑

k∈J
‖Λk‖2

)∑
k∈J

b2k

(∑∗

j

1

|θk − θj|

)2

.

(25)

7. Unknown Gaussian distribution. Whenµ andK are unknown, we esti-
mate them in the usual way:̃µn(t) = Xn(t) = n−1

∑
i≤nXi(t) and

K̃(s, t) = (n− 1)−1
∑

i≤n

(
Xi(s)− Xn(s)

) (
Xi(t)− Xn(t)

)

= (n− 1)−1
∑

i≤n

(
Zi(s)− Z(s)

) (
Zi(t)− Z(t)

)
,

which has spectral representation

K̃(s, t) =
∑

k∈N
θ̃kφ̃k(s)φ̃k(t).
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FUNCTIONAL REGRESSION 19

In fact we must havẽθk = 0 for k ≥ n because all the eigenfunctions̃φk cor-
responding to nonzerõθk’s must lie in then − 1-dimensional space spanned by
{Zi − Z : i = 1, 2, . . . , n}.

The construction and analysis of the new estimatorB̂ will parallel the method
developed in Section5 for the case of knownK andµ. The quantitiesm andN
are the same as before. We writẽHp (for p = N or p = m) for the operator
that projects orthogonally onto span{φ̃1, . . . , φ̃p}. Essentially we have only to es-
timate all the quantities that appeared in the previous proof then show that none of
the errors of estimation is large enough to upset analogs of the calculations from
Section5. There is a slight complication caused by the fact that we do not know
which of ±φ̃j should be used to approximateφj. At strategic moments we will
be forced to multiply by the matrix̃S := diag(σ0, . . . , σN ) with σ0 = 1 and
σk = sign

(
〈φk, φ̃k〉

)
for k ≥ 1. The results from Section6 will control the differ-

encefk := σkφ̃k − φk. The other key quantities are:

(i) ∆ := K̃ −K

(ii) D̃ = diag(1, θ̃1, . . . , θ̃N )
1/2

(iii) z̃i = (z̃i,1, . . . , z̃i,N )
′ wherez̃i,k = 〈Zi, φ̃k〉

(iv) z̃· = (z̃·1, . . . , z̃·N )
′ wherez̃·k = 〈Z, φ̃k〉 = n−1

∑
i≤n z̃i,k

(v) ξ̃i = (1, z̃′i − z̃′·) andη̃i = D−1ξ̃i. [We could definẽηi = D̃−1ξ̃i but then we
would need to show that̃D−1ξ̃i ≈ D−1ξ̃i. Our definition merely rearranges
the approximation steps.]

(vi) γ̃ := (γ̃0, b̃1, . . . , b̃N )
′ whereB =

∑
k∈N b̃kφ̃k andγ̃0 := a+ 〈B,X〉. [Note

thatλi = γ̃0 + 〈B,Zi − Z〉.]
(vii) λ̃i,N = γ̃0 + 〈H̃NB,Zi − Z〉 = ξ̃′iγ̃.

(viii) ĝ = argmaxg∈RN+1

∑
i≤n yi(ξ̃

′
ig)− ψ(ξ̃′ig) and

B̂ =
∑

1≤k≤m
ĝkφ̃k.

[Note that these two quantities differ from theĝ andB̂ in Section5.]

(ix) Ãn = n−1
∑

i≤n η̃iη̃
′
iψ

(2)(λ̃i,N )

The use of estimated quantities has one simplifying consequence:

Zi(t)− Z(t) =
∑

k∈N
(z̃i,k − z̃·k)φ̃k(t)
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so that

θ̃k{j = k} =

∫∫
K̃(s, t)φ̃j(s)φ̃k(t) ds dt

= (n− 1)−1
∑

i≤n
(z̃i,j − z̃·j)(z̃i,k − z̃·k),

which implies(n− 1)−1
∑

i≤n z̃iz̃
′
i = D̃2 and

(26) (n− 1)−1
∑

i≤n
η̃iη̃

′
i = D−1D̃2D−1 := diag(1, θ̃1/θ1, . . . , θ̃N/θN ).

We will analyzeK̃ by rewriting it using the eigenfunctions forK. Remember
that zi,j = 〈Zi, φj〉 and the standardized variablesηi,j = zi,j/

√
θj are indepen-

dentN(0, 1)’s. Definez·j = 〈Z, φj〉 andη·j = n−1
∑

i≤n ηi,j and

Cj,k := (n− 1)−1
∑

i≤n
(ηi,j − η·j) (ηi,k − η·k) ,

a sample covariance between two independentN(0, IN ) random vectors. Then

Zi(t)− Z(t) =
∑

j∈N
(zi,j − z·j)φj(t) =

∑
j∈N

√
θj(ηi,j − η·j)φj(t)

and

(27) K̃(s, t) =
∑

j,k∈N
K̃j,kφj(s)φk(t) with K̃j,k =

√
θjθkCj,k

Moreover, as shown in Section6, the main contribution tofk = σkφ̃k − φk is

Λk :=
∑

j∈N
Λk,jφj with Λk,j :=

{√
θjθkCj,k/(θk − θj) if j 6= k

0 if j = k
.

In fact, most of the inequalities that we need to study the newB̂ come from sim-
ple moment bounds (Lemma31) for the sample covariancesCj,k and the derived
bounds (Lemma32) for theΛk ’s.

As before, most of the analysis will be conditional on theXi’s lying in a set with
high probability on which the various estimators and other random quantities are
well behaved.

LEMMA 28. For eachǫ > 0 there exists a set̃Xǫ,n, depending onµ andK,
with

supF Pn,µ,KX̃
c
ǫ,n < ǫ for all large enoughn

and on which, for some constantCǫ that does not depend onµ or K,
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(i) ‖∆‖ ≤ Cǫn
−1/2

(ii) maxi≤n ‖Zi‖ ≤ Cǫ
√

log n and‖Z‖ ≤ Cǫn
−1/2

(iii) ‖(H̃m −Hm)B‖2 = oF(ρn)

(iv) ‖(H̃N − HN )B‖2 = OF(n
−1−ν) for someν > 0 that depends only onα

andβ

(v) maxi≤n |η̃i|2 = oF(
√
n/N)

(vi) ‖S̃ÃnS̃ −An‖2 = oF(1)

This Lemma (whose proof appears in Section8) contains everything we need to
show that‖B̂−B‖2 has the uniformOF(ρn) rate of convergence inPn,f probability,
as asserted by equation (3). In what follows, all assertions refer to the numbered
parts of Lemma28.

As before, the component ofB orthogonal to span{φ̃1, . . . , φ̃m} causes no trou-
ble because

‖B̂− B‖2 = ‖ĝ − γ̃‖22 + ‖H̃⊥
mB‖2

and, by(iii) ,

‖H̃⊥
mB‖2 ≤ 2‖H⊥

mB‖2 + 2‖(H̃m −Hm)B‖2 = OF(ρn) on X̃ǫ,n.

To handle‖ĝ − γ̃‖2, invoke Corollary9 for Xi’s in X̃ǫ,n, with ηi replaced bỹηi
andAn replaced byÃn andBn replaced byB̃n = S̃BnS̃, the sameBn andD as
before, andQ equal to

Q̃n,a,B,N = ⊗i≤nQλ̃i,N .

to get a set̃Ym,ǫ with Q̃n,a,B,N Ỹ
c
m,ǫ < 2ǫ on which‖ĝ − γ̃‖22 = OF(ρn). The

conditions of the Corollary are satisfied onX̃ǫ,n, because of(v) and

‖Ãn − B̃n‖2 ≤ ‖Ãn − S̃AnS̃‖2 + ‖S̃AnS̃ − S̃BnS̃‖2 = oF(1).

To complete the proof it suffices to show that‖Qn,a,B,N − Q̃n,a,B,N‖TV tends to
zero. First note that

λ̃i,N − λi,N = a+ 〈B,X〉+ 〈H̃NB,Zi − Z〉 − a− 〈B, µ〉 − 〈HNB,Zi〉
= 〈H̃⊥

NB,Z〉 − 〈H⊥
NB,Z〉+ 〈H⊥

NB,Z〉+ 〈H̃NB−HNB,Zi〉

which implies that, oñXǫ,n,

|λ̃i,N − λi,N |2 ≤ 2|〈H⊥
NB,Z〉|2 + 2‖H̃NB−HNB‖2

(
‖Zi‖+ ‖Z‖

)2

≤ OF(N
1−2β)C2

ǫ n
−1 +OF(n

−1−ν)C2
ǫ

(
n−1/2 +

√
log n

)2

= OF(n
−1−ν′) for some0 < ν ′ < ν.(29)
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Now argue as in subsection5.2: on X̃ǫ,n,

‖Q̃n,a,B,N −Qn,a,B,N‖2TV ≤
∑

i≤n
h2

(
Q
λ̃i,N

, Qλi,N

)

≤ exp (oF(log n))
∑

i≤n
|λ̃i,N − λi,N |2 = oF(1).

Finish the argument as before, by splitting into contributions fromX̃cn andX̃n∩Ỹcm,ǫ
andX̃n ∩ Ỹm,ǫ.

8. Proofs of unproven assertions from Section 7. Many of the inequalities
in this section involve sums of functions of theθj ’s. The following result will save
us a lot of repetition. To simplify the notation, we drop the subscripts fromPn,µ,K.

LEMMA 30.

(i) For eachr ≥ 1 there is a constantCr = Cr(F) for which

κk(r, γ) :=
∑

j∈N
{j 6= k} j−γ

|θj − θk|r
≤

{
Cr

(
1 + kr(1+α)−γ

)
if r > 1

C1

(
1 + k1+α−γ log k

)
if r = 1

(ii) For eachp,
∑

k≤p

∑
j>p

k−α−2βj−α

|θk − θj|2
= OF(p

1−α)

PROOF. For (i), argue in the same way asHall and Horowitz(2007, page 85),
using the lower bounds

|θj − θk| ≥





cαj
−α if j < k/2

cα|j − k|k−α−1 if k/2 ≤ j ≤ 2k

cαk
−α if j > 2k

wherecα is a positive constant.
For (ii), split the range of summation into two subsets:{(k, j) : j > max(p, 2k)}

and{(k, j) : p/2 < k ≤ p < j ≤ 2k}. The first subset contributes at most
∑

k≤p
k−α−2β

∑
j>max(p,2k)

j−α(cαk
−α)−2 = OF(p

1−α)

becauseα− 2β < −3. The second subset contributes at most

∑
p/2<k≤p

k−α−2βc−2
α k2α+2

∑
j>p

j−α(j−k)−2 = OF

(
p.p2+α−2βp−αO(1)

)
,

which is of orderoF(p−α). �
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The distribution ofCj,k does not depend on the parameters of our model. Indeed,
by the usual rotation of axes we can rewrite(n−1)Cj,k asU ′

jUk, whereU1, U2, . . .
are independentN(0, In−1) random vectors. This representation gives some useful
equalities and bounds.

LEMMA 31. Uniformly over distinctj, k, ℓ,

(i) PCj,j = 1 andP (Cj,j − 1)2 = 2(n − 1)−1

(ii) PCj,k = PCj,kCj,ℓ = 0
(iii) PC2

j,k = O(n−1)

(iv) PC2
j,kC

2
ℓ,k = tO(n−2)

(v) PC4
j,k = O(n−2)

PROOF. Assertion (i) is classical because|Uj |2 ∼ χ2
n−1. For assertion (ii) use

P(U ′
1U2 | U2) = 0 and

P(U ′
1U2U

′
2U3 | U2) = trace

(
U2U

′
2P(U3U

′
1)
)
= 0.

For (iii) useP(U1U
′
1) = In−1 and

P(U ′
1U2U

′
2U1 | U2) = trace

(
U2U

′
2P(U1U

′
1)
)
= trace(U2U

′
2) = |U2|2.

For (iv) useP|U2|4 = n2 − 1 and

P((U ′
1U2)

2(U ′
3U2)

2 | U2) = |U2|4

For (v), check that the coefficient oft4 in the Taylor expansion of

P exp(tU ′
1U2) = P exp

(
1
2t

2|U1|2
)
= (1− t2)−(n−1)/2

is of ordern2. �

LEMMA 32. Uniformly over distinctj, k, ℓ,

(i) PΛk,j = PΛk,jΛk,ℓ = 0
(ii) PΛ2

k,j = OF

(
n−1k−αj−α(θk − θj)

−2
)

(iii) PΛ4
k,j = OF

(
n−2k−2αj−2α(θk − θj)

−4
)

(iv) P‖Λk‖2 = OF(n
−1k2)

(v) P‖Λk‖4 = OF(n
−2k4)

PROOF. Assertions (i), (ii), and (iii) follow from Assertions (ii) and (iii) of
Lemma31. For (iv), note that

P‖Λk‖2 =
∑∗

j
PΛ2

j,k = OF(n
−1k−α)κk(2, α)
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For (v) note that

P‖Λk‖4 = P

(∑∗

j
θjθkS

2
j,k(θk − θj)

−2
)2

=
∑∗

j

∑∗

ℓ
θjθℓθ

2
k(θk − θj)

−2(θk − θℓ)
−2PS2

j,kS
2
ℓ,k

= OF(n
−2)

(∑∗

j
θjθk(θk − θj)

−2
)2

= OF(n
−2k4).

�

To prove Lemma28we definẽXǫ,n as an intersection of sets chosen to make the
six assertions of the Lemma hold,

X̃ǫ,n := X̃∆,n ∩ X̃Z,n ∩ X̃Λ,n ∩ X̃η,n ∩ X̃A,n,

where the complement of each of the five sets appearing on the right-hand side
has probability less thanǫ/5. More specifically, for a large enough constantCǫ, we
define

X̃∆,n = {‖∆‖ ≤ Cǫn
−1/2}

X̃Z,n = {maxi≤n ‖Zi‖2 ≤ Cǫ log n and ‖Z‖ ≤ Cǫn
−1/2}

X̃η,n = {maxi≤n |ηi|2 ≤ CǫN log n} as in Section5

X̃A,n = {‖
∑

i≤n
η̃iη̃

′
i‖2 ≤ Cǫn}

The definition ofX̃Λ,n, in subsection8.3, is slightly more complicated. It is defined
by requiring various functions of theΛk’s to be smaller thanCǫ times their expected
values.

The set̃XA,n is almost redundant. From Definition5 we know that

min
1≤j<j′≤N

|θj − θj′| ≥ (α/R)N−1−α and min
1≤j≤N

θj ≥ R−1N−α.

The choiceN ∼ nζ with ζ < (2+2α)−1 ensures thatn1/2N−1−α → ∞. OnX̃∆,n

the spacing assumption used in Section6 holds for alln large enough; all the
bounds from that Section are avaiable to us onX̃ǫ,n. In particular,

maxj≤N |θ̃j/θj − 1| ≤ OF(N
α‖∆‖) = oF(1).

Equality (26) shows that̃XA,n ⊆ X̃∆,n eventually if we make sureCǫ > 1.
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8.1. Proof of Lemma28 part (i). Observe that

P‖∆‖2 =
∑

j,k
P

(
K̃j,k − θj{j = k}

)2

=
∑

j,k
θjθkP (Sj,k − {j = k})2

≤
∑

j
θjOF(n

−1) +
∑

j,k
θjθkOF(n

−2)

= OF(n
−1)

8.2. Proof of Lemma28part (ii) . As before, Corollary42controlsmaxi≤n ‖Zi‖2.
To control theZ contribution, note thatn‖Z‖2 has the same distribution as‖Z1‖2,
which has expected value

∑
j∈N θj <∞.

8.3. Proof of Lemma28 parts (iii) and (iv). Calculate expected values for all
the terms that appear in the bound (25) from Section6.

Pn,µ,K
∑

k≤p

(∑
j>p

Λk,jbj

)2
+ Pn,µ,K

∑
j>p

(∑
k≤p

Λk,jbk

)2

=
∑

k≤p

∑
j>p

Pn,µ,KΛ
2
k,j

(
b2j + b2k

)
by Lemma32(i)

= OF(n
−1)

∑
k≤p

∑
j>p

k−α−2βj−α(θk − θj)
−2

= OF(n
−1p1−α) by Lemma30(33)

and

Pn,µ,K
∑

k≤p
b2k‖Λk‖4 = OF(n

−2)
∑

k≤p
k4−2β = OF(n

−2)
(
1 + p5−2β + log p

)

and

Pn,µ,K
∑

k≤p
|bk|‖Λk‖2 = OF(n

−1)
∑

k∈J
k2−β = OF(n

−1)
(
1 + p3−β + log p

)

and
Pn,µ,K

∑
k≤p

‖Λk‖2 = OF(n
−1p3)

and

Pn,µ,K

∑
k≤p

(∑∗

j
Λk,jbj

)2
= OF(n

−1)
∑

k≤p

∑∗

j
k−αj−a−2β(θk − θj)

−2

= OF(n
−1) by Lemma30(34)

and

δ2Pn,µ,K
∑

k≤p
‖Λk‖2

(∑∗

j

|bj |
|θk − θj |

)2

= OF(n
−1δ2)

(
p3 + p5+2α−2β log2 p

)
(35)
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and
(36)
∑

k≤p
b2k

(∑∗

j

1

|θk − θj |

)2

= OF(1 + p3+2α−2β log2 p) by Lemma30.

For some constantCǫ = Cǫ(F), on a setXΛ,n with Pn,µ,KX
c
Λ,n < ǫ, each of the

random quantities in the previous set of inequalities (for both p = m andp = N )
is bounded byCǫ times itsPn,µ,K expected value. By virtue of Lemma32(iv), we
may also assume that‖Λk‖2 ≤ Cǫk

2/n onXΛ,n.
From inequality (25), it follows that on the setX∆,n∩XΛ,n, for bothp = m and

p = N ,

‖(H̃p −Hp)B‖2

≤ OF(n
−1p1−α) +OF(n

−2)
(
1 + p5−2β + log p+ p6−β + log2 p

)

+OF(n
−1p3)OF(n

−1) +OF(n
−2)

(
p3 + p5+2α−2β log2 p

)

+OF(n
−2p3)OF(1 + p3+2α−2β log2 p)

= OF(n
−1p1−α) if p ≤ N.

This inequality leads to the asserted conclusions whenp = m or p = N .

8.4. Proof of Lemma28part (v). By construction,̃ηi1 = 1 for everyi and, for
j ≥ 2, √

θj η̃i,j = (z̃i,j − z̃·j) = 〈Zi − Z, φ̃j〉
Thus, forj ≥ 2,

σj η̃i,j = θ
−1/2
j 〈Zi − Z, φj + fj〉 = ηi,j + δ̃i,j

with

|δi,j |2 ≤ θ−1
j

(
‖Zi‖+ ‖Z‖

)2 ‖fj‖2 ≤ OF

(
j2+α log n

n

)
on X̃ǫ,n.

In vector form,

(37) S̃η̃i = ηi + δ̃i with |δ̃i|2 = OF

(
N3+α log n

n

)
≤ oF(n/N

2) on X̃ǫ,n.

It follows that

maxi≤n |η̃i| = maxi≤n |S̃η̃i| ≤ maxi≤n |ηi|+oF(
√
n/N) = OF(

√
n/N) on X̃ǫ,n.
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8.5. Proof of Lemma28 part (vi). From inequality (29) we know that

ǫN := maxi≤n |λ̃i,N − λi,N | = OF(n
−(1+ν′)/2) on X̃ǫ,n

and from subsection5.2we havemaxi≤n |λi,N | = OF(
√

log n). Assumption (ψ3)
in Section3 and the Mean-Value theorem then give

maxi≤n |ψ(2)(λ̃i,N )− ψ(2)(λi,N )| ≤ ǫNψ
(2)(λi,N )G(ǫN ) = oF(1).

If we replaceψ(2)(λ̃i,N ) in the definition ofÃn by Li := ψ(2)(λi,N ) we make a
changeΓ with

‖Γ‖2 ≤ oF(1)‖(n − 1)−1
∑

i≤n
η̃iη̃

′
i‖2,

which, by equality (26), is of orderoF(1) on X̃ǫ,n.
From Assumption (ψ2) we havecn := logmaxi≤n Li = oF(log n). Uniformly

over all unit vectorsu in RN+1 we therefore have

u′S̃ÃnS̃u = oF(1) + (n− 1)−1
∑

i≤n
Liu

′(ηi + δ̃i)(ηi + δ̃i)
′u

= oF(1) +
(
1 +O(n−1)

)
u′Anu

+OF

(
n−1

)∑
i≤n

Li

(
(u′δ̃i)

2 + 2(u′ηi)(u
′δ̃i)

)

Rearrange then take a supremum overu to conclude that

‖S̃ÃnS̃ −An‖2 ≤ oF(1) +OF(e
cn)maxi≤n

(
|δ̃i|2 + 2|δ̃i| |ηi|

)

Representation (37) and the defining property of̃Xη,n then ensure that the upper
bound is of orderoF(1) on X̃ǫ,n.

9. The minimax lower bound. We will apply a slight variation on Assouad’s
Lemma—combining ideas fromYu (1997) and from van der Vaart(1998, Sec-
tion 24.3)—to establish inequality (2).

We consider behavior only forµ = 0 anda = 0, for a fixedK with spectral
decomposition

∑
j∈N θjφj ⊗ φj. For simplicity we abbreviatePn,0,K to P. Let

J = {m+ 1,m + 2, . . . , 2m} andΓ = {0, 1}J . Let βj = Rj−β. For eachγ in Γ
defineBγ = ǫ

∑
j∈J γjβjφj , for a smallǫ > 0 to be specified, and writeQγ for

the product measure⊗i≤nQλi(γ) with

λi(γ) = 〈Bγ ,Zi〉 = ǫ
∑

j∈J
γjβjzi,j.

For eachj let Γj = {γ ∈ Γ : γj = 1} and letψj be the bijection onΓ that flips
thejth coordinate but leaves all other coordinates unchanged. Letπ be the uniform
distribution onΓ, that is,πγ = 2−m for eachγ.
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For each estimator̂B =
∑

j∈N b̂jφj we have‖Bγ − B̂‖2 ≥ ∑
j∈J

(
γjβj − b̂j

)2

and so

sup
F

Pn,f‖B− B̂‖2 ≥
∑

γ∈Γ
πγ

∑
j∈J

PQγ

(
ǫγjβj − b̂j

)2

= 2−m
∑

j∈J

∑
γ∈Γj

P

(
Qγ(ǫβj − b̂j)

2 +Qψj(γ)(0− b̂j)
2
)

≥ 2−m
∑

j∈J

∑
γ∈Γj

1
4(ǫβj)

2P‖Qγ ∧Qψj(γ)‖,(38)

the last lower bound coming from the fact that

(ǫβj − b̂j)
2 + (0− b̂j)

2 ≥ 1
4(ǫβj)

2 for all b̂j.

We assert that, ifǫ is chosen appropriately,

(39) minj,γ P‖Qγ ∧Qψj(γ)‖ stays bounded away from zero asn→ ∞,

which will ensure that the lower bound in (38) is eventually larger than a constant
multiple of

∑
j∈J β

2
j ≥ cρn for some constantc > 0. Inequality (2) will then

follow.
To prove (39), consider aγ in Γ and the correspondingγ′ = ψj(γ). By virtue of

the inequality

‖Qγ ∧Qγ′‖ = 1− ‖Qγ −Qγ′‖TV ≥ 1−
(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)1/2

it is enough to show that

(40) lim supn→∞maxj,γ P
(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)
< 1.

DefineXn = {maxi≤n ‖Zi‖2 ≤ C0 log n}, with the constantC0 large enough that
PXcn = o(1). OnXn we have

|λi(γ)|2 ≤
∑

j∈J
β2j ‖Zi‖2 = O(ρn) log n = o(1)

and, by inequality (4),

h2(Qλi(γ), Qλi(γ′)) ≤ OF(1)|λi(γ)− λi(γ
′)|2 ≤ ǫ2OF(1)β

2
j z

2
i,j .

We deduce that

P

(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)
≤ 2PXcn +

∑
i≤n

ǫ2OF(1)β
2
j PXnz

2
i,j

≤ o(1) + ǫ2O(1)nβ2j θj.

The choice ofJ makesβ2j θj ≤ R2m−α−2β ∼ R2/n. Assertion (40) follows.
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10. Hellinger distances in an exponential family. We need to show that
h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ) (1 + |δ|)G(|δ|) for all realλ andδ.

Temporarily writeλ′ for λ+ δ andλ for (λ+ λ′)/2 = λ+ δ/2.

1− 1
2h

2(Qλ, Qλ′) =

∫ √
fλ(y)fλ′(y)

=

∫
exp

(
λy − 1

2ψ(λ)− 1
2ψ(λ

′)
)

= exp
(
ψ(λ)− 1

2ψ(λ)− 1
2ψ(λ

′)
)

≥ 1 + ψ(λ)− 1
2ψ(λ)− 1

2ψ(λ
′)

That is,
h2(Qλ, Qλ′) ≤ ψ(λ) + ψ(λ+ δ) − 2ψ(λ+ δ/2).

By Taylor expansion inδ around0, the right-hand side is less than

1
4δ

2ψ(2)(λ) + 1
6δ

3
(
ψ(3)(λ+ δ∗)− 1

8ψ
(3)(λ− δ∗/2)

)

where0 < |δ∗| < |δ|. Invoke inequality (3) twice to bound the coefficient ofδ3/6
in absolute value by

ψ(2)(λ)
(
G(|δ|) + 1

8G(|δ|/2)
)
≤ 9

8ψ
(2)(λ)G(|δ|).

The stated bound simplifies some unimportant constants.

11. Bounds for Gaussian processes. As a consequence of defining property (K),
the centered processZ := X − µ has an expansionZ(t) =

∑
k∈N

√
θkηkφk(t)

where theηk ’s are independentN(0, 1)’s, implying

‖Z‖2 =

∫∫ ∑
k,k′∈N

√
θkθk′ηkηk′φk(t)φk′(s) dt ds =

∑
k∈N

θkη
2
k.

LEMMA 41. SupposeWi =
∑

k∈N τi,kη
2
i,k for i = 1, . . . , n, where theηi,k’s

are independent standard normals and theτi,k’s are nonnegative constants with
∞ > T := maxi≤n

∑
k∈N τi,k. Then

P{maxi≤nWi > 4T (log n+ x)} < 2e−x for eachx ≥ 0.

PROOF. Without loss of generality supposeT = 1. Fors = 1/4, note that

P exp(sWi) =
∏

k∈N
(1 − 2sτi,k)

−1/2 ≤ exp
(∑

k∈N
sτi,k

)
≤ e1/4
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by virtue of the inequality− log(1− t) ≤ 2t for |t| ≤ 1/2. With the sames, it then
follows that

P{maxi≤nWi > 4(log n+ x)}
≤ exp (−4s(log n+ x))P exp (maxi≤n sWi)

≤ e−x
1

n

∑
i≤n

P exp(sWi).

The2 is just a clean upper bound fore1/4. �

COROLLARY 42.

Pn{maxi≤n ‖Zi‖2 > C ′(log n+ x)} ≤ 2e−x

whereC ′ = 4C
∑

k∈N k
−α <∞.
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