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Summary .

Unlike the Probability Theory based on additivity, Statistical Inference seems to hesitate be-

tween ”Additivity” and a so-called ”Maxitivity” approach. After a brief overview of three types of

principles for any (parametric) statistical theory and the proof that these principles are mutually

exclusive, the paper shows that two kinds of support measures are conceivable, an additive

one and a maxitive one (based on maximization operators). Unfortunately, none of them is

able to cope with the ignorance part of the statistical experiment and, in the meantime, with

the partial information given through the structure of the data. To conclude, the author pro-

motes the combined use of both approaches, as an efficient middle-of-the-road position for the

statistician.

Résumé.

Contrairement à la théorie de probabilité qui est fondée sur l’additivité, l’inférence statistique

semble hésiter entre ”l’Additivité” et ce que d’aucun appelle la ”Maxitivité”. Après un bref sur-

vol des trois catégories de principes applicables à toute théorie (paramétrique) statistique et

la démonstration que ceux-ci sont mutuellement exclusifs, le papier montre que deux types

de mesure de support sont envisageables, à savoir une mesure additive ou une mesure max-

itive (basée sur des opérateurs de maximisation). Malheureusement, aucune n’est capable
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d’appréhender correctement la part d’ignorance contenue dans l’expérience statistique et,

dans le même temps, l’information partielle délivrée par la structure des données. En conclu-

sion, l’auteur propose l’utilisation combinée des deux approches comme une position efficace

et médiane pour le statisticien.

Keywords: Principles of statistics, Support measures, Maxitivity property, Statistical paradoxes

1. Introduction

In this paper, we restrict ourselves to parametric statistical models. Doing that, we know

that we leave aside a large part of statistics. But we think that equivalent reflections can

be done for non parametric statistics. Each statistical theory tries to answer the same

basic question : “What can we say about the underlying hypotheses, from the observed data

information we get ?” The different schools of inference have succeeded in giving an answer

to the question, as long as one accepts some principles related to these schools. Classical

approach is best if one looks for long-run properties. Bayesian inference should be chosen if

one has meaningful proper prior information over the parameter space. Structural inference

is to be used for transformation models, etc. But there is not always evident prior to choose

and the Bayesian approach is therefore difficult to apply; or the data come from a unique

and non replicable experiment and the Classical approach is no longer appropriate.

It would be naive to believe that a single inference theory could be suitable for all inference

problems. In that sense, we totally agree with Kalbfleisch and Sprott (1970) : “In fact, the

main criticism to be directed at the study of statistical inference today is the slavish adherence

to rigid dogmas and principles (e.g. Bayes theorem, likelihood principle, admissibility, etc.)

which is characteristic of the various schools of inference · · · To claim that all problems of

inference have been, or even can be, solved by one overriding principle seems to us naive.”
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This appears to close definitively the search for a general statistical inference school. What

we try to do in this paper, is to go deeper in the formal understanding of such a failure.

We do that by focusing on the opposition between the way to handle ignorance on one side

and structural data information on the other side. For that, it is important to look at the

principles underlying the various schools of inference.

2. Three sets of principles : a brief overview of Statistical principles

2.1. Notations

We represent a parametric statistical experiment by means of the following model :

−M(X,Θ, pθ(x), µ(x)) where X is the sample space,

Θ the parameter space,

pθ(x) the density family with respect to µ(x), and

µ(x) a σ-finite measure over X

(usually the Lebesgue or the countable measure)

−Plus the knowledge of the observed data “x ∈ E”.

Many principles will not be mentioned here because they are mere consequences of general

principles such as the Likelihood or Invariance ones. We think, for instance, of the Math-

ematical Equivalence principle (Birnbaum (1964)), which states that our inference should

be independent from any one-to-one transformation of the sample space. This principle is

a corollary of the Likelihood principle.
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2.2. First set : invariance concerning the parameter space

2.2.1. The (Strong) Invariance principle I

I : Let M1(X,Θ, pθ(x), µ(x)) and M2(X
′

,Θ
′

, p
′

θ
′ (x

′

), µ
′

(x
′

)) be two different models for

the same experiment, connected by two functions f : X → X
′

and g : Θ → Θ
′

such that

pθ({x : f(x) = x
′

o}) = p
′

g(θ)(x
′

o) and µ({x : f(x) = x
′

o}) = µ
′

(x
′

o) ∀θ ∈ Θ and ∀x
′

o ∈ X
′

.

The Invariance principle states that equivalent inference about g(θ) should be made from

the first model given the knowledge “f(x) = x
′

o” as from the second model given the same

observation “x
′

= x
′

o”.

To better understand the Invariance principle, let us consider N(µ, σ2), the Normal model.

Suppose we only observe the value of the standard deviation s2 = s2o. The Invariance

principle states that inference about σ given the observed s2o should be the same whether

one uses the Normal model N(µ, σ2) or the Chi-square distribution for s2

σ2 . The Invariance

principle requires that statistical inference does not depend on the choice of parameterization

for the model. A consequence of this principle is the invariance of inference under one-to-

one transformation of the parameter. This principle is advocated by many authors, see for

instance Hartigan (1967). It is at the heart of the paradoxes studied by Dawid et al. (1973)

against Bayesian and Structural inference. See also the old Bertrand-Von Mises paradox

about the choice of the ratio “wine-water” versus “water-wine” as our parameterization

within an uniform model (Von Mises (1939)).

2.3. Second set : invariance concerning the sample space

2.3.1. The Censoring principle CE

CE : For any specified outcome xo of an experiment M(X,Θ, pθ(x), µ(x)), our statistical

evidence is fully characterized by the function pθ(xo), θ ∈ Θ, without further reference
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to M or xo, i.e. all our statistical information is contained in the likelihood function

(Birnbaum (1964)).

CE was first proposed by Pratt (1962) by means of an example : if an accurate voltmeter

gave a reading of 87, does it matter, for the interpretation of this reading (assumed error-

free), whether the meter’s range was bounded by 1,000 or by 100 ?

2.3.2. The Stopping Rule principle ST

ST : The Stopping Rule principle states that the sampling design is irrelevant to statistical

inference at the stage of data analysis.

This principle is formally equivalent to the Censoring principle, if one considers the following

stopping rule : stop the experiment as soon as “xo” is observed. ST can be accepted if

one is working with an experiment which will be performed once only. It is certainly

not a satisfying principle for long-run sampling experiment, which is the basis of classical

inference.

2.3.3. The (Strong) Likelihood principle L

L : Suppose a statistical experiment is characterized by two different models with com-

mon parameter space : M1(X,Θ, pθ(x), µ(x)) and M2(X
′

,Θ, p
′

θ(x
′

), µ
′

(x
′

)) such that

pθ(xo) = c ·p
′

θ(x
′

o) for each θ in Θ, for some xo in X , x
′

o in X
′

and for constant c 6= 0. Then

L states that the same inference should be made about θ whatever xo or x
′

o is observed.

The Likelihood principle says that all the relevant information for inference about θ is

contained in the sole knowledge of the relative likelihood function. This principle is advo-

cated and criticized by many statisticians. See for instance Fisher (1950), Birnbaum (1962,
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1964), Barnard (1967, 1973), Basu (1973), Berger (1985) or Berger and Wolpert (1988).

Birnbaum (1964) proved that L is equivalent to the Sufficiency principle S (see next section)

& CE or to S & ST .

2.4. Third set : Reduction-type principles

2.4.1. The Reduction principle R

R : In logic, if A ⇒ C and B ⇒ C, then (A ∪ B) ⇒ C. In statistics, one has a similar

principle. Let I(A) be the inferential information contained in the observation A [or some

statistical inference made from A]. If the data A and B lead to the same inference I(A) =

I(B), one should perform equivalent inference from the observation of A ∪ B : i.e. if

A ⇒ I(A) and B ⇒ I(B)=I(A), then (A ∪B) ⇒ I(A ∪B)=I(A)=I(B).

This Reduction principle was proposed by Dawid (1977). It gives a general framework for

all the (partial) Sufficiency or Conditionality principles.

2.4.2. The Sufficiency principle S

S : In an experiment M(X,Θ, pθ(x), µ(x)), we get the same information about θ, if we

observe the realization xo or only its realization through a sufficient statistic T (xo) = to.

This principle is certainly the most widely accepted principle in statistics. Together with

CE or ST , it implies that the likelihood function is only relevant for inference up to a

proportional constant.
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2.4.3. The Conditionality principle CO

CO : Suppose we have an experiment M(X,Θ, pθ(x), µ(x)) and a maximal ancillary statis-

tic T (x). T is ancillary if pθ(T (x)) is independent of θ. Then our inference about θ should

be done through the conditional probability pθ(x|T (x)).

CO was studied, among others, by Cox (1958) and Barndorff-Nielsen (1971, 1973). Birnbaum (1962)

proved that the Sufficiency principle S together with the Conditionality principle CO implies

the Likelihood principle L.

2.4.4. The Partial Nonformation principles PN

PS [Partial Sufficiency principles] : Let T (x) be a partial sufficient statistic, in some

specified sense, like B-, S-, M-, K-, I- or L-sufficiency. See Barndorff-Nielsen (1971),

Rémon (1984), Cano Sanchez et al. (1989) or Jorgensen (1993) for definitions of partial

sufficiency. All the Partial Sufficiency principles state that one gets the same inferential

information about some parameter of interest from the knowledge of “xo” or “T (xo)”, and

that one has to do inference through the marginal distribution Pθ(T (x)).

Equivalent Partial Conditionality principles PC require that our inference should be done

through the conditional distribution given the observation of some B-, S-, ... ancillary statis-

tic. Barndorff-Nielsen (1978) introduced the concept of nonformation which generalizes

both notions of partial sufficiency and partial ancillarity, and leads to Partial Nonformation

principles PN .

2.5. Summary

All these statistical principles can be summarized in three principles :
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• The Invariance principle I about the choice of parameterization;

• The Likelihood principle L about the choice for the reference sample space, which

is equivalent to the Censoring CE or Stopping Rule principle ST together with the

Sufficiency principle S;

• The Reduction principle R which generalizes the Partial Nonformation principles PN

about the kind of information one has to consider in the data (“xo” or “T (xo)” ?).

The next section will discuss the logic of ignorance versus structural information with respect

to the best choice for a support measure over the hypotheses space Θ.

3. Is there a good choice for a support measure with respect to the hypotheses ?

3.1. Introduction

In this paper, we choose the general terms of support measure to express the support the

observation data give to some unknown hypothesis. When looking for support measures

in the theories of ignorance or uncertainty, one finds a lot of propositions. Let us just

mention here the ancient Laplace’s (1812) inverse probability theory (see Dale (1999) or

Fienberg (2006)), Dempster-Shafer’s belief function (Shafer, 1976), the classical Bayesian

a posteriori probability, the structural inference (Fraser, 1968), the theory of possibility

(Zadeh, 1978; Dubois and Prade, 2007), the plausibility measures (Friedman and Halpern, 1995)

or the recent general uncertainty theory (Zadeh, 2005).

3.2. The case of the non informative Bayesian priors

It is well known that additive priors, as proposed by the Bayesian theory, are not suitable

for expressing absence of knowledge about hypotheses. See Shafer (1976) : if we have no
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information about three hypotheses H1, H2 and H3, we cannot say that we have a better

knowledge about H1 ∪ H2 with respect to H3 because we can add these small pieces of

(non)information. Another example is the one proposed by Bernardo (1979) : we toss a

coin and we wish to do inference about its bias through the parameter of interest φ = |θ− 1
2 |,

where θ is the probability of observing “Head”. We know that the coin is either fair

(H1 : θ = 1
2 ), double-headed (H2 : θ = 1) or double-tailed (H3 : θ = 0). We observe

x0 =“Head” ∪ “Tail”, i.e. we have no information coming from the data. The likelihood

function is then l(θ|x0) = 1 ∀θ ∈ Θ. If we express our ignorance about θ through an

additive uniform measure : p(Hi) = 1
3 , i = 1, 2, 3, we therefore state that the hypothesis

H1 : φ=0 is twice less likely than the hypothesis HA : φ 6=0. This contradicts the situation

of ignorance.

Dawid et al. (1973) and Stone (1976) have proposed many paradoxes against the additive

nature of the Bayesian prior, especially in the context of lack of information. Jeffreys (1939)

worked a lot to find non informative Bayesian priors. In his paper about the history of

Bayesian Inference, Fienberg (2006) writes that trying to ’derive “objective” priors that

expressed ignorance or lack of knowledge’ is like trying ’to grasp the holy grail that had

eluded statisticians since the days of Laplace’. In fact, we can broaden the scope of the

incompatibility between ignorance and additivity, to situations where partial information

is available, i.e. to any kind of support measure.

3.3. The incompatibility between “additivity” and the logic of ignorance

Our knowledge (a priori or a posteriori) about the “true” unknown hypothesis θ0 ∈ Θ can

be in some way informative. This does not mean that our support measure about this

hypothesis behaves like a probability measure. Let us define the support measure describing
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the likelihood the observation E gives to the hypothesis θ ∈ Θ1 by S[θ ∈ Θ1|E]. A support

measure, like any plausibility measure (Friedman and Halpern, 1995), has to satisfy three

“axioms” :

• S[θ ∈ Θ1|E] = 0 if E ⇒ (θ 6∈ Θ1)

• S[θ ∈ Θ1|E] = 1 if E ⇒ (θ ∈ Θ1)

• Θ2 ⊆ Θ1 ⇒ S[θ ∈ Θ2|E] ≤ S[θ ∈ Θ1|E]

[monotonicity of the support function]

The problem for choosing a support measure on Θ is that this measure should always handle

a part of ignorance. Indeed, even when it is an a posteriori support measure over Θ, there

will be hypotheses θi with equivalent support from the observed data (through the likeli-

hood function, for instance), and the support measure will have to manage this ignorance

between these θi. Once again, like in the Bernardo’s coin example, this cannot be done

by an additive support measure. Let us prove this incompatibility as a consequence of the

Invariance I and Likelihood L principles.

Suppose that we express our statistical information about θ by means of an additive poste-

rior support measure S[θ|E]. Because of the Invariance I and Likelihood L, two θ-values, θ1

and θ2, having the same relative likelihood cannot be distinguished. To prove that, one has

just to consider the function g(θ) used in I as the permutation of θ1 and θ2. I implies that

µ1 ≡ S[θ1|E] = S[θ2|E] ≡ µ2. The logic of ignorance requires equivalent inference for θ1∪ θ2

as for θ1. Considering S[θ|E] as additive, one gets : S[θ1 ∪ θ2|E] = µ1+µ2 = S[θ1|E] = µ1.

Hence, µ1 = µ2 = 0, which is far from convincing. All this reasoning about the consequences

of I and L was already mentioned, in similar terms, by Hartigan (1967).
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As it is clear that additive support measures are incompatible with I and L, one can think

that non-additive support measures, like the ones proposed in the possibility theory, will be

the correct choice. The next section shows that support measures built on maximization

(or minimization) are also to be questioned.

3.4. The case of the possibility measure and its “Maxitivity” property

The theory of possibility, as well as the theory of plausibility, proposes measures defined

in terms of maximization or minimization. Dubois and Prade (2007) have introduced the

pretty terms of “Maxitivity” and “Maxitive measure” in reference to the additivity property

of probability measures. For instance, the possibility measure for the state A ⊆ S is denoted

by Π(A) and defined by :

Π(A) = sup
s∈A

π(s)

where π : S → [0, 1] is a possibility distribution for the states s ∈ S

A necessity measure can be defined for A ⊆ S by N(A) = infs∈A(1 − π(s)) = 1 − Π(A).

One get the following “maxitivity” properties :

Π(A ∪B) = max(Π(A),Π(B))

N(A ∩B) = min(N(A), N(B))

See Dubois and Prade (2007) and Sigarretta et al. (2007) for detailed explanations about

possibility and plausibility measures. Let us note that Π∗(A) ≡ (Π(A) + N(Ac))/2 is

still a possibility measure with the additional properties that Π∗(A) = 0 is equivalent to

the impossibility of A, and Π∗(A) = 1 to the certainty of A. This can be interesting for

comparison with a posteriori Bayesian probability, but it will not be used here.
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3.5. The impossibility of a “maxitive” support measure satisfying I,L and R

Let us define our support measure in the framework of the theory of possibility, but in

relation to the relative likelihood function l(θ;E) :

S[θ ∈ Θ0|E] = sup
θ∈Θ0

l(θ;E)

=

sup
θ∈Θ0

pθ(E)

sup
θ∈Θ

pθ(E)

It is clear that such a possibility measure satisfies the Invariance and Likelihood principles.

However, the Reduction principle is not satisfied. Indeed, such a support measure based on

the sole likelihood function is incompatible with the Reduction principle, as far as partial

sufficiency principle is concerned. Let us consider the Bernardo’s (1979) coin example again.

Remember that our parameter of interest is φ = |θ− 1
2 | where θ is the probability of observing

“Head”, and that the coin is known to be either fair (H1 : θ= 1
2 ), double-headed (H2 : θ=1)

or double-tailed (H3 : θ=0). This time, we observe x0 =“Head”. The likelihood function

is l(θ|x0) = θ ∀θ ∈ Θ. So, by definition of our support measure, one gets :

S[θ|“Head”] = 1− S[θ|“Tail”] = θ

S[H1|“Head”] = S[H1|“Tail”] =
1
2 [The support measure for fairness]

S[H2 ∪H3|“Head”] = S[H2 ∪H3|“Tail”] = 1 [The support measure for unfairness]

We see that the likelihood, as well as our “maxitive” support measure, puts its highest

support towards the unfairness of the coin, whatever the first toss gives as a result. We

see also that there is an invariant structure in the model, concerning our parameter of

interest. Indeed, the minimal G-sufficient statistic with respect to φ, see Barnard (1963), is

T (“Head”) = T (“Tail”) = T (“Head” or “Tail”). Thus, from R (or PS) and the fact that
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the Marginal likelihood l(θ|“Head” or “Tail”) = 1 ∀θ ∈ Θ, we should have :

S[H1|“Head”] = S[H1|“Tail”]
R
= S[H1|“Head” or “Tail”] = 1

S[H2 ∪H3|“Head”] = S[H2 ∪H3|“Tail”]
R
= S[H2 ∪H3|“Head” or “Tail”] = 1

This is clearly a better situation in terms of inferential support, as the first toss of a coin

gives no information at all about the fairness or unfairness of a coin.

This example shows the impossibility for a “maxitive” support measure to satisfy the Re-

duction principle, as this last one, through structural invariance and partial sufficiency,

introduces Marginal likelihood function in the scene of inference. And therefore, an addi-

tive operation in terms of likelihood. Moreover, as we observed in the coin example, single

and marginal likelihood functions can express totally different support with respect to the

hypotheses. Which one should we prefer ? Our choice will, de facto, contradict either the

Reduction or the Likelihood principle.

3.6. Summary

In this section, we have seen that neither the additivity nor the maxitivity approach is

“the” solution for our support measure. The first one cannot handle properly the ignorance

present in any statistical problem, while the second one cannot cope with its structural

invariance (for instance, a location-scale structure emerging with the asymptotic normal

model when the number of observations increases).

• The additive Bayesian posterior approach satisfies the Likelihood L and Reduction R

principles, but not the Invariance I principle. R will be valid under the condition that

a reference parameterization is chosen as well as a proper prior distribution over the

parameter space Θ. This extra information is required if paradoxes are to be avoided
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(Dawid et al. (1973); Stone (1976)).

• ThemaxitiveMaximized or Profile Likelihood approach (Barndorff-Nielsen and Cox (1994))

satisfies the Invariance I and Likelihood L principles, but not the Reduction R princi-

ple. The Generalized Likelihood Ratio tests are based on this type of support measure,

as well as the Maximum Likelihood point estimation. The extra information needed

here to avoid paradoxes is the long-run behavior of the model, as well as its structural

invariance (Stein (1956); Barnard (1965); Berger and Wolpert (1988)).

• The mixed additive-maxitive Marginal or Conditional Inference approaches have not

yet been considered in this paper. The Marginal (or Conditional) Likelihood ap-

proach is defined in the same way as the Profile Likelihood approach, but using the

marginal [respectively conditional] likelihood function l(θ;T (x)) [l(θ;x|T (x))] instead

of the simple likelihood function l(θ;x), as we did in Bernardo’s example. The In-

variance I and Reduction R principles will be satisfied here, but not the Likelihood

L principle. The problem here is the definition of what is a partial nonformative

statistic T (x) (Barndorff-Nielsen (1978); Rémon (1984); Cano Sanchez et al. (1989);

Zhu and Reid (1994); Barndorff-Nielsen and Cox (1994)). The use of a marginal or

conditional likelihood function requires extra information as the knowledge of the stop-

ping rule because the marginal or conditional density can differ from one stopping rule

to another. L is no longer valid for this type of inference.

Bayesian, Profile Likelihood and Marginal/Conditional Likelihood inferences are three ma-

jor approaches corresponding to the possible two-by-two combinations of our general prin-

ciples. Other inference methods can be classified in the same way, depending on the list of

principles they satisfy. But none will be able to satisfy all these principles, as there is an
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internal incompatibility between them. This incompatibility can be seen as a dilemma be-

tween an additive or a maxitive approach for dealing with the ignorance and the structural

information contained in the data.

4. Conclusions : the dilemma between “Additivity” and “Maxitivity”

Our point of view is that discussion about Statistical Schools of Inference should not focus

so much on the kind of principle one keeps or rejects, or even by-passes thanks to some well

chosen extra information. Indeed, any inference theory seems to miss some information,

as extra information is always needed to avoid paradoxes. Statisticians should be more

aware of and worried by the mathematical properties of the support measure they wish to

use. Here comes the dilemma between the “additivity” and the “maxitivity” of our support

measure.

One can think that most statisticians will prefer an additive approach, by similarity with

the probability theory, but this is not so clear. Indeed, the core of the point estimation

is done in a maxitive environment. And if they have to compare hypotheses, they will

normally use likelihood ratios, which are based on maxitive support measures. We think

that neither the maxitive nor the additive approach should be promoted as the sole possible

approach.

Our point of view is that statisticians should use both perspectives, in a dialogal process, like

in the Marginal/Conditional Likelihood approach. EM algorithm (Dempster et al. (1977))

is also a good example of this combined use of “maxitive” and “additive” operators. This

double nature of the support measure is, for us, the characteristic of statistical inference,

as statisticians should consider themselves as staying in the middle of the road, trying
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to reconcile the logic of ignorance (related to “Maxitivity”) and the logic of information

(linked to “Additivity”). This is also the source of the efficiency of many statistical ad hoc

methods.
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