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FUNCTIONAL REGRESSION FOR GENERAL EXPONENTIAL
FAMILIES

By WEI Dou*, DAVID POLLARD' AND HARRISON H. ZHOU?
Yale University

The paper derives a minimax lower bound for rates of convergédor
an infinite-dimensional parameter in an exponential familydel. An esti-
mator that achieves the optimal rate is constructed by mamxiriikelihood
on finite-dimensional approximations with parameter disiem that grows
with sample size.

1. Introduction. Our main purpose in this paper is to extend the theory devel-
oped byHall and Horowitz(2007)—for regression with mean a linear functional of
an unknown square integrable functiBrdefined on a compact interval of the real
line—to observationg; from an exponential famly whose canonical parameter is
of the form fol B(t)X;(t) dt for observed Gaussian proces3gs

Our methods introduce several new technical devices. Véblest a sharp ap-
proximation for maximum likelihood estimators for expotiahfamilies parametr-
ized by linear functions ofn-dimensional parameters, for am that grows with
sample size. We develop a change of measure argument—eddpjrideas from
Le Cam'’s theory of asymptotic equivalence of models—to iglate the effect of
bias terms from the asymptotics of maximization estimatérsd we obtain im-
proved bounds for projections onto subspaces defined byfeigetions of pertur-
bations of compact operators, bounds that simplify argusnemolving estimates
of unknown covariance kernels.

More precisely, we consider problems where the observedatatsist of inde-
pendent, identically distributed paifs;, X;) where eaclX; is a Gaussian process
indexed by a compact subinterval of the real line, which witHoss of generality
we take to bg0, 1]. We writem for Lebesgue measure on the Borel sigma-field
of [0, 1]. We denote the corresponding norm and inner product in theesj? (m)
by [| - | and(-,-).

We assume the conditional distribution gfgiven the procesX,; comes from
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an exponential familf @, : A € R} with parameter

1
(1) Ai=a+ / Xi(t)B(t) dt
0
for an unknown constant and an unknowi® € £2(m).

We focus on estimation d using integrated squared error loss:

~ ~ 1 —~ 2
L(B.B) = [B-B.lP = [ (B -Bat)) at.
0

In a companion paper we will show that our methods can be adapttreat
the problem of prediction of a linear functionﬁJ x(t)B(t) dt for a knownz, ex-
tending theory developed h@ai and Hall(2006). In that paper we also consider
some of the practical realities in applying the results ®ebonomic problem of
predicting occurence of recessions from the U.S. Treasetyg gurve.

Our models are indexed by a sEof parameters = (a,B, K, u), wherep is
the mean andf is the covariance kernel of the Gaussian process. Undemassu
tions onJF (see SectioB) analogous to the assumptions madédayl and Horowitz
(2007) for a problem of functional linear regression, we find a seme{p, } that
decreases to zero for which

(2) lirginf sup P, ¢||B — B,|%/pn >0  for every estimating sequen¢®,, }
n—oo feg:

and construct one particular estimating sequen@,xﬂfor which: for eache > 0
there exists a finite consta@t such that

(3) supP, ({|B—B,[|> > Cepn} <e  for large enough.
feF

For the collection of model§ = F(R, «, 5) defined in SectiorB, the ratep,
equa|3n(1—25)/(a+26)_

In Section9 we establish a minimax lower bound by means of a variation on
Assouad’s Lemma.

We begin our analysis of the rate-optimal estimator in $eetj with an approx-
imation theorem for maximum likelihood estimators in expotial family mod-
els for parameters whose dimensions change with sampleTdizemain result is
stated in a form slightly more general than we need for thegirepaper because
we expect the result to find other sieve-like applicatiortsee @pproximations from
this section lie at the heart of our construction of an edtimthat achieves the
minimax rate from Sectio®8.

As an aid to the reader, we present our construction of theathg sequence
for (3) in two stages. First (Sectiob) we assume that both the mearmand the
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FUNCTIONAL REGRESSION 3

covariance kernek’ are known. This allows us to emphasize the key ideas in our
proofs without the many technical details that need to bellegihwheny and K

are estimated in the natural way. Many of those details ua/tthe spectral theory

of compact operators.

We have found some of the results that we need quite difficutlig out of
the spectral theory literature. In Sectibrve summarize the theory that we use to
control errors when approximating: some of it is a rearrangement of ideas from
Hall and Horowitz(2007) and Hall and Hosseini-Nasaf2006); some is adapted
from the notes byosq(2000 and the monograph irman and Solomjak1987);
and some, such as the material in subsedii@on approximation of projections,
we believe to be new.

Armed with the spectral theory, we proceed in Secfioio the case wherg
and K are estimated. We emphasize the parallels with the argufoekbown g
and K, postponing the proofs of the extra approximation argusiémiostly col-
lected together as Lemn2a) to the following section.

The final two sections of the paper establish a bound on thinget distance
between members of an exponential family, the key to our ghar measure ar-
gument, and a maximal inequality for Gaussian processes.

2. Notation. For each matrixA4, the spectral norm is defined #sl|s :=

, 1/2 .
supj,|<1 |Aul and the Frobenius norm HyA|r := (Zi,j A§7j> If Ais sym-
metric, with eigenvalueg, ..., \, then

[ All2 = max; [\i| = supy,<; [u'Aul < [|A]lp.

If A is also positive definite then the absolute values are supedifor the first
two equalities.

When we want to indicate that a bound involving constants, (', ... holds
uniformly over all models indexed by a set of parametgrsve writec(F), C(F),
C1(9),.... By the usual convention for eliminating subscripts, thkuea of the
constants might change from one paragraph to the next: dacaids (F) in one
place needn’t be the same as a constaritF) in another place.

For sequences of constants that might depend off, we writec,, = O(1)
andos(1) and so on to show that the asymptotic bounds hold uniforméy v

We writeh( P, Q) for the Hellinger distance between two probability measiite
andq. If both P and@ are dominated by some measutavith densitieg andg,
thenh?(P,Q) = v (/b — v/4)°. We use Hellinger distance to bound total varia-
tion distance,

IP = QllTv :=sup4 |[PA — QA| = 3v|p — q| < h(P,Q).
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For product measures we use the bound
W2(@isnPiy Bin@i) <D, h2(Pi, Qi)-

To avoid confusion with transposes, we use the dot notatiGujeerscript nota-
tion to denote derivatives. For exampleor 1)) both denote the third derivative
of a functiony,

3. The model. Let {@\ : A € R} be an exponential family of probabil-
ity measures with densitied?,/dQo = fi(y) = exp (A\y — ¥()\)). Remember
that e = Que™ and that the distributiorQ, has meary)(V)(\) and vari-

anceyp @ (\).

We assume:

(1»3) There exists an increasing real functiGron R* such that
BN+ n)| <P N)G(|R])  forall Aandh

Without loss of generality we assun&0) > 1.
(12) Foreach > 0there exists a finite constafit for whichy)(?) (\) < C exp(eA?)
for all A € R. Equivalently,;y® (\) < exp (o(A\?)) as|A| — oc.

As shown in Sectioll0, these assumptions on thiefunction imply that
@ PAQxnQays) <SPPI N (1+18)G(6])  forall A6 € R.

Remark. We may assume that(®)(\) > 0 for every real\. Otherwise we
would haved = ) (o) = van, (y) = vfx, (y)(y =9 (X))? for someXo,
which would makey = (") () for v almost ally andQ = @, for every.

We assume the observed data are iid pajrsX;) fori = 1,...,n, where:

(@) Each{X;(t): 0 <t < 1} is distributed like{X(¢) : 0 < ¢t < 1}, a Gaussian
process with mean(t) and covariance kernd{ (s, t).

(0) yi | Xi ~ Qy, With \; = a + (X;, B) for an unknown{B(¢) : 0 < ¢ < 1}in
£2%(m) anda € R.

DEFINITION 5. For real constantsx > 1 and8 > (o + 3)/2 and R > 0,
defined = F(R, «, 8) as the set of allf = (a,B, u, K) that satisfy the following
conditions.

(K) The covariance kernel is square integrable with respeet ® m and has an
eigenfunction expansion (as a compact operatoéfm))

K(s,t) = ZkeN O di(s)Pr(t)
where the eigenvaluék, are decreasing witlk = > 0, > 05, 1+(a/R)k~~ 1.
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FUNCTIONAL REGRESSION 5

@) o] <R

W) Il <R

(B) B has an expansioB(t) = Y, . biox (t) With |by,| < Rk™5, for the eigen-
functions defined by the kernkl.

Remarks. The awkward lower bound fat;, in Assumption (K) implies, for
allk < j,

J
(6) 9k —0; > R71 axiaildx — R71 ko _j*a )
J
k

If K andy were known, we would only need the lower bouhd> Rk~

and not the lower bound fdt;, — 6x.1. As explained byHall and Horowitz
(2007 page 76), the stronger assumption is needed when one tsgitha in-
dividual eigenfunctions of<. Note that the subsé x of £2(m) in which B

lies depends or{. We regard the need for the stronger assumption on the
eigenvalues and the irksome Assumptid¥) @s artifacts of the method of
proof, but we have not yet succeeded in removing either gssom

More formally, we writeP,, x for the distribution (a probability measure 6A(m))
of each Gaussian proceXs. The joint distribution oy, ..., X, isthenP,, , x =
Pl . We identify they,’s with the coordinate maps A" equipped with the prod-
uct measuré, ., B x,...x, = ®i<p@),, Which can also be thought of as the
conditional joint distribution of(y1,...,y,) given (Xy,...,X,). Thus theP, s
in equations Z) and @) can be rewritten as an iterated expectation,

]P)n,f = Pn,u,K@n,a,B,X1,...,X7n

the second expectation on the right-hand side averagingwarty, ..., y, for
givenXy,...,X,, the first averaging out ovéfy, ..., X,.
To simplify notation, we will often abbreviat®,, , g x, ... x, 10 Qy o B.

4. Maximum likelihood estimation. The theory in this section combine ideas
from Portnoy(1988 and fromHjort and Pollard(1993. We write our results in a
notation that makes the applications in Secticend7 more straightforward. The
notational cost is that the parameters are indexed®y, ..., N}. To avoid an
excess of parentheses we wrife for N + 1. In the applicationsV changes with
the sample size andQ is replaced byQ,, o B, Of @n,avw.

Supposes, . .., &, are (nonrandom) vectors iR+, Supposed = ®@;<,Q),
with \; = &y for a fixedy = (79,71, --,vn) in R+, UnderQ, the coordinate
mapsyi, . . ., y, are independent random variables wjth~ Q.

The log-likelihood for fitting the model is
_ ! Noy. / N
Ln(9) =) _,_ (&) —¥(&g)  forg eRY:,
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which is maximized (oveR"+) at the MLEg (= g,,).

Remark. As a small amount of extra bookkeeping in the following argam
would show, we do not neggito exactly maximizd.,,. It would suffice to have
L,(g) suitably close tesup, L, (g). In particular, we need not be concerned
with questions regarding existence or uniqueness of thraaxg

Define
() Jn =D icn GEWP (N), an Ny x Ny matrix

(i) w; := Jn/%¢;, an element oR N+
(ii)) Wn =Y, wi (yi — ¥ (Ni)), an element oRN+

Notice thatQW,, = 0 and vap(W,,) = 3_,,, wawjih® (\;) = Iy, and
Q|W,|? = trace (varg(W,)) = N,
LEMMA 7. Supposé < ¢; < 1/2and0 < e; < 1 and
€1€9

max;<n, |wi| SGIN, with G as in Assumption(3)

Theng = v + Jy /(W + o) with |r,,| < € on the set{|W,| < /N4 ez},
which hasQ-probability greater tharl — es.

PROOF. The equalityQ|WW,,|?> = N, and Tchebychev giv@{|W,,| > /N /ea} <

€.
Reparametrize by defining= ﬁ/z(g — ). The concave function

Lo(t) = Ln(y + J, %) = Lp(7) = ZKH yiwit + (i) — (N + wit)
is maximized at,, = Jrl/z@— 7). It has derivative
Ln(t) = Zign w; (yi — W\ + th)) .

For a fixed unit vector, € R+ and a fixedt € R+, consider the real-valued
function of the real variable,

H(s) := u'ﬁn(st) = Z uww; (y, — ¢(1)(Ai + swgt)) ,

i<n

which has derivatives
H(s) = — Z,< (w/w) (wit) @ (\; + swit)
H(s) = — Z,< (w'w;) (wit) 3 (N + swit).
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FUNCTIONAL REGRESSION 7

Notice thatH (0) = «'W,, andH (0) = —u' Y., wiw/p® (\)t = —u't.
Write M, for max;<,, |w;|. By virtue of Assumption{3),

s)| < Z |u'w; | (w]t) 2P (\)G (|swit])
< MG (Mylst) 'y wiwfs® (At
= M,G (M,|st]) |t|.
By Taylor expansion, for some < s* < 1,
[H(1) = H(0) = H(0)| < 5|H(s")| < §MG (My]t]) [t]*.
That is,

(8)

o <Ln(t) W+ t)( < LML G (My]t]) [t

Approximation ) will control the behavior of(s) = L, (Wy+su), aconcave
function of the real argument for each unit vector.. By concavity, the derivative

£(s) = ' bon(Wy + su) = —s + R(s)
is a decreasing function afwith
|R(s)| < %MnG (M, |W,, + sul) Wy, + sul?
On the sef|W,,| < /N, /e2} we have

W, + equ] < \/Ny/ea + €.

Thus
€1€
M,[W,, + equ| < —— 2 <\/N+/€2+€1) 1,
2G(1)N,
implying
|R(%e1)| < $M,G(1)|W,, £ €qul?
€1€9 2
< =
_G(l)N (Ny/ex +€7)

e (1+ 6162/N+) 61
Deduce that
Z(61) = —e1+R(e) < —ie
Z(—el) =€+ R(—€1) > %el

The concave functior — £,,(W,, + su) must achieve its maximum for sonaén
the interval[—ey, €], for each unit vector. It follows that|t,, — W,| < €. O
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COROLLARY 9. Suppos€; = Dn; for some nonsingular matrik, so that

_ _1 (@) ()
J, =nDA,D  whered, := nz ninip @ ().

i<n
If B, is another nonsingular matrix for which
(10) 14 = Ball2 < (2I1B; [l2) ™
and if

ey/n/Ny
G(1)\/32/|B7 |2

forsome) < e < 1

(11) max; <y, |1 <

then for each set of vectors), . .., ky in RV+ there is a sely, with QY. . < 2¢
on which

. 6B, |2 _
/ o 2 n 1.2
ZOSJ.SN”%(Q NP < == ZOSSN!D kil

Remark. For our applications of the Corollary in Sectiobsind7, we need
D = diag(Dy, D1,...,Dn) andk; = e;, the unit vector with & in its jth
position, forj < m andk; = 0 for j > m. In our companion paper we will
need the more generaj}’s.

PROOF. Firstwe establish a bound on the spectral distance betwgéandB,, !
DefineH = B;'A,—1.Then|H|s < ||B;||2]|An—Bull2 < 1/2, which justifies
the expansion

1A =B e = (1 (1 + H)™ = 1) B2 < ZjZl 15118, |2 < 1B, " l2-

As a consequencd A2 < 2B Y.
Choose:; = 1/2 ande; = € in Lemma?. The bound omax;<,, |1;| gives the

bound onmax;<,, |w;| needed by the Lemma:
nlwil* = niD(Jn/n) " D = A i < [|AL |2l

Define K; := Jn_l/2/<;j, so that|x;(§ — 7)I* < 2(K[W,)? + 2(Kjr,)?. By
Cauchy-Schwarz,

Zj(KJ/'T”)2 < Zj |Kj|2|rn|2 = UH|Tn|2
where
— -1 _ -1 -1 —-1p—-1
Ui = Zj Ky Ry = Zjn (D™ 'kj)' A, " D™ 'k

<o B Y D
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FUNCTIONAL REGRESSION 9

For the contributiorV/; := 3 |Kj’.Wn|2 the Cauchy-Schwarz bound is too crude.
Instead, notice tha®V,, = U,, which ensures that the complement of the set

I = {IWa| < /Ny /ep N{Vi < Uy/e}
hasQ probability less tha2e. On the sel,. .,
e 2 2
D ocjen K@ =M <2Vt 2Wilral* < 3U/e.
The asserted bound follows. O

5. Known Gaussian distribution. Initially we suppose that andX are known.
We can then calculate all the eigenvaldégsthe eigenfunctiong,, for K, and the
coefficientsz; ;, := (Z;, ¢, for the expansion

Xi—p=2;= ZkGN zi,k¢k'

The random variables, ;, are independent with; , ~ N (0, 8;). The random vari-
ablesn; 1, := z; 1/\/0x are independent standard normals.
UnderQ,, = Q, .8, they;’s are independent, with; ~ @, and

A =a+ (X;,B) = by + ZkEN zixbr  whereby = a+ (u,B).

Our task is to estimate thi,'s with sufficient accuracy to be able to estimate
B(t) = Y ey brdk(t) within an error of orderp, = n(1=28)/(a+28) |n fact

it will suffice to estimate the componefi,,B of B in the subspace spanned by
{b1,...,bm} with m ~ n!/(@+25) pecause

(12) IHZBI® = b = Os(m'~") = Ox(pn).

We might try to estimate the coefficier(ts, . . ., b,,,) by choosing; = (go, - - - , Gm)
to maximize a conditional log likelihood over aflin R™+1,

To this end we might try to appeal to Corolla®yn Section4, with «; equal to the
unit vector with al in its jth position for; < m andx; = 0 otherwise. That would
give a bound forzj<m(§j — v;)?. Unfortunately, we cannot directly invoke the
Corollary with N = m to estimatey = (bg, b1, ..., bx) When

Z; .
1<k<m i,k9k

Q=Quep and D =diag(1,6y,...,0n)"?
(13) 5; = (in,la"'azi,]\/) and 777{ = (1,7’]7;,1,...,7%7]\[)
because\; # /.
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Remark. We could modify Corollary9 to allow ¢, = ¢!y + bias, for a
suitably small bias term, but at the cost of extra regulazdpditions and a
more delicate argument. The same difficulty arises wherawelinvestigates
the asymptotics of maximum likelihood with the true distition outside the
model family.

Instead, we use a two-stage estimation procedure thatnelies the bias term
by a change of measure. Condition on ¥jé. Consider anV much larger thamn
for which

N~nt with2+20)'>¢>(@+28-1)"1

Such & exists because the assumptions- 1 andg > (a+3)/2 imply a+ 25—
1 > 2 + 2a. Define¢;, D, andn; as in equationX3). For Q use the probability
measure

QuapN = ®i<nQy, y  With \; vy =y andy’ = (b, b1, ..., by).

ChooseB,, := P, ,, k A,. DefineX,, = Xz, N X, N X4, Where

(14) Xz,n = {max;<, 1Z||> < Cologn}
(15) Xy = {max;<, [n;|* < CoNlogn}
(16) Xan = {[|4n — Bull2 < (2B, '[l2) "'}

If we choose a large enough constéist= Cy(F), Lemmadland its Corollary in
Sectionllensure thaP,, , kX7, < 2/n andPy , kX7, < 2/n; and in subsec-
tion 5.1 we show that

|’Br71H2 = 0z(1) and P k|| An — BnH% = og(1).

ThusP, , kXS, = o(1). Moreover, on the sef(,,, inequality (L0) holds by con-
struction and inequalityl@) holds for large enough because

max;<p, \7],-]2 < O5(Nlogn) = o5(v/n/N).

Estimatey by theg = (go, . .., gn) defined in Sectiod. Then discard most of
the estimates by defining,, := Zlgkgm gr¢y. For each realization of thi;'s
in X, the Lemma gives a s, . with Q,, o, vY7, . < 2¢ on which

Zlgkgm G = wl* = Os (Zlgkgm 0’;1) = Og(m'**/n) = Og(pn),
which implies
B, — B* = Zlgkgm G — wl” + me b2 = O5(py,).
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FUNCTIONAL REGRESSION 11

In replacingQy,,. g by Q, .5, n We eliminate the bias problem but now we have
to relate the probability bounds fdp,, , 5. to bounds involvingQ,, , 5. As we
show in subsectiorb.2, there exists a sequence of nonnegative consigntsf
orderos(logn), such that

(17) HQn,a,B - Qn,a,B,N”%‘V S eQCn Zign ‘)‘z - )\i,N’2 on xn
From this inequality it follows, for a large enough constéht that

P,k Qnas{IBn — B[I> > Cepn}
< Pn,,u,Kfo + Pn,,u,Kxn (HQn,a,IB% - Qn,a,B,NHTV + Qn,a,B,N%me)

1/2
< o5(1) +2¢ 4 e (ZKH Py 1| Ai — )\i,N’2> .

By construction,
Ai — AN = Zk>N i kb
with the z; ,’s independent and; ;, ~ N (0,6). Thus

Zi<n ]P)n,u,K‘)\i - )‘LN’z <n Zk>N ka% — Og(an—a—2ﬁ) — 03"(6_20”)

because, > (a + 28 — 1)~1. That is, we have an estimator that achieves the
O+(pyn) Minimax rate.

5.1. Approximation ofd,,. Throughout this subsection abbrevidtg,, x toP.
Remember that

Ay =n~t Z Y (Ni) o with A v =y Dnp,
where

7,:(d7b17"'7bN)

D = diag(1,1/01, ...,/ 0n)

ni =101, minN)

With B,, = PA,,, we need to shoWB,, ! |2 = O5(1) andP||A,, — B,||3 = o5(1).

The matrixA4,, is an average af independent random matrices each of which is
distributed likeNN"2)() (' DN), whereN’ = (No, N1, ..., Ny) with Ny = 1 and
the otherN;’s are independeny (0, 1)’s. Moreover, by rotational invariance of the
spherical normal, we may assume with no loss of generality ttDN = @+ xN7,
where

N
K2 = Zkzl 0ib2 = O(1).
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Thus
B,, = PNN'¢® (a + £Ny) = diag(F, roln_1)
where

rj =PNjyP(@+rN;) and F= {TO rl}

Ty ro|
The block diagonal form oB,, simplifies calculation of spectral norms.

1B 2 = [ldiag(F ", rg  In—1)]l2

_ _ ro + T2 -1
< F1 Lo < — :
< max ([[F 7z, [|rg  In-1ll2) < max <7“07’2 — T%ﬂ’o )

Assumption {/2) ensures that botty andr, areO(1).
Continuity and strict positivity of(?), together withmax(|a|,x) = Og(1),
ensure thaty := infg . inf|, <, ) (a + kz) > 0. Thus

+1
V2rrg > co/ e~ 24z > 0
-1
Similarly
Ver(rory —17) = v 2mroPy?) (@ + £N1) (N1 = 71 /79)?
+1

+1

a2 2

> coro/ (z —r/ro)%e™® Pdy > coro/ e 2dy.
~1 ~1

It follows that || B;; || = O5(1).
The random matrix4,, — B,, is an average of independent random matrices
each distributed lik&\N'y)(?) (@ + xN;) minus its expected value. Thus

Pl Ay — Bull} < P Ay — Baff =n 'Y var (Nij(?) (7’DN)> .

0<j,k<N

Assumption (02) ensures that each summandQg (1), which leaves us with a
O5(N?/n) = o5(1) upper bound.

5.2. Total variation argument. To establish inequalityl() we use the bound
”Qn,a,IB - @n,a,B”gFV < h2 (Qn,a,lﬂ% @n,a,B) < Zign hZ(Q)\ia Q)\i,N)
By Lemma4

Qs Qxi ) < 079 (N0) (14 16:]) 9|63
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FUNCTIONAL REGRESSION 13
where

10i] = |Ai — X n| = [(Zi,B) — (HNZi, B)|
= [(Z;, HyB)|
< |1Z;||| HyB||
< O5 <\/ N1=281og n)
= og(1)

Thus all the(1 + |6;]) g(]6;|) factors can be bounded by a singlg (1) term.
For(a,B, u, K) € F(R, o, ) and with the||Z;||’s controlled byX,,,

(il < lal + (lull + 1ZDIB] < C2v/logn

for some constant, = Cy(F). Assumption (:2) then ensures that all thg? ()\;)
are bounded by a singterp (o5 (log n)) term.

6. Approximation of compact operators. Supposd’ is a positive, (self-adjoint)
compact operator on a Hilbert spakawith eigenvectorge; } and eigenvalue§y. }.
Thatis,Te; = 0;¢; with 81 > 65 > --- > 0. For eache in K,

T = ZkeN Orer ® ey,

a series that converges in operator norm.
Let T be another positive, (self-adjoint) compact operatorJorwith corre-

sponding representation
T = ZkeN Orer Q eg.

DefineA := T — T andd = ||A||. The operatofl” also has a representation

(18) T= Zj,kEN Tijej & eg.
Note thatT} , = T}, becausd is self-adjoint. This representation gives

8= Zj,keN <Tj’k —0i = k}) €
and ,
JAI? = suppo (@, Ax) < 37 (T =005 = k})

The last inequality will lend itself to the calculation ofetlexpected value dfA |2
whenT is random, leading to probabilistic bounds for

i msart-aos ver. 2009/12/15 file: Functional Regression.tex date: 21 January 2010



14

In this section we collect some general consequencésbeing small. In the
next section we draw probabilistic conclusions wheis random, for the special
case wherd” = K andT = K, the usual estimate of the covariance kernel, both
acting on{ = £2(m). The eigenvectors will become eigenfunctians ¢o, . . .
and ¢, do, . ... We feel this approach makes it easier to follow the overgluia
ment.

Both {e; : j € N} and{e;, : £ € N} are orthonormal bases f6¢. Define
ojk = (ej,eg). Then

e-zg i L€ and 'é:g O; L€
J kEN J.kCk k jEN J,k€g

and
{1=3"}=(ejrey) = ZkeN 0jkTj k-

6.1. Approximation of eigenvalues.The eigenvalues have a variational charac-
terization Bosq 200Q Section 4.2):

(19) 0; = dimi(rif)<j sup{(xz,Tz) : x L L and|z| = 1}.

The first infimum runs over all subspacksvith dimension at most— 1. (Whenj
equalsl the only such subspace {s) Both the infimum and the supremum are
achieved: byL;_; = spare; : 1 < i < j} andz = e;. Similar assertions hold
for T and its eigenvalues.

By the analog of 19) for 7,

5j > sup{(z,Tz) 1z L Lj_;and|z|| =1}
> sup{(z,Tz) —0:x L L;_; and|z|| =1} = 6; — 0.

Argue similarly with the roles of” andT reversed to conclude that
(20) 0; —6; <6  foralljeN.

6.2. Approximation of eigenvectorsWe cannot hope to find a useful bound
on|lex — ex||, because there is no way to decide whicht@f, should be approxi-
matingey. However, we can boundfy ||, where

+1 if Ok.k >0

= o€, — € with o1, := sign(c = ;
o= okek —ex k G {—1 otherwise

which will be enough for our purposes.
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FUNCTIONAL REGRESSION 15

We also need to assume that the eigenvajus well separated from the othéy's,

to avoid the problem that the eigenspacéfdbr the eigenvalu@k might have di-
mension greater than one. More precisely, we considefoawhich

e :=min{|0; — 0| : j # k} > 54,
which implies
165 — 0] > |01 — 0] — 6 > 216, — ;] > ey
The starting point for our approximations is the equality
(21) (Aey, ) = (Te, e;) — (e, Tej) = (O — 0,)0 -
Forj # k we then have

16
25

which implies

— (0 — 0;)%0 ]k < (o) A8k, €)% < 2(Afr, €)% + 2(Aey, €5)?,

25 ~
ol < g (AFk e ek + 2175,/ (0x = 0;)*  becauseTex, e;) = 0 for j # k.

To simplify notation, writed 3> for >~ n{j # k}.
The introduction of ther,, also ensures that

I fell® = llexll® + exl|® — 20k ek, €k) = 2 — 2|ok 4]
<2-20},  becauséoy | <1

_ * 2
= QZJ Uj,k:
* 25
Ssz<Afkaej /%"‘_Z k/ek— i)
The first sum on the right-hand side is less than
25
T IATeP /e < IAIPNFRI?/(46%) < 1 fell*/4.

The second sum can be written2ig| A, ||% /4 for

Api=> Apje;  With Ay = T/ B =6;) 1057k
= 770 if j =k
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Our bound for| f; || (with an untidy25 /3 increased t®) then takes the convenient
form

(22) Ifell® <OAl®> if e > BIA].

For our applicationsP||Ax||? will be of orderO(k?/n).
Whend is much smaller thap, we can get an even better approximation fpr
itself. Start once more from equalit®1), still assuming that; > 5§. Forj # k,
O'ko'j,k = Uk<A€k; €j>/(5k — 9])

= (Aler + fr),¢j)/(0x + v — 0;)  wherey;, = 6), — 6;

—1
Vi (Afr €j)
— A (1— + IR TT pecauseTey, e;) =0
k7j< ej_9k> Qk—ej q k ]>

J Uk O — 0,

Ther; ;'s are small:

Ag s A ; !
‘Tk"j’§§<6| k7]|+|< fk76]>|> fOI’j;ék, if 6k>55
4 0k — 6]
(23) < DAl inequality @2).
|0 — 6]
Definery s = |owil —1 = =3[ fil* andry, = ;o 7k e;. We then have a

representation (cHall and Hosseini-Nasal2006 equation 2.8 an@€ai and Hal)
2006 §5.6)

(24)  fr = onek — ex = (o(er, ex) — 1) e + Zj OkOj k€ = N + T

6.3. Approximation of projections. The operatoti; = ), _ ; ex ® e}, projects
elements ofH orthogonally onto sp&ey, : k € J}; the operatoff ; = Y ke Ek®
ey projects elements ¢k orthogonally onto spafe;. : k£ € J}. We will be inter-
ested in the casé = {1,2,...,p} with p equal to either then or the N from
Sectionb. In that case, we also writd,, andﬁp for the projection operators.

In this subsection we establish a bound [féf ;B — H ;B|| for aB = > bjej
in .
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FUNCTIONAL REGRESSION 17

The differencel ; — H; equals

Zkej(akgk) ® (oRer) — ex ® ey
— ZkeJ oker @ T + Zke}(ek Ff) © Ay
+Zkej((ek+1\k+m)®ek —ep @ ep)
=R+ @A+ A @ey

whereR; := Z 0Ler @1k + frr @ A + 11 @ ey

keJ

Self-adjointness of” implies T, = Tj.; and hence\;, = —A, . The anti-
symmetry eliminates some terms from the main contributioi § — H ;:

ZkeJek QAp+ A ®ef = Zke} ZJEJC Apjler®e;+ej@ey).

With this simplification we get the following bound f§¢H; — H ;)B|2:

2 2 2
Y, oD MeablP 31D e ST Aegbull® 4 3B

The first two sums contribute

3 ZkeJ (ZjEJC Ak’jbj>2 +3 ZjeJc (ZkeJ Ak’jbk) 2

In the next section the expected value of both sums will simpecausePAy, ;A
will be zeroifj # §'.

For the three contributions to the bound fidR ;B||?> we make repeated use of
the inequality, based on equatior22) and 3),

81 x|l
< Z2IALI2 56(|A I
|(ry, x)| < 5 Ak lI|zr| + 56| Al E :j 0 — 0,

which is valid whenevee, > 56. To avoid an unnecessary calculation of precise
constants, we adopt the convention of the variable constantwrite C for a uni-
versal constant whose value might change from one line toeixe The first two
contributions are:

| Zkej ol (r, B)||” = ZkeJ<rk’B>2
2
2 4 2 2 ]
= CzkeJ Ol Axll” + € ZkeJ 1A <ZJ |0 — 9]-]>
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and

I3 A BP < (3 Il A B))
<0 (0, ) B, (55 )

For the third contribution, let = 3, x;e; be an arbitrary unit vector ift(. Then

(ZkeJ<rk B, $>)2 - (ZkeJ b (ks ZE>)2
. 2
= (ZkeJ ‘bkxk‘HAkW)Q +08 <ZkeJ [ Akl bk Zj !@yw_j’@j\)

2 * 1 2
S (ZkeJ |bk|”AkH2) + 06 (ZkeJ HA’“”2) Zke] b (Zy 10y, — 0j|>

take the supremum ovaet, which doesn’t even appear in the last line, to get the
same bound folf 3", . ; bire||.

In summary: ifminge s €, > 50 then||(H; — H;)B||? is bounded by a universal
constant times

ZkeJ (ZjeJc ki ’) +deJc (Zk JA’ka) +Zk L ORlIA]
* 2
(S i) (0, 1) o (3 Aty
< bl N’
(5 )

(25) )
* 1
+o (ZkeJ HA’“HQ) ZkeJ b <ZJ |0k — 9j|> '

7. Unknown Gaussian distribution. When g and K are unknown, we esti-
mate them in the usual waji;, (t) = X, (t) = n~' Y, X;(t) and

K(s,t)=(n—1)"" Zign (Xi(s) = Xn(s)) (Xi(t) — Xan(t))
=(n—-17" Zign (Zi(s) = Z(s)) (Zi(t) — Z(1)) ,

which has spectral representation

R(s.t)= Y Bidu()(0).
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FUNCTIONAL REGRESSION 19

In fact we must havé, = 0 for k¥ > n because all the eigenfunctions cor-
responding to nonzer6,’s must lie in then — 1-dimensional space spanned by
{Z; =7 :i=1,2,...,n}.

The construction and analysis of the new estim&tawill parallel the method
developed in Sectiob for the case of knowrk and ;.. The quantitiesn and N
are the same as before. We ere, (for p = N or p = m) for the operator
that projects orthogonally onto sp%iﬁ, . ,gp}. Essentially we have only to es-
timate all the quantities that appeared in the previousfgtmm show that none of
the errors of estimation is large enough to upset analogseotalculations from
Section5. There is a slight complication caused by the fact that we atdknow
which of igj should be used to approximatg. At strategic moments we will
be forced to multiply by the matri§ := diag(oo,...,on) With oy = 1 and
oy, = sign({¢y, $k>) for k > 1. The results from Sectio® will control the differ-
encefy := ak&}f — ¢. The other key quantities are:

() A=K -K
(i) D = diag(1,6;,...,05)"/2
(i) % = (Zi1,.... %) WhereZ;, = (Z;, o)
(V) Z = (Z1,...,2Zn) whereZy, = (Z,dp) = n ' iy Zin

V) & = (1,7 — 7)) and7j; = D~L&;. [We could defingj; = D~1¢; but then we

Pt} . it
would need to show thad—'¢; ~ D~1¢;. Our definition merely rearranges
the approximation steps.]

Vi) 7 := (30,01, -.,by) whereB = 3", . bydy, and7p := a + (B, X). [Note

that\; = 5o + (B, Z; — Z).]
(i) Nn =70 + (HNB,Z; — Z) = &5.
(viil) g = argmaxgcpni1 i<, vi(§ig9) — ¥(€lg) and

B = Zlgkgm Gk Pk

[Note that these two quantities differ from tﬁeandﬁ% in Sectionb.]
(i) A, =n"' 2, m b (A n)

The use of estimated quantities has one simplifying coresecpi

Zi(t) —Z(t) =y, (Fin— ZR)(0)
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so that
0l = k) = [ Rs.03,(5)50(0) ds
= (- )TY Gy~ E) ),
which implies(n — 1)1 3", %% = D? and
(26) (n—1)7" Zign B = D™ 'D?’D™! .= diag(1,6:/61,...,0N/0N).

We will analyzef? by rewriting it using the eigenfunctions fdt. Remember
thatz;; = (Z;, ¢;) and the standardized variablgs; = z; j/,/0; are indepen-
dentN (0, 1)'s. Definez.; = (Z, ¢;) andn.; =n~' Y, n; ; and

Ciwi=(n =171 (mig—n5) ik — 1),

a sample covariance between two independé(tt, 7,y ) random vectors. Then

Zi(t) — Z(t) = ZjeN(Zi,j — 2.5);(t) = ZJEN Vi (i —n5)¢;(t)
and
(27)  K(s,t)= Zj,keN K;roi(s)oe(t)  with Kjj, = /0;0,C;
Moreover, as shown in Sectidi the main contribution tg; = ak&fk — ¢y is
o i ) VOi0C /(O — 0;) G £k
Ay = Z N AkJ(ﬁj with AkJ = {O if ik .

In fact, most of the inequalities that we need to study the Bevome from sim-
ple moment bounds (Lemn&i) for the sample covariancés; ;, and the derived
bounds (Lemma&2) for the A;’s.

As before, most of the analysis will be conditional on ¥yés lying in a set with
high probability on which the various estimators and otladom quantities are
well behaved.

LEMMA 28. For eache > 0 there exists a séfm, depending on: and K,
with B
supg P kXc ,, < € for all large enough

and on which, for some constaft that does not depend qnor K,
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(i) Al < Cen=1/2
(i)) max;<, ||Zi|| < Cey/logn and|Z|| < Cen~1/2
(ii)) |[(Hm — Hun)B|* = 05(pn)
(iv) |(Hy — Hy)B||?> = Og(n~'7%) for somer > 0 that depends only on
andg
(V) max;<, [7:|* = og(v/n/N)
(Vi) ||SA,S — Ayll2 = o5(1)

This Lemma (whose proof appears in Sec@#rontains everything we need to
show that|B—B||? has the uniforn©s(p,,) rate of convergence iR, ¢ probability,
as asserted by equatioB)(In what follows, all assertions refer to the numbered
parts of Lemma&8. B B

As before, the component @f orthogonal to spafys, . . ., ¢,, } causes no trou-

ble because R N
B —B|> = [|lg — 73 + || HnB|?

and, by(iii) ,
|HAB|? < 2| HsB|? + 2||(Hm — Hu)B|* = O5(pn)  onXep.

To handle||g — 7||2, invoke Corollary9 for X;'s in %m, with »; replaced byy;
and A,, replaced byA,, and B, replaced byB,, = SB,,S, the sameB,, andD as
before, and) equal to

QnaBN = Qi<n@y, -

to get a se¥y, e with Q058U < 26 on which[|§ — 7]3 = Og(pn). The
conditions of the Corollary are satisfied ﬁ@n because ofv) and

|An — Bpll2 < || An — SARS|2 + |SAnS — SBRS||2 = o5 (1).

To complete the proof it suffices to show th&,, o 5 n — @n,aﬂwnw tends to
zero. First note that

NN —Ain = a+ (B, X) + (HyB, Z; — Z) — a — (B, ) — (HNB, Z;)
— (HYB,Z) — (HYB,Z) + (HyB,Z) + (HyB — HyB, Z;)
which implies that, oriTCE,n,
Ny — Nil? < 2/(HYB, Z)? + 2| HyB — HyB|? (|12 + |1Z]))”
< O5(N'=2%)C2%n~1 + Og(n~17")C? (n_1/2 ++/ log n)2

(29) = Og5(n~ ') forsomed < v/ < v.
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Now argue as in subsectid2: on X,

1Qn.a BN — Qnasnliy < Zign h? <Q;LN, QAZ-,N>
< exp (og(logn)) ZKn Nin — X l? = ox(1).

Finish the argument as before, by splitting into contritsi fromicg andicnﬁgfm6
andDNCn N gm,e.

8. Proofs of unproven assertions from Section 7. Many of the inequalities
in this section involve sums of functions of tligs. The following result will save
us a lot of repetition. To simplify the notation, we drop thibscripts fronP,, , .

LEMMA 30.

(i) Foreachr > 1 there is a constant’, = C..(F) for which

Cr (1+ k" 0F=7)  ifr>1
= <
ik (r,7) Z {] 7 }| 9k|’" - {C1 (1+ k" ogk) ifr=1

(i) Foreachp,
f—a— 25]—a

_ 11—«
Zk<p pr 0 — 0] =Oz(p ™)

PrRooOE For (i), argue in the same way &kll and Horowitz(2007, page 85),
using the lower bounds

Caj™® if 7 <k/2
10; — Ok > < calj — k|E—@L ifk/2 <j <2k
Cak™™ if 5 > 2k

wherec,, is a positive constant.
For (i), split the range of summation into two subs€ig:, j) : j > max(p, 2k)}
and{(k,7) : p/2 < k < p < j < 2k}. The first subset contributes at most

—a—24 c—q —a\—2 _ 11—«
DTy (k™) T = 05 (017

becauser — 23 < —3. The second subset contributes at most

IO i (j—k)2 = 2+a—28 —a
Zp/2<k§pk Co k Zj>pj (1—k) O <p.p P 0(1)) ’
which is of orderog(p~®). 0
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The distribution of¢; ;. does not depend on the parameters of our model. Indeed,
by the usual rotation of axes we can rewfite—1)C; asU]/-Uk, whereU, Us, ...
are independenv (0, I,,—1) random vectors. This representation gives some useful
equalities and bounds.

LEmMMA 31. Uniformly over distinctj, k, ¢,

0] IP’GM =1 and]P’(Gj,j - 1)2 = 2(n - 1)_1
(i) PC;r = ]P’(‘fjk(‘fj,g =0
(i) Pe2, = O(n")
(iv) ]P’(:’2 +Clp =10

(n~?)
(v) ]P’(t’]k— O(n?)

PROOF Assertion (i) is classical becauig;|> ~ x?_,. For assertion (i) use
P(U{UQ | Ug) =0 and

P(UUU3Us | Up) = trace (UsUsP(UsUY)) =
For (iii) useP(U 1 Uy) = I,,—; and
P(U{UU3U; | Up) = trace (UpUsP(U1UY)) = trace(UsUs) = |Us?.
For (iv) useP|Us|* = n? — 1 and
P((U1U2)*(U3U2)? | Us) = |Us|*
For (v), check that the coefficient ¢f in the Taylor expansion of
Pexp(tU;Us) = Pexp (%t2|U1|2) e
is of ordern?. a

LEmMMA 32. Uniformly over distinctj, k, ¢,
(i) PAg; =PAg jAre =0
(i) IPA%J = Og5 (n"'k™j7%(6 — Hj)‘z)
(iii) IPAiJ. = Og (n™2k™25722(0), — 0;)™*)
(V) PAg]? = Os(n~'k?)
V) PlIAg[* = Og(n=2k%)

PrROOFE Assertions (i), (ii), and (iii) follow from Assertions fiiand (iii) of
Lemma31l. For (iv), note that

P||A|? = Z PAZ, = O5(n~ k™)K (2, )
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For (v) note that

Pl Ayt = (Z 0;0k53 k(0 — 0;)” 2)2
:Z,Z 0;0:03(0), — 0;)72(60), — 0,)"*PS3 .S,

— Os(n (Z 0,01 (05 — 0; )

= Og(n"?k").
O

To prove Lemma&8we define’)NCE,n as an intersection of sets chosen to make the
six assertions of the Lemma hold,

xe,n = xA,n N :X:Z,n N xA,n N xn,n N xA,na

where the complement of each of the five sets appearing orighehand side

has probability less thaty5. More specifically, for a large enough constéht we
define

Xan={|A] < Cn™'/?}

f)CZn = {max;<, || Z||> < C.logn and || Z|| < Cen™"/?}
DCWL = {max;<, [n;]* < C.Nlogn} as in Sectiorb
Xam = {| Zign Niflill2 < Cen}

The definition offCA,n, in subsectiorB.3, is slightly more complicated. It is defined

by requiring various functions of thi;’s to be smaller thad', times their expected
values.

The setX A,n IS @almost redundant. From Definitidnwe know that

min__[0; — 0| > (a/R)N~'7 and min 6; > R™'N™%.
1<j<j/<N 1<j<N

The choiceV ~ n¢ with ¢ < (242a)~! ensures that'/2N~1=* — 00. ONXa ,,
the spacing assumption used in Sectéholds for alln large enough; all the
bounds from that Section are avaiable to uskoR. In particular,

maxj<y |0;/0; — 1| < O5(N®||A[|) = og(1).

Equality 26) shows thaf 4, C Xa ,, eventually if we make sur€, > 1.
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8.1. Proof of Lemm&8part (). Observe that
~ 2
PIAIZ =" (K — 605 = k})
= ZM 0,0k (S — {j = k})°
, —1 ' -2
<D 05057+ 0i0:05(n77)
= Og(n~")

8.2. Proof of Lemma&8part(ii). As before, Corollaryt2 controlsmax; <, ||Z;|?.
To control theZ contribution, note that||Z||? has the same distribution 4%||?,
which has expected valle ; 0; < oc.

8.3. Proof of Lemm&8 parts (iii) and (iv). Calculate expected values for all
the terms that appear in the bourdb) from Section6.

2 2
Frpkc Zkﬁp (Zj>p Ak’jbj> Pt Zj>:n <ZkSp Ak’jbk)

= D PusAl, (5 8) by Lemma3()

_ —1 —a—208 —« N2

= Oz(n )Z,@ ka 70k — 6;)
(33) = O5(n"'p™®) by Lemma30
and
Pajuie Yy BRI = 05(n™) Y, K72 = 05(n™?) (1457 + logp)
and
P 1 stp il AklI* = Og(n ") ZkeJ k78 = Og(n~1) <1 +pP P+ logp)

and
P i Zk,‘<p Ak = O5(n~'p%)

and
P i Zkgp (Z: Ak,jbj>2 = Og(n"") Zkgp Z: e (T
(34) =O4(n~Y) by Lemma30
and
2
P Y I () 52
<p i |0k — 6]
(35) = Og(n"16%) (p3 +p 2 log? p)
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and
(36) 2
* 1
2 - — 1 3-‘1—20(—251 2 by L a30.
Z,@bk <Z] A _9j|> O5(1+p og”p) y Lemm

For some constar@. = C.(J), on a setX, ,, with P,, HKDCA < ¢, each of the
random quantities in the previous set of inequalities (tolhtp m andp = N)
is bounded by’ times itsP,, , x expected value. By virtue of Lemn&2(iv), we
may also assume that\; ||> < Cck?/n on X .

From inequality 25), it follows that on the seX s , N X4 5, for bothp = m and
p=N,

H(ﬁp - Hp)B”2
< Og:(n_lpl_o‘) + Og(n_Z) (1 +p>728 4 log p + pi 8+ log? p>

+ O5(n"'p*)O5(n ") + O5(n™?) (p3 + piT2em2 og? p)

+ Og(n?p*) 05 (1 + p*** >  log? p)
— O5(n~ 1P ifp<N.

This inequality leads to the asserted conclusions whenm orp = N.

8.4. Proof of Lemm&8 part (v). By constructionj;; = 1 for everyi and, for
J=2, -
VOilig = (Fij — 25) = (Zi — L, ¢;)
Thus, forj > 2,
~ —1/2 = T
o =0; "(Li — L, ;5 + fi) =mij+ i
with

_ _ 2+a10gn
5 < 07 (12l + 121 15 < 00 (222 ) ond

In vector form,
~ ~ L N3t+e], ~
(37) Sii=mn;+0  with [5;]2 = Og [ 28" < 05(n/N?) on K.
n 9
It follows that

max;<p |7;| = max;<y, |STi| < max;<p, |1;|+o5(v/n/N) = O5(y/n/N) on .;)VCEJL.

i msart-aos ver. 2009/12/15 file: Functional Regression.tex date: 21 January 2010



FUNCTIONAL REGRESSION 27

8.5. Proof of Lemm&8 part (vi). From inequality 29) we know that
en = maxi<p [Ny — Ain| = Op(n~ )2 onX,,

and from subsectiob.2we havemax;<,, |\; x| = O5(y/ logn). Assumption {'3)
in Section3 and the Mean-Value theorem then give

maxi<y, [P N n) — @ \in)| < enty® (Ain)Glen) = og(1).

If we replacey/® (X y) in the definition ofA,, by L; := %@ ()\; x) we make a
changd with

Il < os(Min = )73 i

which, by equality 26), is of orderos(1) on 5@7”.
From Assumption2) we havec,, := log max;<, L; = og(logn). Uniformly
over all unit vectors: in RV+! we therefore have

w'SA,Su = o5(1) + (n— 1) Z,< Liv/ (n; + 6:) (i + 6)'u
=o5(1) + (1 + O(n_l)) u Apu
+ 05 (n7) 32, Lo (W) +2(u/m) (w'5))
Rearrange then take a supremum avéo conclude that

154,85 = Aulle < 05(1) + Os(e*) maxicn (|61 + 206:] Imi)

Representation3({) and the defining property dfn,n then ensure that the upper
bound is of ordeps(1) on X, ,,.

9. Theminimax lower bound. We will apply a slight variation on Assouad’s
Lemma—combining ideas fronvu (1997 and fromvan der Vaart(1998 Sec-
tion 24.3)—to establish inequality),

We consider behavior only fqi = 0 anda = 0, for a fixed K with spectral
decomposition) .\ 0;¢; ® ¢;. For simplicity we abbreviaté, o, to P. Let
J={m+1,m+2,...,2m} andl' = {0,1}’. Let3; = Rj—”. For eachyinT
defineB, = €}, ;7;8,¢;, for a smalle > 0 to be specified, and writ@., for
the product measure;<,,Q, () with

Ai(y) = By, Zi) = EzjeJ'Vjﬁjzi,j'

For eachj letl’; = {y € I : v; = 1} and lety; be the bijection oi’ that flips
the jth coordinate but leaves all other coordinates unchangetd: he the uniform
distribution onI’, that is, 7., = 2~™ for eachy.
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. ~ ~ N2
For each estimatdb = ), b;j¢; we havel|B, — B[|> > Y. _; (%ﬂj - bj)
and so

sup]P’anIB% B”2>Z er ’YZEJ PQ, (6%@ Z)
b;

=230 3 o B (Qle8 =8 + Q) (0-5)°)
(38) 227" D, 1B PIQ A Q)
the last lower bound coming from the fact that
(€8 — bj)2 + (0—1;)> > L(ep;)?  forallb;.
We assert that, i is chosen appropriately,
(39) min; , P[|Qy A Qy, (1) || stays bounded away from zeromas- oo,

which will ensure that the lower bound i88) is eventually larger than a constant
multiple of Ejej 5]2 > c¢py, for some constant > 0. Inequality @) will then
follow.

To prove B9), consider a in I" and the corresponding = ;(~y). By virtue of
the inequality

1/2
10, AQull=1=11Qy = Qullry = 1= (2A D, A*(@x): Qni)
it is enough to show that
(40) lim sup,,_, o, max; P <2 A Zign hZ(QM(V), Qki(v’))) <1

DefineX,, = {max;<, ||Z;]|*> < Cologn}, with the constan€, large enough that
PX{, = o(1). OnX,, we have

A < Zjej BillZill* = O(pn) log n = o(1)
and, by inequality 4),
W Qx> Qri(r) < Os(DN(y) = Mi(Y)P < €05(1)57 2.
We deduce that
P(2AY, B (@i Qni)) S 2PN+ EOs(1)BIPX, 2
<o(1)+ 620(1)715]2-9]-

The choice of/ makes3?6; < R*m~~% ~ R?/n. Assertion ¢0) follows.
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10. Hdlinger distances in an exponential family. We need to show that
R2(Qx, Qars) < 32D (N) (14 18]) G(|3]) for all real A ands.
Temporarily write)’ for A 4 § and for (A + \')/2 = XA+ §/2.

1—3h*(Qx, Q) =/ @) fx ()
— [ exp (Ry = §o3) - o)

= exp (Y(A) = 59(N) — 59 (X))
> 1+ 9(N) = 3%(N) — 39(\)

That is,
R (@Qx, Qx) < P(A) + (A +6) — 20(X + 6/2).

By Taylor expansion i around0, the right-hand side is less than
122 (\) + 163 (¢<3>(A +0%) = Lp® () — 67 /2))

where0 < [6*| < |§]. Invoke inequality 8) twice to bound the coefficient @f /6
in absolute value by

P (G(18) + §G(191/2)) < 6P NG(19)).
The stated bound simplifies some unimportant constants.

11. Boundsfor Gaussian processes. As a consequence of defining properiy)(
the centered process := X — 1 has an expansio(t) = >,y vVOknkdr(t)
where then,’s are independen¥ (0, 1)’s, implying

2 _ 2
IZ]] —// Zk,k’eN OOk i G () drr (5) dtdS—ZkeNank-

LEMMA 41. SupposdV; = >,y TLkT]?’k fori = 1,...,n, where then, ;’s
are independent standard normals and thg’s are nonnegative constants with
00 > T 1= maX;<p Y _pen Ti,k- THEN

P{max;<, W; > 4T (logn + x)} < 2¢” " for eachz > 0.

PrROOF Without loss of generality suppogée= 1. Fors = 1/4, note that

Pexp(sWi) =[], (1~ 2sm) 7/ S exp (30, smie) < e

keN
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by virtue of the inequality- log(1 —¢) < 2t for |¢| < 1/2. With the same;, it then
follows that

P{max;<,W; > 4(logn + x)}
< exp (—4s(logn + x)) Pexp (max;<, sW;)

1

< T .
<e'- ZiSnPeXp(sz).

The2 is just a clean upper bound fet/*. O
COROLLARY 42.
P, {max;<, ||Z;||* > C'(logn + )} < 2™
whereC’ =4C' Y, k™ < o0.
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