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Abstract

Complex computer codes, for instance simulating physit&npmena,
are often too time expensive to be directly used to perforroertainty,
sensitivity, optimization and robustness analyses. A lwidecepted method
to circumvent this problem consists in replacing cpu timgessive computer
models by cpu inexpensive mathematical functions, calletamodels. In
this paper, we focus on the Gaussian process metamodel an@gsential
steps of its definition phase. First, the initial design oé ttomputer code
input variables (which allows to fit the metamodel) has to droadequate
space filling properties. We adopt a numerical approach tongare the
performance of different types of space filling designs,hia tlass of the
optimal Latin hypercube samples, in terms of the predigtiof the subsequent
fitted metamodel. We conclude that such samples with minimag-around
discrepancy are particularly well-suited for the Gaussjanocess metamodel
fitting. Second, the metamodel validation process consistgvaluating
the metamodel predictivity with respect to the initial carngs code. We
propose and test an algorithm which optimizes the distanetvden the
validation points and the metamodel learning points in orte estimate
the true metamodel predictivity with a minimum number ofdegion points.
Comparisons with classical validation algorithms and aggtion to a nuclear
safety computer code show the relevance of this new segleatidation
design.
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(Gp) model, extends the kriging principles of geostatistic
computer experiments by considering the correlation betwe
two responses of a computer code depending on the distance
between input variable$ [29]. Numerous studies have shown
that this interpolating model provides a powerful stadasti
framework to compute an efficient predictor of code response
[30], [19].

From a practical standpoint, fitting a Gp model implies esti-
mation of several hyperparameters involved in the covadan
function. This optimization problem is particularly diféitt in
the case of a large number of inputs [5],[[19]. Several agthor
(for example [[31] and[[5]) have shown that the space filling
designs are well suited to metamodel fitting. However, this
class of design, which aims at obtaining the better coverage
of the points in the space of the input variables, is pardidyl
large, ranging from the well known Latin Hypercube Samples
to low discrepancy sequencés [5]. At the moment, no theoret-
ical result gives the type of initial design which leads te th
best fitted Gp metamodel in terms of metamodel predictivity.
In this work, we propose to give some numerical results in
order to answer to this fundamental question.

Another important issue we propose to address concerns the
optimal choice of the test sample, i.e. the set of simulation
design which allows the most accurate metamodel validation
using the minimal number of additional test observatiore T
validation of a metamodel is an essential step in practice

With the advent of computing technology and numeric§l5]. By estimating the metamodel predictivity, we obtain a
methods, investigation of computer code experiments mesnaconfidence degree associated with the use of the metamodel
an important challenge. Complex computer models calculatstead of the initial numerical model. Two validation nmeatis

several output values (scalars or functions) which canmigpeare ordinarily used: the test sample approech [11] and the
on a high number of input parameters and physical variablesoss validation method [23], [27]. In this paper, we prapos
These computer models are used to make simulations as welperform numerical studies of the metamodel predictivity
as predictions, uncertainty analyses or sensitivity s®Iff8].  with respect to these validation methods.

However, complex computer codes are often too time ex-In the following section, we present the Gp model. In the
pensive to be directly used to conduct uncertainty propagat third section, we present several criteria to optimize theice
studies or global sensitivity analysis based on Monte Card the initial input design. On two analytical examples, we
methods. To avoid the problem of huge calculation time, @valuate the numerical performance of this optimal design i
can be useful to replace the complex computer code byteams of Gp metamodel predictivity. In the fourth section,
mathematical approximation, called a metamodel [29]).[15)e look at the metamodel validation problem. Our solution
Several metamodels are classically used: polynomialsiespl consists in minimizing the number of test observations by
generalized linear models, or learning statistical modikés using the recent algorithm of[[6], called the sequential val
neural networks, regression trees, support vector mashimgation design. We illustrate the relevance of this new glesi
[5]. One particular class of metamodels, the Gaussian psocey performing intensive simulation on two analytical fuoas


http://arxiv.org/abs/1001.1049v1

and an industrial example. Finally, a conclusion summarize If a new pointe* = (z7,...,z}) € X is considered, we
our results and gives some perspectives for this work. obtain the predictor and variance formulas:

E[Yop(x")] = f(a") + k(=)= (Ys - (X)), ()

2. Gaussian process metamodeling VarlYep(@*)] = o2 — k(z*) S k(2" 3)

Let us considen realizations of a computer code. Each reawith Ygp denoting(Y'|Y;, X, 8,0,6,p),
izationy(x) € R of the computer code output corresponds to . . n .
ad-dimensional input vectat = (x1,...,zq) € X, whereX k(") = [CQOV(y(l)’}(/l()w )*)’ -+ GOy )(’73/(1/; ))]tt
is a bounded domain dk?. Then points corresponding to the - ¢ [RG,P(m SN R07p(:c @)
code runs are called the experimental design and are dengf the covariance matrix
as X, = (zM,...,z™). The outputs will be denoted as
Y, = (yM, ..., y™) with y = y(z?) Vi = 1..n. Gaussian 3, =0 (RO D (m(i) - :B(j)) ) .
process (Gp) modeling treats the deterministic respgiise " =l.n,j=1.n
as a realization of a random functio¥i(x), including a The conditional mean (Eq[J(2)) is used as a predictor. The
regression part and a centered stochastic process. Thislmaedriance formula (Eq.[{3) corresponds to the mean squared
can be written as: error (MSE) of this predictor and is also known as the
kriging variance. This analytical formula for MSE gives aab
Y(z) = f(x) + Z(x). (1) indicator of the prediction accuracy. More generally, Gpdelo
provides an analytical formula for the distribution of thetput
\r/aéiable at any arbitrary new point. This distribution fara
& be used for sensitivity and uncertainty analyisis [20].
Regression and correlation parametgso, 8 and p are

The deterministic functiorf (x) provides the mean approxi-
mation of the computer code. In our study, we use a one-deg
polynomial model wher¢f () can be written as follows:

d ordinarily estimated by maximizing likelihood functiorS]|
f(x) :50+Zﬁjxj, This optimization problem can be badly conditioned and
j=1 difficult to solve in high dimensional cased (> 5) [19].

Moreover, the estimation algorithms are particularly germs

— t i
where 3 = [fo, ..., fi]" is the regression parameter Vector, e input design. The following section proposes to deal
It has been shown, for example in_[21] and][19], that SUCh\/ﬁth this input design problem

function is sufficient, and sometimes necessary, to caphdre

global trend of the computer code. - . -
The stochastic partZ(x) is a Gaussian centereds' Initial design for the metamodel fitting

process fully characterized by its covariance function: . .

Cov(Z(x), Z(u)) = 0®R(z,u), whereo? denotes the vari- 3-1. Latin hypercube sampling

ance of Z and R is the correlation function that provides

interpolation and spatial correlation properties. To difpp ~ FOr computer experiments, selecting an experimental de-

a stationary procesg(x) is considered, which means thafign is a key issue in building an efficient and informative

correlation betweenZ(z) and Z(u) is a function of the metamodel. Contrary to the Simple Random Sample (SRS,

distance between andw. Our study is focused on a particular@lso called crude Monte Carlo sample) which consists: of

family of correlation functions that can be written as a prad independently and identically distributed samples, thdl we
of one-dimensional correlation functiod: known Latin Hypercube Sample (LHS) consists in dividing the

domain of each input variable im equiprobable strata, and in
9 9 d sampling once from each stratum [22]. The LHS of a random
Cov(Z(z), Z(w)) = 0*R(z —u) = o* [[ Riw1 —w).  yector x — (X1,...,Xq), denoted( X, ... X™), gives
=1 a sample meam = 2 3°"" | Y@ for the outputy” = y(X)
This form of correlation functions is particularly well gtad with a smaller variance than the sample mean of a SRS [32].
to get some simplifications of integrals in analytical uaceFigure [1 showd0 samples of two random variable&; and
tainty and sensitivity analyses [20]. More precisely, wease X, obtained with SRS and LHS schemes. We can see that
to use the generalized exponential correlation function:  the result of LHS is more spread out and does not display the
clustering effects found in SRS.

d . .
However, LHS does not reach the smallest possible variance

- = - - pl . . . oy
Fgpl —u) HQXP( Oulwor — wf™), for the sample mean. Since it is only a form of stratified
B random sampling and is not directly related to any critgrion
whered = [0y, ...,04]" andp = [p,. .., pq]t are the correla- it may also perform poorly in metamodel estimation and

tion parameters (also called hyperparameters) dith 0 and prediction of the response at untried sites. Therefore,esom
0<p <2 VI=1.d. This choice is motivated by the wideauthors have proposed to enhance LHS not only to fill space
spectrum of shapes that such a function offers. in one dimensional projection, but also in higher dimension



« the wrap-around.? discrepancy

n d
Simple Random Sampli b) Latin H be Sampli AR 3 i j i j
(a) Simple Random Sampling (b) Latin Hypercube Sampling W2(X.(n)) = (5) + = Z H [5 _ Iu}(C) _ ufj)\(l _ |u;(€) _ u}(:)l)
i,j=1k=1
N N (5)
which allows to suppress bound effects (by wrapping the

unit cube for each coordinate).

, e The optimization of LHS can be done following different
e . e . methods: choice of the best (in terms of the chosen criteria)
° LHS amongst a large number of different LHS, columnwise-
pairwise exchange algorithms, genetic algorithms, sitedla
00 02 04 06 08 10 00 02 04 06 08 10 annealing, etc [12]/[17]. In our tests, we have found that th
X1 Xt simulated annealing algorithm (with a geometrical tempeea
Fig. 1. Examples of two ways to generate a sample of descent and with a slight noise on the initial condition)egiv
size n = 10 from two variables X = [X;, X>] where X; the best results for all the criteria [18]. Figurk 2 gives som
has a uniform distribution /[0,1] and X, has a normal examples of two-dimensional LHS of size= 16, optimized
distribution AN(0,1). Equprobable stratas are shown in following three different criteria with the simulated amtiag
each dimension. algorithm. We see that uniform repartitions of the points ar
nicely respected.

[25]. One powerful idea is to adopt some optimality criterio
applied to LHS, such as entropy, integrated mean squi
error, minimax and maximin distances, etc. For instanoce, t
maximin criterion consists in maximizing the minimal dista
between the points [13]. This leads to avoid situations wi
too close points.[[24] examines some optimal maximin di:
tance designs constructed within the class of Latin hyp®cu
arrangements. The conceptual simplicity of these desigss |
led to their large popularity in practical applications[14

Maximin Centered discrepancy
3.2. Low-discrepancy Latin hypercube samples

Alternative metamodel-independent criteria, based on dis
crepancy measures, consist in judging the uniformity duali
of the design. Discrepancy can be seen as a measure between
an initial configuration and an uniform one. It is a compatiso
between the volume of intervals and the number of points
within these intervals[|8]. There exists different kinds of
definition using different forms of intervals or differenbrms
in the functional space. Discrepancy measures based,on
norms are the most popular in practice because they canHig. 2. Visual comparisons of LHS (d = 2, n = 16)
analytically expressed and are easy to compute. Among thesptimized following three different criteria (below each
two measures have shown remarkable propeities [12],[[#], [Sigure).

« the centered.? discrepancy

Wrap-around discrepancy

12

n d
D*(Xo(n)) = (E)d _ %ZH (1 n %Iui” _ %‘ _ %Iui” _ %‘2) 3.3. Projection properties of space filling designs
i=1 k=1
n d .y S—_—
1 Low 1,1 g 1, 1 & & ) In addition to the space filling property on the sample space,
+= 1+ =ful? — |+ = o = [T : ’ . .
n? Z H( gl Tl gl Tal gl one important property of the initial designs is their rabess
4 to the dimension decrease. A LHS structure for the space
where X ;(n) denotes the input learning sample witHilling design is not sufficient because it only guaranteesdyo
n input vectors and(u,(f) . are the nor- repartitions for one-dimensional projections, and not tfue
. . i=1.n,k=1.d other dimensions of projection. Indeed, LHS ensures thet ea
malized values in[0,1] of the design X (n) = : : . .
( (i)) _ of the input variables has all proportion of its range repnésd
i=1.m,k=1..d

i,j=1k=1

L (equiprobable stratas are created for each input varialvie)



contrary, no equiprobable stratas are created in the \&ariou i
multi-dimensional spaces of the input variables. @ ] ? ? ;l .
We then argue that the sample points of a space filling ]
design have to be well spread out when projected onto a ]
subspace spanned by a subset of coordinate axes. Thistyroper
is particularly important when the initial design is made in

dimensiond and the metamodel fitting is made in a smaller $|
dimension (see an example in [1]). In practice, this is often il
the case because the initial design may reveal with scrgenin B s s W
methods the useless (not influent) input variables that we ca Maximin LHS
neglect during the metamodel fitting stépl[26]. Moreoverewh
a selection of input variables is made during the metamodel
fitting step (as for example in_[19]), the new sample, solely
including the retained input variables, has to keep goodespa
filling properties.
Figure[3 compares the two-dimensional projections of the
maximin LHS and low wrap-around discrepancy LHS (called
WLHS) with n = 100 points and different initial dimensions %
(from d = 3 to 15). The reference criterion values are given _— =
for d = 2. For dimension larger thad, we compute the : 3 ; 3 TR

new criterion values by considering all the two-dimenslona
projections of the initial design. A robust criterion to the
dimension decrease would lead to a small increase of thgy. 3. Criterion values (up: maximin, bottom: wrap-

criterion value. The criteria behave very diferently betwe around discrepancy) obtained with 2D projections of de-
the two types of design: signs coming from two types of LHS (containing n = 100
« 2D projection criteria of WLHS regularly and slightly points), with different dimensions: d = 2,3,4,5,10, 15.
deteriorate. Then, 2D projections of WLHS made iBoxplots are obtained by repeating 100 optimizations
dimensions close t® keep rather good space-fillingusing different initial LHS.
properties.
o 2D projection criteria of maximin LHS sharply and
strongly deteriorate from the first dimension increase 8t4.1. A two-dimensional test caseOur first test involves
d = 3. Then 2D projection criteria of maximin LHS @ two-dimensional analytical function (called the irregul
remain stable at poor values for larger dimensions. ~ function):

Similar tests with different sample sizesand for the three- ey af 2 i,
dimensional and four-dimensional projections have lecht t/(#) = == +5 tdzy—day+ = +ai+
same conclusions. All these results show that a WLHS is the

5 o . .
preferable initial design for fitting a computer code metdeio with & [~1, 1]°. Figure[3 represe_nts the iregular function.
in high dimensional cases. We have made several comparisons between random LHS

and different space filling designs before fitting a metarhode
[18]. In the following, we show our results concerning the
random LHS and the WLHS which has provided the best
. _ results. For a sizen of the learning sample and each type
At. present, We.perform two nqmerlcal studies to evalgg design, we repeat00 times the following procedure: we
the impact of an inadequate design on the metamodel f'tt'Bgnerate an initial input design efobservations, we obtaim
process. For the metamodel, we use the Gp madg . outputs with the toy function, we fit a Gp metamodél (1), and

described in§2. The quality of t_he_ _metamo_d_el prgdictor 'Sve evaluate its predictivity coefficieid)s using a test sample
measured by the so-called predictivity coefficiént (i.e. the of large size %, = 10000). Therefore, for each type of LHS,

determination coefficien®? computed on a test sample) whicn‘yge

) . : e obtain100 values of@2 whose mean and variance give
gives the percentage of the output variance explained by the efficiency and robustness of the design in terms of Gp

Low wrap-around discrepancy LHS (WLHS)

3
417% + 417% +1

3.4. Numerical studies on toy functions

metamodel: quality.
Oy =1 S (@ D) — Yop(@™)? ©) ‘The initial LHS design optimized with the wrap-around
Sy — y(:i}(i))]Q discrepancy (EqL{5)) has given us the_ t_)est results_,. In Elgur
! B, we compare the predictivity coefficients obtained with
with (& ... ™)) the test sample of size;, Ysp = non optimized LHS (random LHS) and those obtained with

E(Ygp) the Gp predictor (Eq.[{2)) ang the mean of the optimized LHS (WLHS). The size of the design increases
output test sampléy(z™V), ..., y(@™)). from n = 10 to n = 46 (by step of4), which leads to a



witha; =1,a2=2,a3 =3, a4 =4,a5 =5, € [0,1]5.

We have made several comparisons between random LHS
and different space filling designs before fitting a metarhode
[18]. In the following, we show our results concerning the
random LHS and the WLHS which has provided the best
results. For a sizer of the learning sample and each type
of design, we repeat00 times the following procedure: we
generate an initial input design afobservations, we obtain
outputs with the toy function, we fit a Gp metamodél (1), and
we evaluate its predictivity coefficier), using a test sample
of large size 4§, = 10000). Therefore, for each type of LHS,
we obtain100 values of @2 whose mean and variance give
us the efficiency and robustness of the design in terms of Gp
quality.

As in the previous section, the initial LHS design optimized
with the wrap-around discrepancy (Ed. (5)) has given us
the best results. In Figurel 6, we compare the predictivity
Fig. 4. Graphical representation of the irregular function coefficients obtained with non optimized LHS (random LHS)

n[—1;1)% and those obtained with optimized LHS (WLHS). The size of

the design increases from = 22 to n = 40 (by step of2),
which leads to a regular increase @f. For each sizer, the
regular increase of),. For each size:, the boxplot represents boxplot represents the summary of th@d values ofQ,. In
the summary of thel00 values of Q,. In the all range of the all range of, )2 of the WLHS are better than the random
n, Qo of the WLHS are better than the random LHS one&HS ones. Furthermore, much smaller variances are shown for
Furthermore, much smaller variances (boxplots are small®/LHS and lead to the conclusion that these designs are more
are shown for WLHS and lead to the conclusion that thesebust than others. For small sample sizes,(fhalifferences
designs are more robust than others. This property is ratieach0.2 between the two types of desig@:(LHS) ~ 0.6
natural because there are much less variability between & Q2(WLHS) ~ 0.8. In industrial applications, such a
100 different WLHS than between th&00 different random difference makes the distinction between “bad” (unacdepja
LHS (because of the optimization process). Differences ametamodels and good ones. The latter can be used for example
particularly important for sizes = 30 andn = 34: the WHS for quantitative sensitivity studies.
lead to very competitive Gp metamodel@y( ~ 0.95 and
boxplot width ~ 0.05) while random LHS give uncompleted | -
metamodels@, ~ 0.9 and boxplot width~ 0.2). s : ﬁ ﬂ E Ei 2 ? u $ BRRH
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W n wm = S w W % Fig. 6. For the g-Sobol 5d function, Gp Q- evolution in
function of the learning sample size n and for two types of

Fig. 5. For the irregular function, Gp Q. evolution in LHS (left: random LHS; right: WLHS).
function of the learning sample size n and for two types of

LHS (left: random LHS; right: WLHS). _ _
3.5. Conclusion of numerical tests

In conclusion of our numerical study, the LHS optimized
with the wrap-around discrepancy has provided efficient re-
sults for the Gp metamodel fitting, even in high dimension.
Furthermore, we have found that this design guaranteesatorr
Z [4z; — 2|+ ai repartitions of the points for all the two-dimensional @wj

1+a; tions, while other types of LHS (like maximin) have bad

3.4.2. A five-dimensional test caséur second test involves
a five-dimensional analytical function (called the g-Sobdl
function):



repartitions for these projections. Other types of LHS dana The second solution to validate a metamodel, the cross
provide good results but less systematically [18]. Foranse, validation method, is extremely popular in practice beeaus
[7] has studied quasi-Monte Carlo samples (Sobol suites ahdvoids new calculations on the computer code. The cross
Halton sequences) and has shown that these sequencesare/ddislation method proposes to divide the initial sample on a
performant than other space filling designs in terms of the Ggarning sample and a test sample. A metamodel is estimated
metamodel fitting. with the points in the new learning sample and prediction
Of course, such designs have to be seen as initial onesrd$iduals are obtained via the new test sample. This prigess
possible, in a second step, adaptive designs can improve metpeated several times by using other divisions of the iegrn
model predictivity in a very efficient way [18], for instanbg sample. Finally all the prediction residuals can be used to
choosing new simulation points in poorly predicted areas. compute the global predictivity measures. The leave-arte-o
procedure is a particular case of the cross validation ntetho
4. Test sample selection for metamodel valida- where just one observation is left out at each step.
tion The first drawback of the cross validation method is its cost,
which can become large due to many metamodel fitting pro-
In practical cases, only a small number of simulations can Besses. Moreover, if the initial design has a specific gegenet
performed with the computer code in order to fit a metamodélructure (which aims at optimizing the metamodel fitting),
Once the metamodel has been built, estimating its predictivthe deletion of points from the learning sample causes the
is an important issue. Indeed, a safe use of this metamodebtgakdown of the specific design structure while creatirgg th
answer to uncertainty or sensitivity problems requiresegige new learning sample. Indeed, the new learning sample does
estimation of its capabilities. In this section, we discabsut not have the adequate statistical and geometric propesties

algorithms of predictivity estimation. the initial design and the metamodel fitting process migiht fa
This could lead to too pessimistic quality measures.
4.1. Classical validation methods To sum up, the test sample method requires too many new
prediction points (to avoid too optimistic validation efiia),
Let us consider thed-dimensional input vectorr = while the cross-validation method can provide too pessimis
(x1,...,2q) € X, where X is a bounded domain validation criteria. Therefore, to solve this dilemma, &ufis-

of RY and y(x) € R is the computer code output.tic new solution has been introduced in[10]J [9] and is
We suppose that a metamod¥l(xz) has been fitted us- presented in the next section.
ing (M, y(@®)),..., (@™, y(x®™))), a N-size learning
sample of computer code experiments. 4.2. A new optimized validation design

The test sample approach consists in comparing the meta-
model predictions on simulation points not used in the meta-Retaining the test sample method, we limit its main draw-
model fitting process. This gives some prediction residud)@ck by minimizing the number of necessary points in the
(which can be finely analyzed) and global quality measurest@st sample. In this goal, an algorithm allows the specitioat
the metamodel predictivity coefficied, (Eq. (8)). Such test of new design points decreasing the discrepancy of an linitia
points set is called a test sample (or also validation samglesign [6]. This sequential algorithm gives us at each step
or prediction sample). This method requires new calcutatiothe prediction point furthest away from the other points of
with the computer code and the first question we have to faié design. The algorithm performs its optimization predes
up is the sufficient number of prediction points to obtain théie spacet’ of the input variablesc. By choosing the future
required accuracy of our global validation measures. Far cprediction points in the unfilled zone of the learning sample
time expensive code, it can be difficult to provide a suffitieflesign, we aim at capturing the right metamodel predigtivit
number of test points. Some convergence visualisatiors todising only a small number of additional points. Note thathsuc
of the global validation measures can be used to answeridéas have also been proposedlin| [28] for different purposes
this first question. We have not theoretically studied the computational effi-

Another important question for the test sample approachdigncy of this algorithm over the computational efficiendy o
the localization of these test points. The usual practice is the traditional methods (introduced in the previous segtio
choose an independent Monte Carlo sample for the test sah@wever, our intuition is that mean square error computed by
ple. However, if the sample size is small, the proposed poirihis algorithm avoids the biases which could be caused by too
can be badly localized, for example near learning points 8irong proximities between the test sample points and legtwe
leaving large space domain unsampled. A fine strategy colf$t sample points vs. learning sample points.
be to use, as the test sample, a space filling design (whicH.et us considetX ;(ns) = (m(fZ))i:L.nJc a low discrepancy
consists in filling the input variable spack as uniformly sequence of.; points in[0, 1]¢. A low discrepancy sequence
as possible). Unfortunately, this solution does not avbie tis a deterministic design constructed to uniformly fill the
possibility of too strong proximity between learning paiaihd space with regular patterns. Among all the low discrepancy
test points. Such proximity would lead to too optimistic iya sequence, Halton, Hammersley, Faure and Sobol sequences
measures, and consequently to a biased prectivity estimatiare the most famous _[16]. In the following, we will use the



Hammersley sequence which, on a few tests, have shown be
properties than the otheid [6]. The chosen discrepancyureas e
is the centered.? discrepancyD?(-) (Eq. (4)). / o \
To obtain an additional point of the initiaV-size sample, :
noticed X ;(N), we use the following algorithm:
1) Fori=1,...,ny,
e X (N+1)={zW ... a2™M}uyuz,;
e computeDif; = D*(X (N + 1)) — D*(X 4(N)); J
2) selecti* such that* = arg min  Dif;;

1=1,...,ny

3) obtain the new poink ("),

This algorithm is repeated sequentially to obtdifys; test
points, by updating the initial design and the low discregyan
sequence. For example, for the second point, we reinitdlize
design by the following:X (N + 1) = {=™,..., 2™} U
:I}f(i*) and Xf(nf — 1) = {.’I:f(l), ceey :Bf(nf)}\:vf(i*).

This algorithm just consists in adding to the initial desig.. ) ] ) )
some points of a low discrepancy sequence by minimizing thdg. 8. Graphical representation of the cosin2 function on
discrepancy differences between the initial and the nevgdes [0; 12
The size of the low discrepancy sequence is required to be as
large as possible, especially dfis large. Figurd]7 gives an
example of the specification with our algorithm et = 4
new points (the crosses) inside an initial Monte Carlo desi
(IV = 46, d = 2). One of the advantage of this algorithm is it
size-independence (related to the number of added poihts):
sequence of added points is deterministic and will be alwag
the same for the samX ;(ny). In the following, the design
obtained using this algorithm is called the sequentiatiaion
design.

uo oo

Figure[8 represents the cosin2 function.
Gp metamodels[{1) are fitted using learning samples of
ifferents sizesNg.: N, ranges froml10 to 40 allowing a
wide variety of metamodel predictivity coefficients,, from
s(nuII predictivity) to 1 (perfect predictivity). The initiall 0-
ize design is a maximin LHS. The other learning designs (of
increased size) are obtained by sequentially adding ptints
the design, while maintaining the LHS properties of the glesi
and keeping some optimality properties (maximizing themea
distance from each design point to all the other points in the
. . design [17]). Choosing an initial maximin LHS design, while
+ . we have shown in sectidn 3 that WLHS is better than maximin
. LHS for the Gp fitting process, is not in contradiction with
. our objectives in this section: our goal is now to study the
n Gp metamodel validation. Anyway, we are not able to keep
. ' . the properties of maximin LHS or WLHS when gradually
. . increasing the size of the learning sample.
LN * + The black line in Figuré]9 shows the evolution @f in
® L function of the learning sample size. This reference value
. . s for the predictivity coefficient has been computed for each
metamodel by taking its mean ovedi0 test samples of
size Nest = 1000. The @2 estimation by a leave one out
Fig. 7. Example of the sequential algorithm: N = 46, procedure (pink line) strongly underestimates the egactor
d = 2, Nest = 4. The bullets are the points of the initial Nea < 30. This is certainly due to the small number of points:
design while the crosses are the new specified points. leave one out is pessimistic in this case because each point
deletion has a strong impact on the metamodel fitting process
The red curve gives th€), estimation using the sequential
validation design described in the previous paragraph(eit
Hammersley sequence of sizg = 10000).
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4.3. Numerical studies on toy functions

4.3.1. A two-dimensional test caselo compare the sequen-
tial validation design with other test designs for the meidei
validation purpose, we first perform an analytical test gsn
two-dimensional toy function, called the cosin2 function:

f(x) = cos(10x1) + sin(10z2) + 2122 , (21,22) € [0,1]%



Ntest= 10
e .
—
[ee]
@
©
@
O ] ,' — exact
e ! leave—one—out
~ ! — Sequential
o A " --- Monte Carlo
o | it LHS
o
N
S ,
10 15 20 25 30 35 40
NBA
Ntest= 20
] _‘
sS{ =
[ee]
@
©
@
S — exact
e leave—one—out
~ — Sequential
i -+ Monte Carlo
o | LHS
o
N
?’ = '
10 15 20 25 30 35 40
NBA
Ntest= 40

— exact
leave—one—out

— Sequential

-+ Monte Carlo
LHS

Q2
-02 00 02 04 06 08 1.0
Il

10 15 20 25 30 35 40
NBA

Ntest= 50

— exact
leave—one—out

— Sequential

-+ Monte Carlo
LHS

Q2
-02 00 02 04 06 08 1.0
Il

o 15 20 25 30 35 4o

NBA
Fig. 9. For the cosin2 function, Gp predictivity coefficient
(Q2) in function of the learning sample size N;,, estimated
from different test sample sizes Nst. The dashed curves
(blue and green) give the minimal and maximal values
obtained with 100 repetitions of the random test design
(Monte Carlo and LHS).

Results are greatly satisfactory fives; > 20: the sequential
validation design gives precig@, estimates in all cases and
outperforms a crude Monte Carlo or LHS design. The green
curves correspond to the minimal and maximal values obdaine
with 100 repetitions using an optimized LHS as the test
design. As expected, these intervals are more reducedhban t
intervals obtained using a crude Monte Carlo sample as the
test design (blue curves). A¥ g increases, these intervals
contract, but always show the superiority of the sequential
validation design, especially for low metamodel preditfiv
(Q2 < 0.9 and N, < 25).

4.3.2. An eight-dimensional test caseWe perform now a
second numerical test using the g-Sobol function in eight-
dimension (called the g-Sobol 8d function):

Z |[dz; — 2| + a;
1+a
with a1 = as = 3, a; = 0 for (123,,8), T € [071]8

A Gp metamodel{1) is fitted on a learning sample (maximin
LHS) of size N, = 40. We compute the reference value of
the predictivity coefficient by taking its mean ovéd0 test
samples of sizéViest= 1000 and obtam@rEf 0.83. We then
apply the sequential validation design described prelyous
(with a Hammersley sequence of sizeg = 10000) by
adding Neest = 50 new points to the design, and we obtain
Q3" = 0.85, which is close to the true value. We compare
this result with100 crude Monte Carlo samples of the same
size (Viest = 50) which give the 90% confidence interval
[0.79,0.91] for QY'C. This last result is rather large and shows
the insufficient number of points if we choose a crude Monte
Carlo design.

Figure[I0 shows the evolution of the estimatéd for
test bases with different sizes, ranging fraWes; = 10 to
Nwest = 50. The solid red line shows the results obtained
with the sequential validation design while the dotted blue
lines show thel00 sequentially increased crude Monte Carlo
samples. This figure illustrates the poor estimates we wbtai
when using small sizeNwst < 50) of Monte Carlo samples
for validation. On the contrary, the sequential validati@sign
allows to obtain a good approximation of the true predittivi
coefficient even for small test sample sizes. Results adgare
for Niest > 25.

4.4. Application to a nuclear safety computer code

In this section we apply our algorithms on a complex
computer model used for nuclear reactor safety. It simslate
hypothetical thermal-hydraulic scenario on Pressurizedew
Reactors: a large-break loss of primary coolant acciderd (s
Fig.[11) for which the output of interest is the peak cladding
temperature. This scenario is part of the Benchmark for
Uncertainty Analysis in Best-Estimate Modelling for Dasjg
Operation and Safety Analysis of Light Water Reactars [2]
proposed by the Nuclear Energy Agency of the Organisation
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Fig. 10. For the g-Sobol 8d function, Gp predictivity of interest for the reactor safety is the first peak of the
coefficient (Q2) in function of the test sample size Nest,  cladding temperature.

for two types of validation design: sequential (red) and

crude Monte Carlo (blue). Dotted blue lines correspond to

100 different crude Monte Carlo samples). lies in the high-dimensional input spacé. = 53 random

input variables are considered: physical laws essentibily

Iso initial conditions, material properties and geoncetri

odeling. Their probability distributions are either n@inor

F S-normal, and both are truncated. Such a number of input

variables is rather large for the metamodel fitting problem.

This difficult fit (due to the high dimensionality and small

learning sample size) can be made thanks to the algorithm of

[19], specifically devoted to this situation. The obtained G

metamodel[{fl) contains a linear regression part (including

) input variables) and a centered Gp model with a generalized

| exponential covariance function (includisginput variables).
The reference quality of this Gp model is measured via an
additional 1000-size test sample which givegs' = 0.66.

‘ Figure[I3 shows the evolution of the estimatéd for

for Economic Co-operation and Development (OCDE/NEA
It has been implemented on the computer code Cathare of
Commissariat a 'Energie Atomique (CEA). Figdrel 12 illus
trates100 CATHARE simulations (by varying input variables
of the accidental scenario) giving the cladding tempeeainr
function of time.

) b ] I:I'H:I-'.

-.. test bases with different sizes, ranging fraWes: = 10 to
Niest= 95. The sequential validation design gives coarse esti-
mations for all the test design sizes and begins to give geeci

=" results forNest > 40. Some inadequacies, which remain when

Neest € [75,90], have to be finely analyzed in a further work. In

any cases, sequential validation design estimations aeglg!

less hazardous than using a crude Monte Carlo test sample to

validate the metamodel: t8%-confidence intervals obtained

using Monte carlo samples show extremely large variation
ranges (because of the high dimensionality of the inputespac

d = 53). Q5 estimation using a Monte Carlo test sample can

lead to a strongly erroneous result. Same results have been

obtained using optimized LHS for the test design instead of a

In our exercise, a Gp metamodéll (1) of the first peakude Monte Carlo sample.
cladding temperature (which is a scalar variable) has to be
estimated withV = 100 simulations of the computer model5. Conclusion and future works
(the input design is a maximin LHS). The cpu time is
twenty minutes for each simulation with a standard computerin this paper, we have proposed to look at two practical
(Pentium IV PC). The complexity of the computer modgbroblems when fitting a metamodel to small-size data samples

Fig. 11. |lllustration of a large-break loss of primary
coolant accident on a nuclear Pressurized Water Reactor.



b : ' ' . " : application, the minimal bound &g > 40.

------ reference
, : Further works are necessary to more deeply study the
i sequential o ) . . . .
ar, o | R validation designs (other test functions with differerfeefive
\\x o N " g dimensionality and complexity). Moreover, it would be udef
! - ) T '||“-51L— ] to find a criterion to determine when the sequential valarati
i ' | design can be ended. Finally, the ultimate goal of such studi
I e e Sl will be to define a global strategy of allocating simulation
C’; 2 R S| points between the metamodel fitting step and the metamodel
‘ validation step.
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