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Abstract

Inspired by a growing interest in analyzing network data, we study the problem of node classifi-

cation on graphs, focusing on approaches based on kernel machines. Conventionally, kernel machines

are linear classifiers in the implicit feature space. We argue that linear classification in the feature

space of kernels commonly used for graphs is often not enough to produce good results. When this

is the case, one naturally considers nonlinear classifiers in the feature space. We show that repeating

this process produces something we call “deep kernel machines.” We provide some examples where

deep kernel machines can make a big difference in classification performance, and point out some

connections to various recent literature on deep architectures in artificial intelligence and machine

learning.

Key Words: deep architecture; diffusion kernel; kernel density estimation; nearest centroid; social

network; support vector machine.
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1 Introduction

Given a graph, G, let V (G) = {v1,v2, ...,vn} denote its set of vertices (nodes). Associated

with each node vi is a class label, say yi ∈ {1, 2, ..., C}. A small number of these labels are

known; others are unknown. We use the notation

Vobs(G) = {vi ∈ V (G) : yi observed} and Vmiss(G) = {vi ∈ V (G) : yi missing}

to denote subsets of nodes whose labels are known and unknown, respectively. The problem

that we study in this article is that of predicting the unknown labels based on how the nodes

are connected to each other.

For example, G may be a protein interaction network. Some proteins are known to be

associated with certain biological functions (e.g., cell communication), and we may be in-

terested in predicting which of the remaining proteins are also associated. Another example

of G is a social network, where the nodes are individuals. Some individuals are known to

be involved with certain activities (e.g., belonging to a certain club, or interested in certain

products), and we may wish to assess the likelihood that the remaining individuals are also

involved. For simplicity, we will assume C = 2, i.e., there are only two classes, but our ideas

also apply when C > 2.

We develop something we call “deep kernel machines” (DKMs) on graphs. Though we

focus on the problem of node classification on graphs, it will become clear by the end of this

article (Section 5) that the idea of DKMs does not really depend on the graph structure of

the data. The main reasons why we choose to start with the node classification problem

on graphs are: (a) it is a relatively new problem and not as widely studied as some of

the more conventional classification problems (Kolaczyk 2009); and (b) it is a problem for
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which kernel machines are particularly well suited (Shawe-Taylor and Cristianini 2004).

Experiments with data structures other than graphs will be left as future work.

2 Kernel machines and graphs

Lately, largely due to support vector machines (see, e.g., Vapnik 1995; Cristianini and

Shawe-Taylor 2000), kernel machines have become very popular in machine learning (Shawe-

Taylor and Cristianini 2004; Bishop 2006). Typically, a kernel machine has the form,

f(v) = α0 +
∑

vi∈Vobs(G)

αiK(v,vi), (1)

where K(·, ·) is a kernel function, and the coefficient αi often depends on the class label yi.

A support vector machine (SVM) is sometimes called a sparse kernel machine because

the optimization problem it solves will cause many of the αi’s to be 0. As a result, the

decision function (1) depends only on those observations (vi, yi) with αi > 0, and hence

the name “sparse.” In order to crystalize the gist of our ideas, we shall mostly work with

a much simpler kernel machine (Section 2.1), but other kernel machines such as SVMs also

can be used.

As noted by Shawe-Taylor and Cristianini (2004), kernel machines are particularly well

suited to analyze non-vectorial data such as graphs. Before we talk about kernels on graphs,

a few graph-theoretic concepts are needed. The adjacency matrix, AG , for graph G is defined

as

AG(i, j) =















1, if there is an edge between vi and vj ;

0, if not.
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Let

di =
∑

j 6=i

AG(i, j)

be the degree of node vi, or simply the number of nodes it is adjacent to. The graph

Laplacian matrix LG for G is defined by

LG = DG −AG , where DG = diag{d1, d2, ..., dn}.

In other words,

LG(i, j) =















di, if i = j;

−AG(i, j), if i 6= j.

With these basic notions, we are now ready to talk about kernels on graphs. For graph

data, one often uses a so-called diffusion kernel (Lafferty and Lebanon 2005), defined as

KG = exp(−βLG) =

∞
∑

m=0

(−β)m

m!
Lm
G , (2)

where β > 0 is a tuning parameter. The meaning and intuition behind the diffusion kernel

require a relatively long explanation, which we won’t go into. Roughly speaking, to measure

the similarity between vi and vj , the diffusion kernel takes into account the number of paths

of lengthm between vi and vj , for allm, and gives shorter paths more weight (e.g., Kolaczyk

2009, Section 8.4.2).

More generally, one is not required to use the adjacency matrix or the graph Laplacian

to construct the diffusion kernel. Instead, a diffusion kernel (2) can be constructed as long

as LG is a valid similarity matrix (see, e.g., Shawe-Taylor and Cristianini 2004); we will

show an example below (Section 4.2).

To compute the diffusion kernel, let LG = UΣUT be the spectral decomposition of the

Laplacian matrix, where Σ = diag(sm). Using the fact that Lm
G has the same eigenvectors
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for all m, the diffusion kernel can be computed by

KG = Udiag
(

e−βsm
)

UT .

We will use KG(i, j) and KG(vi,vj) interchangeably.

2.1 A simple kernel machine

Since KG(vi,vj) measures the similarity between nodes vi and vj , to classify v0 ∈ Vmiss(G)

we can clearly use the function,

fG(v0) ≡
1

n1

∑

vi∈Vobs(G)
yi=1

KG (v0,vi)−
1

n2

∑

vi∈Vobs(G)
yi=2

KG (v0,vi) , (3)

where n1 and n2 are total number of nodes in Vobs(G) with class label 1 and 2, respectively.

For v0, this is simply the difference between its average similarity to class 1 and its average

similarity to class 2. For example, we can classify v0 to the class which it is more similar

to, i.e.,

ŷ0 =















1, if fG(v0) > c,

2, if otherwise,

(4)

for some thresholding constant c. Below, we will sometimes drop the subscript “vi ∈

Vobs(G)” from the summation in (3).

It is easy to see that the function fG(v0) in (3) is of the general form (1), with α0 = 0,

αi = 1/n1 or −1/n2 depending on whether yi = 1 or 2, and K = KG. In other words,

(3) is a simple kernel machine. We shall mostly work with this simple kernel machine

because it can easily be constructed without invoking expensive optimization procedures in

order to determine the coefficients, α0, α1, α2, ..., αn. A more sophisticated kernel machine
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such as the SVM, on the other hand, would require quadratic programming to find these

coefficients. However, though we use (3) for convenience, we emphasize the framework we

develop below does not preclude us from using other kernel machines such as SVMs.

3 Deep kernel machines on G

A key idea behind kernel machines is that kernels can be regarded as calculating inner

products in an implicit feature space, call it F . That is,

KG(vi,vj) = 〈φ(vi), φ(vj)〉, where φ : V (G) 7→ F .

This means the kernel KG necessarily induces a distance function in F ,

dF (vi,vj) = ‖φ(vi)− φ(vj)‖

=
√

〈φ(vi), φ(vi)〉 − 2〈φ(vi), φ(vj)〉+ 〈φ(vj), φ(vj)〉

=
√

KG(vi,vi)− 2KG(vi,vj) +KG(vj ,vj) (5)

3.1 Linear classification in F

Using the distance dF — more specificly the squared distance d2F , the decision rule (4) is

equivalent to nearest-centroid classification in the feature space F . To see this, notice that

1

n1

∑

yi=1

φ(vi) and
1

n2

∑

yi=2

φ(vi)

are class centroids in F . Nearest-centroid classification simply declares ŷ0 = 1 if v0 is closer

to the centroid of class 1, i.e., if
∥

∥

∥

∥

∥

∥

φ(v0)−
1

n1

∑

yi=1

φ(vi)

∥

∥

∥

∥

∥

∥

2

<

∥

∥

∥

∥

∥

∥

φ(v0)−
1

n2

∑

yi=2

φ(vi)

∥

∥

∥

∥

∥

∥

2

.
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This is equivalent to



〈φ(v0), φ(v0)〉 −
2

n1

∑

yi=1

〈φ(vi), φ(v0)〉+
1

n2
1

∑

yi,yj=1

〈φ(vi), φ(vj)〉





−



〈φ(v0), φ(v0)〉 −
2

n2

∑

yi=2

〈φ(vi), φ(v0)〉+
1

n2
2

∑

yi,yj=2

〈φ(vi), φ(vj)〉



 < 0.

Cancelling out 〈φ(v0), φ(v0)〉 and dividing by −2, we obtain

1

n1

∑

yi=1

KG (v0,vi)−
1

n2

∑

yi=2

KG (v0,vi)− c(Vobs(G)) > 0,

where

c(Vobs(G)) ≡
1

2n2
1

∑

yi,yj=1

KG(vi,vj)−
1

2n2
2

∑

yi,yj=2

KG(vi,vj)

is a constant that depends only on Vobs(G) and not on v0. Clearly, this is equivalent to (4).

Being equivalent to nearest-centroid classification, the kernel machine (3) is a linear

classifier in the feature space F . In fact, most kernel machines are linear in the feature

space, including SVMs.

3.2 Nonlinear classification in F

However, it is quite possible that a linear classifier in F is not sufficient; we will show some

examples below (Section 4). But, in principle, there is nothing that prevents us from using

other, more flexible classifiers in F . For example, using the distance dF , we may consider

a classifier based on kernel density estimates. Let

p̂k(v) =
1

nl

∑

vi∈Vobs(G)
yi=k

Kh(F) (dF (v,vi)) (6)
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be a kernel density estimate of the distribution for class k. Many kernel functions can be

used for density estimation, e.g.,

Kh(F)(dF ) =
1√

2πh(F)
exp

(

− d2F
2h2(F)

)

, (7)

where h(F) is a bandwidth parameter, which serves to scale the distance dF . We shall write

KF (vi,vj) ≡ Kh(F) (dF (vi,vj)) . (8)

Using (7) for Kh(F), KF is nothing but the well-known radial-basis or Gaussian kernel,

except it uses the distance function dF rather than a distance defined on the original graph

G. Therefore, (6) is a density estimate in the space F rather than on the original graph G.

The subscript F and the notation h(F) are used to emphasize this fact and to differentiate

KF from KG , the kernel on the original graph G that induced the space F .

Based on the kernel density estimates in (6), for each v0 ∈ Vmiss(G) we can predict its

class label ŷ0 depending on whether p̂1(v0)− p̂2(v0) is positive or negative. In other words,

the decision function is simply

fF (v0) =
1

n1

∑

vi∈Vobs(G)
yi=1

KF (v0,vi)−
1

n2

∑

vi∈Vobs(G)
yi=2

KF (v0,vi) . (9)

It is easy to see that (9) is another kernel machine of the same form as (3); the only difference

is that (9) uses the kernel KF whereas (3) uses the kernel KG .

3.3 Deep kernel machines

Let us summarize what we have said so far. The space F is the implicit feature space

for KG . A kernel machine fG (3) using the kernel KG is a linear classifier in F . If linear
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classifiers are not sufficient in F , we can relax linearity and choose to work with a nonlinear

classifier, e.g., by constructing kernel density estimates in F via the implied distance metric

dF (vi,vj) — equation (5). This gives rise to a new kernel machine fF (9), using the kernel

KF (vi,vj) — equation (8). If we use (7) for kernel density estimation, the kernel updating

formula from KG to KF is simply, putting (5), (7), and (8) together,

KF (vi,vj) =
1√

2πh(F)
exp

(

−KG(vi,vi)− 2KG(vi,vj) +KG(vj ,vj)

2h2(F)

)

. (10)

The choice of h(F) will be discussed below (Section 3.4).

However, there is no reason why the process must end here. The kernel KF has its

implicit feature space as well; let’s call it F2. The kernel machine fF (9) using the kernel

KF is a linear classifier in F2. We can relax linearity in F2, if necessary, and choose to

work with a nonlinear classifier, again, by constructing kernel density estimates in F2 via

the implied distance metric,

dF2(vi,vj) =
√

KF (vi,vi)− 2KF (vi,vj) +KF (vj ,vj).

By the same argument, this would give us yet another kernel machine, say fF2 , of exactly

the same form as fG (3) and fF (9), except it would be using the kernel

KF2(vi,vj) ≡ Kh(F2) (dF2(vi,vj))

=
1√

2πh(F2)
exp

(

−KF(vi,vi)− 2KF (vi,vj) +KF (vj ,vj)

2h2(F2)

)

.

It is easy to see that this process can be repeated recursively (see Table 1). We refer

to kernel machines generated by this recursive process as “deep kernel machines” (DKMs).

The one using the original kernel KG is a referred to as a level-0 DKM; the one using

the kernel KF , a level-1 DKM; the one using the kernel KF2 , a level-2 DKM; and so on.
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Notice that the DKM algorithm presented in Table 1 is slightly more general than what

we have discussed above. In our discussion, we have focused on a specific base kernel

machine (Section 2.1), but one can certainly use other base kernel machines, e.g., SVMs

(see Section 4.4 below).

3.4 A heuristic for choosing h(F)

To carry out density estimation in F , a bandwidth parameter h(F) must be specified; see

(6) and (7). While users are certainly free to optimize this parameter in practice, this can be

tedious for DKMs because, as we go from G to F ,F2,F3, ..., there is a bandwidth parameter

for each space, h(F), h(F2), h(F3), ..., so a heuristic is desired. A reasonable heuristic is:

h(F) =
1

n2

∑∑

vi,vj∈V (G)

dF (vi,vj). (11)

That is, h(F) can be chosen to be the average pair-wise distance in the space of F . We use

this heuristic in all of our experiments below.

4 Experiments

In this section, we describe a few experiments and show that DKMs are useful.

4.1 Enron email data

In 2001, a large USA-based gas and electricity company named Enron was found guilty

of serious accounting frauds, a case that caught worldwide attention. As part of the in-

vestigation, the US Federal Energy Regulatory Commission confiscated its corporate email
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Table 1: Pseudo code for deep kernel machines (DKMs).

function BaseKernelMachine(K, Vobs(G), Vmiss(G))
for (every v ∈ Vmiss(G)) {

f(v) = α0 +
∑

vi∈Vobs(G)

αiK(v,vi),

e.g., α0 = 0, αi = 1/n1 if yi = 1 and αi = −1/n2 if yi = 2.
}
return f ;
end function

function GetKernel(KG , level)
if (level == 0) {

return KG ;
}
else {

compute dF according to equation (5):

dF (vi,vj) =
√

KG(vi,vi)− 2KG(vi,vj) +KG(vj ,vj);

choose h(F) according to equation (11):

h(F) =
1

n2

∑∑

vi,vj∈Vobs(G)

dF (vi,vj);

compute KF according to equations (8) and (7):

KF (vi,vj) = Kh(F) (dF (vi,vj)) ;

return GetKernel(KF , level − 1);
}
end function

function DeepKernelMachine(KG , Vobs(G), Vmiss(G), level)
return BaseKernelMachine(GetKernel(KG , level), Vobs(G), Vmiss(G));
end function
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database and made it publicly available. Preprocessed versions of these data can be ob-

tained from http://cis.jhu.edu/~parky/Enron/enron.html. In particular, there is a

184 × 184 adjacency matrix, AG , that indicates whether there was email communication

between any two of 184 unique email accounts. Our initial KG is simply a diffusion kernel

(2) based on this adjacency matrix, but we removed two accounts that never sent an email

to another account. The status of these 184 email account owners are also available, which

we use to create two different classification tasks (see Table 2).

Table 2: Part of Enron email data used for tasks 1 and 2. We removed two accounts that
never sent an email to another account.

Class Label
Node Status N Unbalanced Balanced

CEO 5 1 1
President 5 1 1
Managing Director 6 1 1
Director 14 2 1
Vice President 30 2 1
Manager 16 2 1
Lawyer 1 2 1
Employee 40 2 2
Trader 11 2 2
Other 54 2 2

Total 182 16 vs 166 77 vs 105
(Task 1) (Task 2)

4.2 Lazega lawyer data

Lazega (2001) studied collaborative working relationships and social interactions among

members of a New England law firm. There were 36 partners in the firm. The 36 partners

were interviewed and asked to express their opinions on various issues regarding how the

law firm should be managed. One of the issues had to do with workflow inside the firm
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(Lazega 2001, Chapter 8). Some favored the status quo (yi = 1) while others favored less

flexible workflow (yi = 2). As our third classification task (see Table 3), we try to predict

the partners’ position on this particular issue based on their social interactions and working

relationships, e.g., whether any two partners worked together or considered themselves to be

friends. Our initial KG is a diffusion kernel (2) based on a similarity (rather than adjacency)

matrix AG , defined as follows:

AG(i, j) = 0.5× Ifriends(i, j) + 0.5 × Icollaborated(i, j),

where Ifriends(i, j) = 1 if vi and vj were friends and 0 if not; and likewise for Icollaborated(i, j).

Table 3: Part of Lazega lawyer data used for task 3.

Node Position N Class Label

Favors status quo 20 1
Favors less flexible workflow 16 2

Total 36 20 vs 16
(Task 3)

4.3 Performance measure

Classification task 1 (Table 2) is a highly unbalanced problem. For this task, we use the

average precision (e.g., Zhu et al. 2006, Appendix A), or simply AP, to evaluate performance.

The AP is a widely used criterion in the information retrieval community, and is particularly

suitable for unbalanced classification problems. Classification tasks 2 and 3 (Tables 2 and 3)

are relatively balanced problems. For these two tasks, we use the area under the receiver-

operating characteristic (ROC) curve (Pepe 2003), or simply AUC (for “area under the

curve”), to evaluate performance. The main reason for using the AUC and the AP (rather

than, e.g., total misclassification error) is because they are not affected by the thresholding
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constant c in equation (4). Table 4 summarizes the main features of the three tasks.

Table 4: Summary of classification tasks.

% Data Performance
(yi = 1) Set AG Measure

Task 1 8.8 Enron adjacency matrix AP
Task 2 42.3 Enron adjacency matrix AUC
Task 3 55.6 Lawyer custom similarity matrix AUC

4.4 Base kernel machines

We use two types of base kernel machines to run DKMs: the simple kernel machine (3) and

the SVM. Both are linear in the feature space, but SVM directly goes after the optimal

hyperplane. Notice that, to fit an SVM, one must specify the amount of penalty on the sum

of slack variables, often called the “cost” parameter in most SVM packages. Every time an

SVM is fitted, we simply choose the best “cost” parameter among a wide range of values:

10−5, 10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100.

This gives the SVM an unfair advantage, but, since we are using SVMs as a benchmark,

it is well understood that giving the benchmark an unfair advantage will only lead us to

more conservative conclusions. In reality, this extra “cost” parameter in the SVM must be

chosen by cross validation on Vobs(G).

4.5 Results and conclusions

Figure 1 shows the average results over 25 random splits of V (G) into Vobs(G) and Vmiss(G).

The random splits are stratified by class label so that the fraction of nodes belonging to
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each class is roughly the same on both Vobs(G) and Vmiss(G). The main conclusions we can

draw from Figure 1 are as follows:

(C1) Though it goes directly after an “optimal” linear classifier, the SVM is not necessarily

a better base kernel machine than a simple kernel machine such as (3). Both are linear

in the feature space. It is more important to be in the “right” feature space than to

use an “optimal” linear classifier. Using the “optimal” linear classifier in the “wrong”

feature space is not going to give you good results. DKMs address this issue directly

by providing a recursive algorithm to look for the “right” feature space.

(C2) When the initial kernel KG is badly specified, e.g., if the tuning parameter β is not well

chosen for the underlying prediction task, DKMs can often boost up the performance

significantly. This shows that DKMs have an attractive “automatic kernel correction”

capability. When linear classification in the initial feature space KF is not enough

to produce good results, it often pays to relax linearity and to go up to higher-level

feature spaces. DKMs provide an automatic way to do so.

5 Discussion

To paraphrase our conclusions (C1) and (C2) above, we have essentially argued that we

should put more emphasis on finding the “right” feature space rather than finding the

“optimal” linear classifier (perhaps in the “wrong” feature space). One can use DKMs to

do this. While the automatic and recursive kernel correction formula (10) is attractive,

there clearly remains one important question that we haven’t quite addressed: how deep

should we go?
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Figure 1: Average performance over 25 random splits of V (G) into Vobs(G) and Vmiss(G).
Horizontal axis (logarithmic scale): tuning parameter β for the initial diffusion kernel KG ;
see equation (2). Vertical axis: performance measure, e.g., AP or AUC; see Section 4.3.
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Before we address this question, we first briefly mention interesting connections between

our work and some recent literature on deep architectures in machine learning. The neural

network was a leading algorithm for machine learning during the 1980’s, but it did not

enjoy as wide a success as was initially anticipated. The main reason is because the back

propagation algorithm is not practical for training neural networks that are more than a few

layers deep. Recently, many arguments (e.g., Hinton and Salakhutdinov 2006; Sutskever and

Hinton 2008; Bengio 2009) have been made that deep neural networks (i.e., neural networks

with many layers) are necessary, and practically realistic algorithms have also emerged (e.g.,

Hinton et al. 2006; Larochelle et al. 2009). Our work provides further support for the idea

of deep architectures.

By definition, the architecture of a deep neural network is necessarily complex. One has

to make many decisions. How many layers? How many hidden components for each layer?

In the landmark article (Hinton and Salakhutdinov 2006) on deep neural networks that

appeared in the prestigious journal, Science, the authors showcased deep neural nets for a

number of different tasks. A very striking feature of that article is that the authors used

vastly different deep architectures for the different tasks, but there was little explanation

on how those architectural decisions were made. We asked the first author of the Science

article in person, after he delivered a seminar on the very subject. His answer was: one

simply tries different architectures and picks the one that gives the best results. While this

is not entirely satisfactory, we think such a limitation alone is no reason for anyone to deny

that deep neural networks are a major advance in modern machine learning research. One

cannot solve all problems at once. New ideas always lead to new problems, and that’s the

very nature of scientific research.
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At this moment, we don’t have an entirely satisfactory answer to the question of how

deep a DKM one should use, except that we have empirically observed diminishing returns

as we go to higher and higher levels, but this limitation alone in our work is no reason for

us to reject the fact that DKMs can be quite useful.

Finally, it is not hard to see that the development of these DKMs (Section 3) does not

rely on G being a graph. For example, if we abuse our notation and allow G to denote the

usual q-dimensional Euclidean space, then we simply have a usual classification problem

— Vobs(G) simply becomes the set of training data and Vmiss(G), the set of unlabelled

observations to be classified. Of course, in that case KG will no longer be the diffusion

kernel, but, regardless of what it is, a level-0 kernel machine using KG will still be linear in

its implicit feature space F . Using the distance function dF , we can still do kernel density

estimation in the space of F , and obtain a level-1 kernel machine using a new kernel KF .

In other words, the idea of DKMs is general and not restricted to node classification on

graphs. Whether they are actually useful for data structures other than graphs remains to

be seen. We leave this to further investigation.

6 Summary

We have described the idea of using deep kernel machines for node classification on graphs.

We have conducted a few experiments to show that linear classification in the implicit

feature space of kernels commonly used for graph data (e.g., the diffusion kernel) is often

not enough. When this is the case, one can apply the “kernel trick” again in the implicit

feature space itself. Repeating this process leads to deep kernel machines (DKMs). Our

experiments have shown that DKMs’ recursive, automatic kernel correction capability is
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especially useful when the initial kernel KG is not well specified. While the work we reported

here is just a beginning and there remains much to be done, our results lend support to

the idea of using deep architectures for machine learning that has recently emerged in the

literature.
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