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Abstract. Theoretical analysis of random walk on percolation lattices has pre-
dicted that, at the occupied site concentrations of above the threshold value, a 
characteristic crossover between an initial sub-diffusion to a final classical dif-
fusion behavior should occur. In this study, we have employed the lattice gas 
automata model to simulate random walk over a square 2D site-percolation lat-
tice. Quite good result was obtained for the critical exponent of diffusion coef-
ficient. The random walker was found to obey the anomalous sub-diffusion re-
gime, with the exponent decreasing when the occupied site concentration 
decreases. The expected crossover between diffusion regimes was observed in a 
configuration-dependent manner, but the averaging over the ensemble of lattice 
configurations removed any manifestation of such crossovers. This may have 
been originated from the removal of short-scale inhomogeneities in percolation 
lattices occurring after ensemble averaging. 

1 Introduction 

To treat the static and dynamic properties of systems with inherent disorders, theory 
of percolation has proven useful in a large variety of areas. Biological evolution, pro-
tein diffusion in biological membranes, disease epidemics, forest fires and social phe-
nomena are some relatively new examples of the wide applicability of this theory [1-
5]. In spite of this, there exist some purely theoretical challenges in the area and much 
effort has been dedicated to solve them, with theoretical and computational tools [6]. 
The static and dynamic properties of site percolation lattices have been extensively 
investigated during the recent decades using theoretical, computational and even ex-
perimental methods [7-9]. It is well known that, as the concentration P of the occu-
pied sites approaches a threshold value of Pc, an infinite cluster of the occupied sites 
over which the unbounded diffusion or conduction can take place is formed [10]. For 
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P>Pc, the probability of an occupied site to be on the infinite cluster, P∞ is given by 
the characteristic exponent β through the scaling formula  

P∞ ∼ (P-Pc)β (1) 

while P∞ is zero for P<Pc [11]. There is also a percolation correlation length, ξ, which 
for length scales r ≥ ξ, the percolating lattice appears homogeneous, but for r<ξ, it 
exhibits a self-similar fractal geometry. ξ is zero for P=1, but as P approaches Pc from 
the right side, it diverges as [12] 

ξ ∼ (P-Pc)-υ (2) 

For site-percolation lattices with Euclidean dimension of d=2, Pc, β and υ are known 
to be 0.592746 [13], 5/36 [11] and 4/3 [12], respectively. 
Extensive efforts have been made to study the dynamic properties of percolation lat-
tices such as diffusion or conduction over them and relate these properties to the static 
characteristics of such lattices. It is self-evident that below Pc, diffusion and conduc-
tion will be ultimately restricted by the perimeter of finite clusters, but at Pc<P<1 
where ξ ≠0, it has been conjectured [14,15] that the diffusing (or conducting) particle 
would undergo an anomalous sub-diffusive behavior, obeying the law 

<R2>1/2 ∝ Nk (3) 

where <R2>1/2 is the ensemble average of the Euclidean displacement, N is the number 
of time steps, and k is an exponent equal to 1/2 for classical diffusion and less than 
1/2 for the sub-diffusion regime. It is believed that for <R2>1/2 >>ξ, the diffusing par-
ticle will behave classically (i.e. k=1/2), but the diffusion coefficient D will scale 
through the following relation [16] 

D ∼ (P-Pc)μ (4) 

For d=2, the initial value of k occurring when <R2>1/2 << ξ has been numerically cal-
culated as 0.348 [17]. The Alexander-Orbach (AO) conjecture, pointing out that the 
spectral dimension (defined as 2kDf where Df is the fractal dimension) is independent 
of d and equal to 4/3 [18], suggests that the dynamic exponent µ must be related to the 
static ones through the following relation: 

µ=[(3d-4)υ-β]/2 (5) 

so that for d=2, the dynamic exponent µ should be as 91/72 (i.e. about 1.264) [7,8]. 
However, the AO conjecture, although remains as a remarkably accurate estimate, is 
not precisely correct and the true value of spectral dimension is slightly smaller than 
4/3 for d<6 [8]. Therefore, the dynamic exponent µ may be different from that pro-
posed by the AO conjecture. In past, a variety of techniques have been employed to 
estimate µ, including numerical methods, analytical approximations such as series ex-
pansions, small cell real-space renormalization technique, ε-expansion method and 
even experimental techniques and values ranging from 1.20-1.32 have been reported 
for µ in d=2 [8,16, 19-22]. It is also assumed that the change of diffusion regime oc-
curs after some characteristic crossover time,τ, which diverges at P=Pc, so that at the 
percolation threshold, the diffusion is anomalous for all N [15,16]. 
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This study aimed at simulating random walk on percolation lattices using the lattice 
gas automata (LGA) approach. LGA are discrete dynamical systems in regard with 
space, time, and the states of the system. Each point in a regular spatial lattice, called 
a cell, can have a finite number of particles. The particles in the lattice move accord-
ing to a local rule. That is, the movement of a particle at a given time depends only on 
its own state one time step previously, and the states of its nearby neighbors at the 
previous time step. All cells on the lattice are updated synchronously. Thus the state 
of the entire lattice advances in discrete time steps. Many LGA are two-dimensional 
due to visualization and computational concerns, but higher-dimensional lattices cer-
tainly exist [23,24]. Using LGA approach, we explored first how the diffusion coeffi-
cient (D) depends on the concentration of the occupied sites (P) in the lattice and ob-
tained the related exponent of μ. Since the obtained value of μ was reasonably 
consistent with the literature [8,16,19-22], we were convinced that our model has 
grasped the essential features of the studied phenomenon. Thereafter, the nature of 
diffusion regime and its dependence on P was investigated. More specifically, we ex-
amined if and how the theoretically-expected transition between anomalous sub-
diffusion and classical diffusion regimes occurred. It was found that the cross-over 
between two regimes occurs in a configuration-dependent manner and the averaging 
over the ensemble of configurations removes any manifestation of such crossovers. 
The time required for crossover to occur was also found to be configuration-
dependent. 

2 Results and Discussion 

All simulations were conducted with the Lattice Gas Automata (LGA) of the square 
2D lattices of size L=1000. This size is longer than the estimated correlation length of 
the lattice if P is sufficiently higher than Pc (P=0.61 and higher), so the lattice seems 
to be large enough to represent the theoretically-predicted crossover. Lattices of simi-
lar size have been previously employed to manifest such crossovers [e.g. 16]. The 
conducting sites where the random walker was permitted to enter were introduced 
randomly in specified concentrations, according to a uniform random distribution. 
Random numbers were generated by Mersenne Twister (MT19937) algorithm [25]. 
The walker is initially located at the center of the lattice. At each step, the walker 
must select one of the occupied sites within its von-Neumann neighborhood with 
equal probabilities to enter. No waiting time is allowed. The transition rule remains 
unchanged during the whole process of 150,000 time steps.  
For each concentration of conducting sites (P), the random walk was simulated over 
10000 random configurations and the ensemble average of the squared Euclidean dis-
placement of the random walker (<R2>, where <> indicates its ensemble-average) was 
plotted against time steps (N) and the effective diffusion coefficient (Deff) was esti-
mated through calculating the slope of this plot in double linear scale. Fig. 1 displays 
how Deff varies as P is changed between 0 and 1. As expected, Deff was effectively 
zero at P below a critical value of (P'c) about 0.60 and started to smoothly increase 
above it. The more accurate examination of the concentration dependence of Deff be-
tween Ps of 0.50 and 0.60 revealed that Deff was 0.0000 at P<0.57, 0.0005 at P=0.57, 
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0.0019 at P=0.58, 0.0096 at P=0.59 and 0.0193 at P=0.60 (see the Inset of Fig.1). It is 
well known that the percolation threshold Pc is around 0.592746 where the single in-
finite cluster is first formed [13]. At P<Pc, it is expected that the diffusion will ulti-
mately be restricted by the perimeter of finite clusters, so that providing the simula-
tion is long enough, the diffusion coefficient will be effectively zero. The non-zero 
value of Deff at P=0.57-0.59 may be caused by the insufficiency of 150,000 time steps 
for the random walker to reach at the boundary of the large finite clusters. Thereafter, 
considering the dynamic scaling law D ~ (P-P'c)µ, log(Deff) was plotted against log(P-
P'c) (Fig. 2) to estimate the value of µ. The calculated µ was 1.251±0.010, reasonably 
consistent with the values proposed by Alexander-Orbach conjecture [18] and re-
ported in some references [8,16,19-22]. The obtained value for µ was found to be 
nearly independent of lattice size, within the range of L=1000-5000. 
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Fig. 1. Effective diffusion coefficient (Deff) dependence on P, the concentration of the occupied 
sites. Inset shows this dependence for P between 0.50 and 0.60. 
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Fig. 2. The scaling behavior of D with (P- P'c) 
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To investigate if the random walk on the percolation lattice obeyed the classical or 
anomalous regime of diffusion, the squared Euclidean displacement of the random 
walker (<R2>) was plotted against time steps (N) in double logarithmic scale for each 
concentration of conducting sites (P) above P'c. As manifested in Fig. 3, log <R2> 
seems to vary linearly with log (N) at all studied Ps above P'c, although the slopes of 
the linear plots (2k) smoothly decrease with P (see the inset of Fig. 3). Similar to µ, 
the obtained values for k were insensitive to lattice size within the range of L=1000-
5000. These results may be taken to indicate that, when P approaches P'c from the 
right side, random walk on percolation lattice progressively demonstrates the sub-
diffusive behavior. This was in contrast with a fixed value of about 1/3 expected ac-
cording to the theory [15]. However, at P sufficiently higher than threshold, deviation 
from the theoretically-expected k of 1/3 and significant dependence on P have been 
previously reported [e.g. in 16]. 

 

Fig. 3. Log-Log plot of the mean square displacement, <R2>, versus N for various concentra-
tions of the occupied sites, P. P varies between 0.66 and 0.61 from top to down.  The inset 
shows how k varies with P. 

 
Theoretical analysis of anomalous diffusion on percolation lattices have frequently 
shown that, at Pc<P<1 where ξ≠0 (ξ denotes the correlation length of the lattice) and 
the fractal cluster structure influences random walk on the lattice [26], the random 
walker would initially exhibit the anomalous sub-diffusion behavior (with k<1/2), but 
after a characteristic crossover time τ, the random walker would behave classically 
(with k=1/2) [15,16]. To examine if such a crossover could be simulated by our LGA 
model, the local value of exponent k was estimated for different N from the slope of 
log R2 versus log (N) plot. Figure 4 demonstrates the evolution of k in a wide range of 
N, where 1<log(N)<5. In contrast with theoretical prediction, k was found to fluctuate 
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around a nearly constant value along the course of walk at all Ps examined, and nei-
ther the characteristic crossover nor any smooth change from anomalous sub-
diffusion to normal diffusion regime was observed.  
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Fig. 4. The behavior of k with LogN for various concentrations of the occupied sites, P.  P var-
ies between 0.66 and 0.61 from top to down. 

 
While no characteristic crossover could be represented in diffusion behavior when the 
Euclidean displacements were averaged over the ensemble of LGA configurations, it 
was observed that, at numerous LGA configurations but not all of them, a sharp tran-
sition can be found between two regimes of diffusion. Fig. 5A depicts two of the ob-
served crossovers between various diffusion regimes. However, this phenomenon is 
strongly configuration-dependent and in several LGA configurations, this transition is 
completely disappeared (see Fig. 5B). Interestingly, the crossover time τ also revealed 
prominent configuration dependency. In order to obtain the crossover time τ, we used 
the interception point of two fitted lines before and after the transition observed in the 
graph of R2 versus time. As Fig. 6A-B demonstrates, for random configurations gen-
erated with specific seeds showing a characteristic crossover, the crossover time τ 
steps upward when P approaches P'c from the right side although the extent and accu-
rate position of this upward stepping are variable for different random seed numbers. 
Finally, our results may be taken to indicate that the transition between two diffusion 
regimes is manifested in a configuration-dependent manner and the ensemble averag-
ing over the lattice configurations disappears such transitions. This effect of ensemble 
averaging has previously been reported for the anisotropic nature of random walk 
over two-dimensional percolation clusters [27]. This effect may be originated from 
the removal of short-scale inhomogeneities in percolation lattices due to ensemble av-
eraging.  
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Fig. 5. Log-Log plot of R2 versus N. A) for lattice configurations generated with random seeds 
of 1 or 3. B) for lattice configurations generated with random seeds of 2, 19 or 23. 
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Fig. 6. The time step N required for crossover to occur decreases sharply when P increases A) 
For a random configuration generated with a specific seed B) For two other random configura-
tions generated with two distinct seeds 
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3 Conclusion 

We have employed the lattice gas automata model to simulate random walk over a 
square 2D site-percolation lattice. For the critical exponent of diffusion coefficient 
quite good result was obtained and the random walker was found to obey the anoma-
lous sub-diffusion regime, with the exponent decreasing when the occupied site con-
centration decreases. The expected crossover between diffusion regimes was observed 
in a configuration-dependent manner, but the averaging over the ensemble of lattice 
configurations removed any manifestation of such crossovers. Finally, our results may 
be taken to indicate that the transition between two diffusion regimes is manifested in 
a configuration-dependent manner and the ensemble averaging over the lattice con-
figurations disappears such transitions which may have been originated from the en-
semble averaging. 
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