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Abstract: Let R be a positive random variable independent of S which is beta distributed. In this paper we

are interested on the relation between the distribution function of R and that of RS. For this model we derive

first some distributional properties, and then investigate the lower tail asymptotics of RS when R is regularly

varying at 0, and vice-versa. The applications we present in this paper concern a) the simplicity of Dirichlet

distributions, b) asymptotics of the sample minima of elliptical distributions, and c) the effect of the scaling on

the asymptotics of aggregated risks.

Key words and phrases: Weyl fractional-order integral operator; Williamson d-transform; random scaling;

weighted Dirichlet distribution; elliptical distribution; Archimedean copula; product convolution; max-domain

of attraction; asymptotic independence; asymptotics of sample minima; lower tail asymptotics, risk aggregation.

1 Introduction

Let R be a positive random variable independent of S ∈ (0, 1) almost surely. In this paper we discuss the

random scaling model

W
d
= RS, (1.1)

with W the scaled version of R (
d
= stands for equality of the distribution functions). In order to derive

distributional properties of W we need to specify the distribution function of S; a tractable instance with

various applications is the simple case that S is a beta distributed random variable.

Numerous investigations and application of (1.1) and related models are available in the literature. We mention

some recent contributions, see also the references therein: Tang and Tsitsiashvili (2003, 2004), Gomes et al.

(2004), Galambos and Simonelli (2004), Maulik and Resnick (2004), Denisov and Zwart (2005), Nadarajah

(2005), Nadarajah and Kotz (2005), Jessen and Mikosch (2006), Tang (2006, 2008), Pakes (2007), Pakes and

Navarro (2007), Charpentier and Segers (2007, 2008, 2009), Hashorva (2008, 2009a,b, 2010), Hashorva and

Pakes (2009), McNeil and Nešlehová (2009a,b), Hashorva et al. (2010), Liu and Tang (2010).

In a financial or insurance framework, the random scaling model (1.1) appears naturally with W the deflated

risk arising from some loss or investment R which is independent from the random scaling/deflating factor S.

Other prominent applications in the literature concern modeling of network data, see e.g., D’Auria and Resnick

(2006, 2008).

If the random variable R is not directly observable, but the distribution of S is known, and W is observable,

a natural question arising from (1.1) is the recovery of the distribution function (df) of R, or its estimation.

Such a question arises for instance when estimating the true claim cost of a glass insurance coverage. Indeed, if

Ri, i ≥ 1 models the losses payed to claims reported from some glass coverage of a motor portfolio, the insurer
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is interested in the estimation of the true claim cost Wi. However, these costs are typically deflations of Ri,

where the deflator Si explains the presence of fraud or other effects. In this setup Ri is not observed.

In certain cases the df of the scaling random variable is known, or it can be estimated, which prompts the

insurer to attempt to recover the df of the true losses. This is possible when the df of W is a beta-product

convolution, i.e., the scaling random variable S is beta distributed.

The principal aim of this paper is the investigation of the lower tail asymptotics of W if that of R is known,

and vice-versa. Recent results and applications concerning the relation of upper tail asymptotics are presented

in Hashorva and Pakes (2009) and Hashorva et al. (2010).

Our working assumption on R is that its df belongs to the min-domain of attraction of some univariate extreme

value distribution function. We focus particularly on the case S is beta distributed. This model is interesting

since it allows us to recover distributional and asymptotical properties of R when those of W are known, and

vice-versa.

Distributional properties and results such as lower (upper) tail asymptotics of beta-product convolutions are of

certain importance for insurance application when dealing for instance with the modeling of small (large) claims

which are typically affected by some random deflation factor. In fact, from the financial point of view, insurance

companies do not suffer from small claims but from the large ones, however, understanding of small claims is

important for at least two reasons: a) claim handling is expansive even for zero-losses or very small ones, b)

the choice of deductibles and the calculation of pure premiums can be significantly improved if the effect of

inflation/deflation on small claims is adequately modeled. In finance, modeling of the effect of a deflator, which

can practically ruin an investment, is very important.

We present in this paper three applications of our results:

a) First we answer the following question: Are multivariate Dirichlet distributions simple? In the recent paper

McNeil and Nešlehová (2009) it is shown that L1-Dirichlet distributions are closely related to Archimedean

copula, which is being widely used in finance and insurance, see e.g., Embrechts et al. (2001), Juri and Wüthrich

(2002, 2003), Müller and Scarsini (2005), Charpentier and Segers (2007, 2008, 2009), Embrechts et al. (2009)

and the references therein.

In fact the Archimedean copula is defined only in terms of a univariate survival function, see e.g., McNeil and

Nešlehová (2009b) or Charpentier and Segers (2009). Our first application shows that the whole distribution

function of a weighted Dirichlet random vector is also defined solely by a univariate survival function, which is

actually a consequence of the beta-independent splitting property (see e.g., Hashorva (2008)) and the random

scaling model behind these distributions. For those not familiar with multivariate Dirichlet distributions we

mention that a prominent subclass is that of elliptical ones with the Gaussian and Kotz type distributions being

two canonical examples.

b) Our second application concerns the asymptotic behaviour of the minima of elliptical random vectors; we

show that the multivariate sample minima is attracted by some multivariate df with independent components,

provided that the associated random radius has df being regularly varying at 0.

c) In our last application we consider the aggregation of two risks with special dependence structure similar to

that of bivariate elliptical random vectors. Aggregation of risks is of special importance in insurance and in

various statistical applications, see the recent contributions Alink et al. (2004), Denuit et al. (2005), Albrecher

et al. (2006), Dhaene et al. (2008), Asmussen and Rojas-Nandaypa (2008), Embrechts and Puccetti (2008,
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2009a,b), Asmussen et al. (2009), Embrechts et al. (2009), Foss and Richards (2009), Geluk and Tang (2009),

Geluk and Tang (2009), Mitra and Resnick (2009), Valdez et al. (2009).

Brief outline of the rest of the paper: We proceed with a section dedicated to notation and preliminary results.

In Section 3 we discuss some distributional properties of the beta random scaling model.

Lower tail asymptotics for W and R is investigated in Section 4. The above mentioned applications are placed

in Section 5. Proofs of all the results are relegated to Section 6. In the Appendix (last section) we present some

basic properties of the Weyl fractional-order integral operator.

2 Preliminaries

In this section we present our notation and discuss briefly the Weyl fractional-order integral operator and

regularly varying functions. Throughout the paper α, β are two positive constants, and Bα,β denotes a beta

random variable with density functions

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1),

where Γ(·) is the gamma function.

In the following R is a positive random variable with df H (we write R ∼ H) and Hα,β is the df of W with

stochastic representation (1.1). We assume throughout this paper that H(0) = 0, i.e., the lower endpoint of

H equals 0. In the sequel the upper endpoint of H is denoted by ω with ω ∈ (0,∞]. In this setup the df of

W is said to be a product convolution distribution given in terms of H and the df of S. As mentioned in the

Introduction when S is beta distributed with parameters α, β, (write Hα,β for the df of W ), then the relation

between H and Hα,β is very tractable due to the role of the Weyl fractional-order integral operator. We refer

to Hα,β alternatively as a beta-product convolution.

Next, we introduce the aforementioned operator acting on real-valued measurable functions h defined on (0,∞).

For a given constant β ∈ (0,∞) the Weyl fractional-order integral operator Iβ is defined by

(Iβh)(x) :=
1

Γ(β)

∫ ∞

x

(y − x)β−1h(y) dy, x > 0.

Since Iβhλ with hλ(x) = exp(−λx), x > 0, λ ∈ (0, 1) is well-defined and

(Iβhλ)(x) =
1

Γ(β)

∫ ∞

x

(y − x)β−1 exp(−λy) dy = exp(−λx), x > 0 (2.1)

hλ is a fixed point of Iβ . Now, if for any ε > 0 we have

∫ ∞

ε

xβ−1|h(x)| dx <∞,

which is abbreviated by h ∈ Iβ , then (Iβh)(x) is almost surely finite for all x ∈ (0,∞).

It follows easily that

Hα,β(x) =
Γ(α+ β)

Γ(α)
xα(Iβp−α−βH)(x), x ∈ (0, ω), with ps(x) := xs, s ∈IR (2.2)

showing the importance of the Weyl fractional-order integral operator in the setup of beta random scaling.

When α = 1 we have P {B1,β > s} = (1 − s)β , s ∈ (0, 1), hence (2.2) simplifies to

Hα,β(x) =

∫ ∞

x

(1− x/y)β dH(y), Hα,β := 1−Hα,β.
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This leads us to the introduction of the Weyl-Stieltjes fractional-order integral operator Jβ,g with g : (0,∞) →IR

a measurable weight function defined by

(Jβ,gH)(x) :=
1

Γ(β)

∫ ∞

x

(y − x)β−1g(y) dH(y), x ∈ (0, ω).

With this notation we have

H1,β(x) = Γ(β + 1)(Jβ+1,p1−β
H)(x), x ∈ (0, ω). (2.3)

When β = d ∈IN , then Γ(β)(Jβ,p1−β
H) is the Williamson d-transform which plays a crucial role in the analysis

of L1-norm Dirichlet distributions and Archimedean copula, Fang et al. (1990), and McNeil and Nešlehová

(2009a,b).

For the derivation of the lower tail asymptotics of W we impose an assumption on R motivated by univariate

extreme value theory. Specifically, we assume that R ∼ H is regularly varying at 0 with some index γ ∈ (0,∞),

i.e.,

lim
x↓0

H(tx)

H(x)
= tγ , ∀t ∈ (0,∞). (2.4)

We write alternatively H ∈ RVγ or R ∈ RVγ . (2.4) is equivalent with the assertion 1/R is regularly varying

at infinity with index −γ, or the df of 1/R is in the max-domain of attraction of the Fréchet df Φγ(x) =

exp(−x−γ), x > 0. See Resnick (1987), Bingham et al. (1987), Reiss (1989), Embrechts et al. (1997), Falk et al.

(2004), De Haan and Ferreira (2006), Jessen and Mikosch (2006), or Omey and Segers (2009) for more details

on regularly varying functions and max-domain of attractions.

3 Distributional Properties of Beta-Product Convolutions

In this section we discuss the model (1.1) with S being beta distributed with parameters α and β. Since we

assume that H(0) = 0, then Hα,β(0) = 0, and further as shown in Hashorva et al. (2007) Hα,β possesses a

positive density function hα,β given in terms of the Weyl-Stieltjes fractional-order integral by

hα,β(x) =
Γ(α+ β)

Γ(α)
xα−1(Jβ,p−α−β+1

H)(x), x ∈ (0, ω). (3.1)

Clearly, if H possesses a density function h, then

(Jβ,p−α−β+1
H)(x) = (Iβ,p−α−β+1

h)(x), x ∈ (0, ω). (3.2)

In particular we have for some δ ∈ [0, 1), n ∈IN

h1,n−δ(x) = Γ(n+ 1− δ)(In−δ,pδ−n
h)(x), x ∈ (0, ω). (3.3)

Let D(n) denote the n-fold derivative operator (we write alternatively f (n) instead of D(n)f). Now, if h
(n)
1,n−δ

exist almost everywhere, by the properties of the Weyl fractional-order integral (see Lemma 7.1) it follows easily

that utilising (3.3) we can recover h as

xδ−nh(x) =
(−1)n

Γ(n+ 1− δ)
(Iδh

(n)
1,n−δ)(x), x ∈ (0, ω) (3.4)

as already shown in Corollary 2.1 of Pakes and Navarro (2007). When δ = 0 by (7.1) in Lemma 7.1

h(x) =
(−x)n

Γ(n+ 1)
h(n)h1,n(x), x ∈ (0, ω). (3.5)
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A more general result is stated in Theorem 2.1 of the aforementioned paper. Namely, if h exists and h ∈ I1+α−δ

(h ∈ Iα−δ is instead assumed therein, which is a misprint), then

h(x) = (−1)n
Γ(α)

Γ(α+ n− δ)
xα+n−δ−1(IδD

(n)p1−αhα,n−δ)(x), x ∈ (0, ω) (3.6)

provided that h
(n)
α,n−δ exists almost everywhere. When α ≥ δ formalising we arrive at:

Theorem 3.1. Let H,Hα,β be two distributions as above where β = n− δ, δ ∈ [0, α], n ∈IN . Let h, hα,β denote

the corresponding density functions of H and Hα,β, respectively. If h
(n)
α,β(x), x > 0 exists almost everywhere,

then (3.6) holds.

We present next two examples.

Example 1. a) Consider the case

α ∈ (0,∞), β = d ∈IN.

If h
(d)
α,d exists almost everywhere, then Theorem 3.1 implies

h(x) = (−1)d
Γ(α)

Γ(α+ d)
xα+d−1D(d)(p1−αhα,d)(x), x ∈ (0, ω). (3.7)

b) Suppose that

α = 1/2, β = d− 1/2, d ∈IN.

Again, if h
(d)
1/2,d−1/2 exists almost everywhere

h(x) = (−1)d
Γ(1/2)

Γ(d)
xd−1(I1/2D

(d)p1/2h1/2,d−1/2)(x), x ∈ (0, ω) (3.8)

holds, which reduces for α = 1/2 to

h(x) = −Γ(1/2)(I1/2D
(1)p1/2h1/2,1/2)(x), x ∈ (0, ω). (3.9)

Example 2. Let Hα,β be the df of Γα+β,λ, a Gamma random variable with positive parameters α, λ and density

function given by

hα,β(x) =
λα

Γ(α)
xα−1 exp(−λx), x ∈ (0,∞).

Since p1−α(x)Hα,β(x) = hλ(x)λ
α/Γ(α), x > 0, with hλ as in the Introduction, then (3.6) implies that h is the

density function of Γα+β,λ, a Gamma random variable with parameters α + β, λ. If Γα+β,λ is independent of

Bα,β , this means

Γα,λ
d
= Γα+β,λBα,β ,

which is a well-known property of gamma and beta random variables, see e.g., Galambos and Simonelli (2004).

A key fact when dealing with independent beta products is that if Bλ,γ is beta distributed with positive

parameters λ = α+ β, γ being further independent of Bα,β, then we have the stochastic representation

Bα,βBλ,γ
d
= Bα,β+γ . (3.10)

In the case β = d ∈IN we might further write

Bα,d
d
=

d∏

i=1

Bα+d−i,1,
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with Bα+d,1, . . . , Bα,1 independent beta distributed random variables. The above stochastic representation is

crucial for the recursive calculation of hα,β.

Since h need not always exist, it is of some important to recover the df H when Hα,β is known. Utilising (3.10)

this can be achieved iteratively as shown in the next result.

Theorem 3.2. Let H,Hα,β be two distribution functions of the random scaling model (1.1) with H(0) = 0. If

β0 := β > β1 > · · · > βk > βk+1 := 0, k ∈ {0,IN} are such that βi−1 − βi ∈ (0, 1], i = 1, . . . , k + 1, then there

exist distribution functions H0 := H,H1, . . . , Hk+1 = Hα,β determined iteratively by

Hi−1(x) =
Γ(α+ βi)

Γ(α+ βi−1)
xα+βi−1

[
(α+ βi)(Iδip−α−βi−1Hi)(x)− (Jδi,p−α−βi

Hi)(x)
]
, x ∈ (0, ω), (3.11)

with δi := 1 + βi − βi−1. Furthermore, Hi, i = 1, . . . , k + 1 possesses a density function hi.

We illustrate next (3.11) by two examples.

Example 3. Consider H,Hα,β with

α ∈ (0,∞), β = d ∈IN.

With βi = d− i, i = 0, . . . , d there exist Hi with density function hi, i = 1, . . . , d such that H0 = H,Hd = Hα,β

and

Hi−1(x) =
1

α+ βi
xα+βi−1

[
(α+ βi)x

−α−βi−1Hi(x)− x−α−βihi(x)
]

= Hi(x) −
xhi(x)

α+ βi
, x ∈ (0, ω), i ∈ {1, . . . , d}. (3.12)

This example shows that when h
(d)
α,d exists, then we can calculate h recursively by

hi−1(x) =
α+ βi − 1

α+ βi
hi(x)−

xh
(1)
i (x)

α+ βi
, x ∈ (0,∞),

which is an alternative calculation to (3.7). Note that if α = 1, then H can be determined explicitly by the

inverse of the Williamson d-transform (see Proposition 3.1 in McNeil and Nešlehová (2009a)).

Example 4. In an financial context assume that an investment R ∼ H (positive) is being subjected to some

deflation effect so that the return after a period of time (say a year), isW
d
= RS with deflator S being uniformly

distributed in (0, 1). The fact that S
d
= B1,1 and Example 3 imply that H and the df H1,1 of W are related by

H(x) = H1,1(x) − xh1,1(x), ∀x ∈ (0, ω), (3.13)

with ω the upper endpoint of H . Furthermore, if h
(1)
1,1 exists, then almost surely in (0, ω)

h(x) = xh
(1)
1,1(x).

This implies

lim
x↓0

xh1,1(x) = lim
x→ω

xh1,1(x) = 0.

Next, if for some constant γ we have

lim
x↓0

xh1,1(x)/H1,1(x) = γ ∈ [0, 1],

then by Proposition 2.5 in Resnick (2007) H1,1 ∈ RVγ . Further, (3.13) implies

lim
x→∞

H(1/x)

H1,1(1/x)
= 1− γ,
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which can be also written alternatively in terms of survival functions as (set R∗ := 1/R)

lim
x→∞

P {R∗ξ > x}
P {R∗ > x} =

1

1− γ
,

where ξ = 1/B1,1 is a Pareto random variable with parameter 1. Karamata’s Theorem (see e.g., De Haan and

Ferreira (2006), Resnick (2007)) implies thus if γ ∈ [0, 1), then also H ∈ RVγ . Another proof of this fact is

given in Proposition 5.2 of Maulik and Resnick (2004). By (3.13) a converse result can be easily established.

Note in passing that since h(x) = xh
(1)
1,1(x) we have h ∈ RVγ−1 if and only if h

(1)
1,1 ∈ RVγ−2, γ ∈IR.

4 Lower Tail Asymptotics

In this section Hα,β is the product convolution of H with the beta distribution with parameter α, β. Hashorva

and Pakes (2009) and Hashorva et al. (2010) discuss the asymptotic behaviour of the survival function Hα,β :=

1 − Hα,β , when H belongs to some max-domain of attraction of a univariate extreme value df. As shown in

Hashorva and Pakes (2009) H and Hα,β belong (if so) to the same max-domain of attraction. Such results

are important for insurance models, since the random scaling does not effect the max-domain of attraction.

Another application concerns the tail asymptotics of the Archimedean copula, since if β is an integer, then H1,β

equals ψ, the density generator of an Archimedean copula, see McNeil and Nešlehová (2009a) for details. The

asymptotic behaviour at 0 of the inverse of ψ is investigated in Charpentier and Segers (2007, 2008, 2009), see

Remark (4.2) below.

Complementing the findings of Hashorva and Pakes (2009) we focus next on the lower tail asymptotics of Hα,β ,

which boils down to determination of the min-domain of attractions of Hα,β .

When dealing with positive random variables the min-domain of attraction, for say the df H , is determined by

the max-domain of attraction of the df H∗ of 1/R. Since H is a df with lower endpoint 0, only the Fréchet or the

Gumbel max-domain of attraction for H∗ is possible. The first assumption is equivalent with H satisfying (2.4)

with some positive index γ. In Theorem 3.2 we show that this implies that 1/W has also df in the Fréchet max-

domain of attraction, which turns out to be the case if H∗ is in the Gumbel max-domain of attraction. Further,

we prove a converse result for the Fréchet case.

We state next the main result of this section.

Theorem 4.1. Let R ∼ H be a positive random variable being independent of S = Bα,β, and define the

beta-product convolution df Hα,β with lower endpoint 0 via the random scaling model (1.1). We have:

a) If H satisfied (2.4) with some γ ∈ [0,∞), then Hα,β ∈ RVγ∗with γ∗ := min(γ, α). Furthermore, if α 6= γ

lim
s↓0

Hα,β(s)

H(s)
= Kα,γ ∈ (0,∞), (4.1)

where Kα,γ = E{R−α} if α > γ and

Kα,γ =
Γ(α+ β)Γ(α − γ)

Γ(α)Γ(α + β − γ)
, α ∈ (0, γ).

b) If 1/R has df in the Gumbel max-domain of attraction, then Hα,β ∈ RVα.

c) If Hα,β satisfies (2.4) with some γ ∈ (0, α), then H ∈ RVγ and hα,β ∈ RVγ−1.

Remark 4.2.
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1. In the setup of Archimedean copula Charpentier and Segers (2009) consider the asymptotics at 0 of ψ−1

with ψ the generator of some Archimedean copula (in the notation of McNeil and Nešlehová (2009a)). In the

light of findings of the aforementioned paper ψ−1 = (H1,1)
−1, i.e., it is the inverse of the survival function of

a beta-product convolution (α = 1, β = 1). By Proposition 2.6 (v) in Resnick (2007) ψ−1 ∈ RVα, α ∈ [0,∞]

implies that H1,1 is regularly varying at infinity with index 1/α. For the general k-dimensional Archimedean

copula ψ−1 = (H1,k−1)
−1, k ∈ IN . Consequently, the asymptotic findings of Charpentier and Segers (2009)

concern the asymptotics of the survival function H and H1,k and that of h1,1(x) as x→ ∞. See Hashorva and

Pakes (2009), Hashorva et al. (2010) for related asymptotic results. Finally, note that the identity (3.13) of

Example 4 can also be utilised to deal with these functions.

2. Statement a) of Theorem 4.1 can be formulated by dropping the distributional assumption on the random

scaling variable S ∼ G assuming simply that 1/S is regularly varying at infinity with index α ∈ (0,∞). This

implies that (4.1) holds and

Kα,γ = E{R−α}, γ < α, Kα,γ = E{S−γ}, if α < γ.

Note that when α = γ, and E{S−α} = E{R−α} = ∞, then again (4.1) holds and further Kα,α = ∞, see

Lemma 4.1 in Jessen and Mikosch (2006), and Problem 7.8 in Resnick (2007). In the special case that

F (x) = (1 + o(1))cxα, G(x) = (1 + o(1))cxα x ↓ 0

for c, α ∈ (0,∞) then we have

Kα,α = −(1 + o(1))αc2αxα lnx, x ↓ 0,

which follows from the aforementioned lemma.

3. It is well-known (see e.g., Resncik (1987), Embrechts et al. (1997)) that if a df F is in the Gumbel max-domain

of attraction, then if F (x) < 1, ∀x > 0 we have 1− F is rapidly varying at infinity, i.e.,

lim
x→∞

1− F (cx)

1− F (x)
= 0, ∀c > 1.

The Gumbel max-domain of attraction assumption in statement b) of Theorem 4.1 can be weakened to: The

random variable 1/R has a rapidly varying survival function. By Theorem 5.4.1 of de Haan and Ferreira (2006)

it follows that E{1/R} <∞. Hence if α ∈ (0, 1] applying Lemma 2.1 in Gomes et al. (2004) (which generalises

Breiman’s Lemma) we obtain Hα,β ∈ RVα.

4. If α ∈ (0,∞), β = d, then by (3.7) regular variation of h holds if the same is true for D(d)(p1−αhα,d). When

α = 1 the latter reduces to h
(d)
α,d.

5. Statement c) in Theorem 4.1 does not hold in general when γ = α. For α = 1 and a special df H1,1, this is

shown in Example 5.3 of Maulik and Resnick (2004).

We give next two simple examples.

Example 5. In the random scaling model (1.1) assume that the scaling variable S is such that S2 = B1/2,(k−1)/2,

and the df H of R satisfies (2.4) with γ ∈ (0,∞). Applying Theorem 4.1 W 2 has df belonging to RVγ∗/2 with

γ∗ := max(γ, 1). Consequently,

Hα,β ∈ RVγ∗ , and hα,β ∈ RVγ∗−1.

Example 6. Let H be the df of Γα+β,λ as in Example 2. Then H is regularly varying at 0 with index α + β.

Theorem 4.1 implies that Hα,β is regularly varying with index α. This can be shown directly, since in view of

Example 2 Hα,β is Gamma distributed with parameters α, λ.
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5 Applications

In this section we provide three applications concerning multivariate Dirichlet distributions. A canonical example

of such distributions is the Gaussian one, and a well-known subclass of Dirichlet distributions is the class of

spherically symmetric (for short spherical) distributions. A spherical random vector X in IRk, k ≥ 2 with

almost surely positive random radius R has stochastic representation RU with U being uniformly distributed

on the unit sphere of IRk being further independent of R. All the components of X have the same marginal

distribution which can be a drawback for various statistical applications. Recently McNeil and Nešlehová

(2009a) show the strong relation of L1-norm Dirichlet distributions with the Archimedean copula, which is

widely used in insurance and financial applications.

In general the multivariate dependence of Dirichlet distributions does not reduce to that implied by Archimedean

copula, which is proved by the fact that Dirichlet distributions need not be exchangeable. Roughly speaking a

multivariate Dirichlet random vector has stochastic representation given in terms of products of beta random

variables, thus being closely related to the beta random scaling model of this paper.

A natural question that arises is how tractable are such random vectors? In our first application we show that

even when only one marginal distribution of a weighted Dirichlet random vector (see below for the definition)

is known, it is still possible to calculate the whole multivariate distribution of the weighted Dirichlet random

vector. By definition this is also the case of Archimedean copulas with multivariate dependence being defined

solely by a single univariate distribution function.

Our second application concerns elliptical random vectors; we derive the joint asymptotic independence of

sample minima.

The last application is motivated by the dependence function of bivariate elliptical random vectors. Our asymp-

totical result is of some relevance when dealing with lower tail asymptotics of aggregated risk. As mention in

the Introduction aggregation is a central topic in various applications; for insurance and financial applications

refer to Embrechts et al. (2001) and Denuit et al. (2005).

5.1 Are Dirichlet Distributions Simple?

We give first the definition of a weighted Dirichlet random vector inIRk, k ≥ 2. Let R ∼ H be a positive random

variable being independent of some k-dimensional random vector U . We call X with stochastic representation

X
d
= RU a weighted Dirichlet random vector if further

U
d
=

(
T1(1− V p1

1 )1/r1 , . . . , Tk−1(1− V
pk−1

k−1 )1/rk−1)

k−2∏

i=1

Vi, Tk

k−1∏

i=1

Vi

)
(5.1)

holds with

Ti
d
= Be(qi), 1 ≤ i ≤ k, Vi > 0, V pi

i
d
= Bαi,βi

, αi, βi, pi, ri ∈ (0,∞), 1 ≤ i ≤ k − 1,

where Be(qi) is a Bernulli random variable taking only two values {−1, 1} with P {Ti = 1} = qi ∈ (0, 1], i ≤ k.

Further assume that T1, . . . , Tk, V1, . . . , Vk−1 are mutually independent. When qi = 1/2, i ≤ k and pi = ri =

p ∈ (0,∞), then X is a Lp-Dirichlet random vector, see Hashorva at al. (2007).

If we know the df H , then the df of X , and in particular that of each component Xi can be easily derived.

Next, suppose that R is unobservable, and we have incomplete information about X, say only the df of Qi of
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|Xi| for some i with 1 < i ≤ k is known. Assume further that qi = q ∈ (−1, 1), i ≤ k with q some known

constant, or all qis are also known. This is the case for X a Lp-Dirichlet distributions with qi = 1/2, i ≤ k. By

the definition we have the following stochastic representation

|Xi|ri d
= Bβi,αi

i−1∏

j=1

V ri
j R

d
= Bβi,αi

R∗
i .

Next, in the light of Theorem 3.2 the df of R∗
i can be calculated iteratively. Proceeding similarly we see that

the df H of R can be calculated iteratively. Thus the whole df of X can be recovered if we know only the df

Qi, which explains why these multivariate distributions are simple. Indeed, they are multivariate distributions,

however they can be recovered/determined by a single univariate df. When H ∈ RVγ , γ ∈ [0,∞) by Theorem

4.1 we have that Qi ∈ RVγi
with

γi := min
(
γ, βiri, min

1≤j≤i−1
αjpj

)
.

In the special case that X is a Lp-Dirichlet random vector, then

γi = pmin(γ/p, min
1≤j≤i−1

αj , βi), i ≤ k.

Clearly, if αi = βi, i ≤ k, then γi does not depend on i. This is for instance satisfied with αi = βi = 1/p =

1/2, i ≤ k and U being uniformly distributed on the unit sphere of IRk yielding

γi = max(1, γ), 1 ≤ i ≤ k. (5.2)

We remark that RU is in this case a spherical random vector if additionally qi = 1/2, i ≤ k.

5.2 Elliptical Distributions and Asymptotics of Sample Minima

When U is uniformly distributed on the unit sphere of IRk, k ≥ 2, and A is a k-dimensional nonsingular real

matrix, then the random vector X = RAU is elliptically distributed. It is well-known that the distribution

function of X depends on Σ := AA⊤ but not on the matrix A itself. By the properties of U (cf. Cambanis et

al. (1981)), if further the main diagonal of Σ consists of 1s, i.e., Σ is a correlation matrix, then by Lemma 6.1

in Berman (1983) (see also Berman (1992))

Xi
d
= X1

d
= −X1

d
= RU1, i ≤ k. (5.3)

Further we have

X2
1

d
= R2B1/2,l−j/2, k := 2l + j − 1, j = 0, 1,

where R is independent of B1/2,l−j/2. Clearly, the random variable |X1| is a deflation of R by S =
√
B1/2,l−j/2.

As in the previous application, if we know the df of say X1, then the df of the associated random radius R can

be calculated iteratively. In view of Theorem 3.1 we have further that R possesses a density function, which

can again be calculated iteratively (or directly applying (3.7) and (3.8)), provided that X1 possesses a density

function which has an almost surely finite lth derivative.

Next, in view of (5.2) |X11| has df Q ∈ RVγ , γ ∈ (0, 1] which is the case if for instance H ∈ RVγ , γ ∈ (0,∞).

For such Q we define a sequence of constant an, n ≥ 1 asymptotically by

P {a−1
n ≥ X11 > 0} = 1/(2n).

It follows that a−1
n = L(1/n)n−γ , with L ∈ RV0 a positive slowly varying function at 0, i.e., limn→∞ L(c/n)/L(1/n) =

1, ∀c ∈ (0,∞). For such constants we have the convergence in distribution

anMni
d→ Mi ∼ Gγ , i ≤ k, n→ ∞,
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where Mni := min1≤j≤n|Xji|, i = 1, 2 and the df Gγ is given by

Gγ(x) = 1− exp(−xγ), x > 0. (5.4)

Since for u ∈ (0,∞) small enough

P {|X1i| < u, |X1j | < u} = 0, 1 ≤ i 6= j ≤ k

we have

lim
u↓0

P {|X1i| < u, |X1j| < u}
P {|X11| ≤ u} = 0, 1 ≤ i 6= j ≤ k

it follows that Mn := (Mn1, . . . ,Mnk) has asymptotic independent components meaning that the joint conver-

gence in distribution

(
anMn1, . . . , anMnk

)
d→

(
M1, . . . ,Mk

)
, n→ ∞

holds with M1, . . . ,Mk as above being further independent. To this end, we note that the convergence in

distribution above can be reformulated for the more general class of asymptotically elliptical random vectors

(see Hashorva (2005) for asymptotic properties).

5.3 Aggregation of Two Risks: Lower Tail Asymptotics

If X is a k-dimensional elliptical random vector as above, then for given constants µi, i ≤ k we have

∑

1≤j≤k

µjXj
d
=

√ ∑

1≤j≤k

µ2
jX1,

which is a well-known property for the Gaussian random vectors. Moreover we have for any pair Xi, Xj , i 6= j

(Xi, Xj)
d
=

(
S1, ρijS1 +

√
1− ρ2ijS2

)
, (S1, S2)

d
= (R∗T1S,R∗T2

√
1− S2), S ∼

√
B1/2,1/2, (5.5)

with ρij ∈ (−1, 1) the ijth entry of the correlation matrix Σ and (S1, S2) a bivariate spherical random vector with

associated random radius R∗ such that R2
∗

d
= R2B1,k/2−1 and Ti

d
= Be(1/2), i = 1, 2. Furthermore T1, T2, R∗, S

are mutually independent.

If X is a Lp-Dirichlet random vector, the above stochastic representation does not hold in general. In this

application we show that we still can determine the lower tail asymptotics of linear combinations by dropping

distribution assumptions. Motivated by (5.5) we consider the lower tail asymptotics of a bivariate random

vector (X,Yρ), ρ ∈ (−1, 1) with stochastic representation

(X,Yρ)
d
=

(
T1RS, ρT1RS + ρ̃T2R

√
1− S2

)
, ρ̃ :=

√
1− ρ2, (5.6)

where Ti
d
= Be(qi), qi ∈ (−1, 1), R ∼ H and S ∼ G such that G(0) = H(0) = 0, G(1) = 1. As in the elliptical

setup here again T1, T2, R, S are assumed to be mutually independent. Since |X | d
= RS, then the lower tail

asymptotics of |X | can be established by Theorem 4.1 under asymptotic assumptions on R and S. We note

in passing that asymptotic copula properties of (X,Yρ) are discussed in the recent contribution Manner and

Segers (2009). Further, remark that as mentioned in Remark 4.2, we do not need to specify G, apart from the

asymptotic condition G ∈ RVα.

We derive next the lower tail asymptotics of |Yρ| under the following additional assumption on G: For all

positive t small enough

G(ρ+ t)−G(ρ− t) = Lρ(t)t
αρ , G(ρ̃+ t)−G(ρ̃− t) = Lρ̃(t)t

αρ̃ , αρ, αρ̃ ∈ [0,∞), (5.7)
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with Lρ, Lρ̃ ∈ RV0. Condition (5.6) can be easily checked. In the special case that the df G possesses a positive

density function g continuous at ρ and ρ̃, then (5.7) is satisfied with

αρ = αρ̃ = 1, and Lρ(t) = (2 + o(1))g(ρ), Lρ̃(t) = (2 + o(1))g(ρ̃), t ↓ 0. (5.8)

We have now the following result.

Proposition 5.1. Let (X,Yρ), ρ ∈ (0, 1) be a bivariate random vector with stochastic representation (5.6).

Suppose that

R ∼ H ∈ RVγ , S ∼ G ∈ RVα, α, γ ∈ (0,∞)

and (5.7) holds with some αρ, αρ̃ and Lρ, Lρ̃. Assume further that if γρ = αρ̃, then Lρ(x) = cLρ̃(x), ∀x > 0 with

some positive constant c. Then we have

|X | ∈ RVγ1
, |Yρ| ∈ RVγ2

, (5.9)

where γ1 := min(α, γ) and γ2 = min(γ, αρ, αρ̃).

A simple instance when we can apply Proposition 5.1 is when G possesses the density function g. In view of

(5.8) the index γ2 equals min(γ, 1). The following corollary is an immediate consequence of the above discussion.

Corollary 5.2. Let G,H, (X,Yρ), ρ ∈ (−1, 1) be as in Proposition 5.1, and let (Xn, Yn), n ≥ 1 be independent

bivariate random vectors with the same df as (X,Yρ). If G ∈ RV1, and an, bn, n ≥ 1 are constants such that

P {|X | < 1/an} = P {|Yρ| < 1/bn} = 1/n, for all n large, then we have the joint convergence in distribution

(
an min

1≤j≤n
|Xj |, bn min

1≤j≤n
|Yj |

)
d→

(
M1,M2

)
n→ ∞, (5.10)

with M1,M2 independent with common df Gmin(γ,1) defined in (5.4).

6 Further Results and Proofs

Lemma 6.1. Let T1, T2 be two random variables taking values −1, 1 with P {T1T2 = −1} ∈ (0, 1] being indepen-

dent of the scaling random variable S ∼ G. For given ρ ∈ (0, 1) set Sρ := |ρT1S + ρ̃T2
√
1− S2|. If G satisfies

(5.7), then we have

P {Sρ ≤ u} = (1 + o(1))q1,−1(ρu)
αρ̃Lρ̃(u) + (1 + o(1))q−1,1(ρ̃u)

αρLρ(u), u ↓ 0, (6.1)

where qi,j := P {T1 = i, T2 = j}.

Note in passing that if G possesses a positive density function g continuous at ρ and ρ̃, then (6.1) reduces to

P {Sρ ≤ u} = (1 + o(1))2P {T1T2 = −1}[g(ρ)ρ̃+ g(ρ̃)ρ]u, u ↓ 0.

Proof of Lemma 6.1 By the assumptions S ∈ (0, 1) almost surely, and Tj, j = 1, 2 assumes only two values

{−1, 1}. Hence we may write for any u ∈ (0, 1) small enough

P {Sρ ≤ u} = P {T1 = 1, T2 = −1}P{|ρS − ρ̃
√
1− S2| ≤ u}

+P {T1 = −1, T2 = 1}P {|ρ̃
√
1− S2 − ρS| ≤ u}.

Using further the fact that S is independent of T1, T2 we obtain

P {|ρS − ρ̃
√
1− S2| ≤ u} = P {−u ≤ ρS − ρ̃

√
1− S2 ≤ u}
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= (1 + o(1))

∫ ρ̃+(1+o(1))ρu

ρ̃−(1+o(1))ρu

dG(s)

= (1 + o(1))(ρu)αρ̃Lρ̃(u), u ↓ 0.

As above we have further

P {|ρ̃
√
1− S2 − ρS| ≤ u} = (1 + o(1))(ρ̃u)γρLρ(u), u ↓ 0,

thus the result follows. 2

Proof of Theorem 3.2 Theorem 3.3 in Hashorva and Pakes (2009) shows an iterative formula for calculating

the survival function H , when the survival function Hα,β is known. The proof of the theorem is established

with the same arguments of the aforementioned theorem utilising further (3.10). 2

Proof of Theorem 4.1 a) Let W
d
= RBα,β with df Hα,β . First note that

P {Bα,β < s} = (1 + o(1))
Γ(α+ β)

Γ(α + 1)Γ(β)
sα, s ↓ 0 (6.2)

implying thus Hα,β ∈ RVα. Since for any s ∈ (0,∞)

P {W < s} = P {R∗B∗
α,β > 1/s}, R∗ :=

1

R
, B∗

α,β :=
1

Bα,β

the lower tail asymptotics of W is determined by the upper tail asymptotics of the random product R∗B∗
α,β .

When γ ∈ (0, α) we have

E{(B∗
α,β)

γ′} <∞, ∀γ′ ∈ (γ, α),

thus applying Breiman’s Lemma (see Breiman (1965), Cline and Samorodnitsky (2004), Gomes et al. (2004),

Denisov and Zwart (2005), Jessen and Mikosch (2006), de Haan and Ferreira (2006), or Resnick (2007)) we have

Hα,β ∈ RVγ , and further

E{B−γ
α,β} =

Γ(α+ β)

Γ(α)

Γ(α− γ)

Γ(α+ β − γ)
.

Next, if α < γ, since

E{(R∗)α
′} <∞, ∀α′ ∈ (0, γ)

applying again Breiman’s Lemma we find Hα,β ∈ RVα. When α = γ, the claim follows from the well-known

result of Embrecht and Goldie (1980) on asymptotics of the product of two regularly varying random variables

with equal index of regular variation, see also Lemma 4.1 in Jessen and Mikosch (2006).

b) It is well-known (see e.g., Resnick (1987)) that if R∗ = 1/R has df in the Gumbel max-domain of attraction,

then E{(R∗)δ} <∞ for any δ > 0, hence since Bα,β is regularly varying at 0 with index α the claim follows by

Breiman’s Lemma.

c) We show the proof utilising the result of Theorem 3.2. With the notation of the aforementioned theorem we

have that there exist distribution functions H0 := H,H1, . . . , Hk+1 = Hα,β determined iteratively by

Hi−1(x) =
Γ(α+ βi)

Γ(α+ βi−1)
xα+βi−1

[
(α + βi)(Iδip−α−βi−1Hi)(x) − (Jδi,p−α−βi

Hi)(x)
]
, ∀x ∈ (0,∞),

with δi := 1 + βi − βi−1 ∈ [0, 1) and β0 := β > β1 > · · · > βk > βk+1 := 0. By the assumption on Hα,β for any

x > 0 we have (set λk+1 := α+ βk+1 + 1)

(Iδk+1
p−λk+1

Hk+1)(x) =

∫ ∞

x

(y − x)δk+1−1y−λk+1Hk+1(y) dy
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= xα−βkHk+1(x)

∫ ∞

1

(y − 1)δk+1−1y−λk+1Hk+1(xy)/Hk+1(x) dy.

Applying Karamata’s Theorem (see Embrechts et al. (1997), or Resnick (2007)) we have

Γ(δk+1)(Iδk+1
p−λk+1

Hk+1)(x) = (1 + o(1))x−α−βkHk+1(x)

∫ ∞

1

(y − 1)δk+1−1y−λk+1+γ dy

= (1 + o(1))x−α−βkHk+1(x)
Γ(δk+1)Γ(λk+1 − δk+1 − γ)

Γ(λk+1 − γ)
, x ↓ 0.

Similarly we obtain

Γ(δk+1)(Jδk+1,p1−λk+1
Hk+1)(x) =

∫ ∞

x

(y − x)δk+1−1y1−λk+1 dHk+1(y)

= x1−λk+1xδk+1−1

∫ ∞

1

(y − 1)δk+1−1y1−λk+1 dHk+1(xy)

= (1 + o(1))γ(Iδk+1
p−λk+1

Hk+1)(x), x ↓ 0.

Consequently,

Hk(x) = (1 + o(1))
Γ(α + βk+1)

Γ(α+ βk)
(α+ βk+1 − γ)

Γ(α+ βk − γ)

Γ(α+ βk+1 + 1− γ)
Hk+1(x)

= (1 + o(1))
Γ(α + βk+1)Γ(α+ βk − γ)

Γ(α + βk)Γ(α+ βk+1 − γ)
Hk+1(x), x ↓ 0,

hence Hk ∈ RVγ . Proceeding iteratively we find that H0 = H ∈ RVγ .

Next, in view of (6.3) and the fact that H ∈ RVγ ∈ (0,∞) we obtain as above

hα,β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1

∫ ∞

x

(y − x)β−1y−α−β+1 dH(y)

=
Γ(α+ β)

Γ(α)Γ(β)
H(x)

∫ ∞

1

(y − 1)β−1y−α−β+1 dH(xy)/H(x)

= (1 + o(1))γ
Γ(α+ β)

Γ(α)Γ(β)

H(x)

x

∫ ∞

1

(y − 1)β−1y−α−β+γ dy

= (1 + o(1))γ
Γ(α+ β)

Γ(α)

Γ(α− γ)

Γ(α+ β − γ)

H(x)

x
, x ↓ 0

= γ
Hα,β

x
, x ↓ 0

establishing thus the claim. 2

Proof of Theorem 5.1 The proof follows with the same arguments as in the proof of Theorem 4.1 applying

further the result of Lemma 6.1. 2

7 Appendix

We present below some basic properties of the Weyl fractional-order integral operator Iβ .

Lemma 7.1. Let β, c be positive constants, and let h : (0,∞) → R be a given measurable function.

a) Iβh is continuous at 0, i.e.,

I0h = h. (7.1)

If h is the positive density of some df H with lower endpoint 0, then for any α ≥ 0 almost surely

(J0p−α−βH)(x) = x−α−βh(x), x > 0. (7.2)
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b) If h ∈ Iβ and when β ∈ (0, 1)

∫ δ

x

(y − x)β−1h(y) dy <∞

holds for some δ positive, then (Iβh)(x) is finite and continuous for all x > 0.

c) If h ∈ Iβ+c, then

IβIch = IcIβh = Iβ+ch. (7.3)

d) Let D(n) denote the n-fold derivative operator (n ∈IN). If the n-fold derivative D(n)h exists almost everywhere

and D(n)h ∈ Iβ, then

D(n)Iβh = IβD
(n)h, and D(k)In = (−1)kIn−k, k = 1, . . . , n. (7.4)

e) For any df H with H(0) = 0 and upper endpoint ω ∈ (0,∞] we have

(Jβ+1,p1−β
H)(x) = x(Iβp−1−βH)(x), x ∈ (0, ω). (7.5)

Proof of Lemma 7.1 If Iyh is almost surely finite for all y > 0 small enough, then by Lemma 2.2 of Pakes

and Navarro (2007) passing in the limit (y ↓ 0) to the moment generating function of Iy it follows that I0h = h.

Using (3.2) establishes further (7.2). Statement b) is mentioned in the Introduction of Hashorva and Pakes

(2009). Both c) and d) are shown in Lemma 8.1 of the aforementioned paper. e) follows immediately from (2.2)

and (2.3), and thus the result follows. 2
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