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A periodic orbit formula for quantum reactions through transition states
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Transition State Theory forms the basis of computing reaction rates in chemical and other systems.
Recently it has been shown how transition state theory can rigorously be realized in phase space using
an explicit algorithm. The quantization has been demonstrated to lead to an efficient procedure
to compute cumulative reaction probabilities and the associated Gamov-Siegert resonances. In
this letter these results are used to express the cumulative reaction probability as an absolutely
convergent sum over periodic orbits contained in the transition state.
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Introduction.— Transition State Theory, developed by
Eyring, Polanyi and Wigner in the 1930’s, is the most
fundamental and widely used method to compute reac-
tion rates. During a reaction a molecular system is en-
visaged to pass through a ‘transition state’ or ‘activated
complex’, a kind of unstable supermolecule poised be-
tween reactants and products [1]. The main idea of tran-
sition state theory is to place a dividing surface in the
transition state region and compute the classical reac-
tion rate from the directional flux through the dividing
surface. In order not to overestimate the reaction rate
the dividing surface needs to have the crucial property
that it is crossed exactly once by all reactive trajectories
(trajectories passing from reactants to products or vice
versa) and not crossed at all by all other (non-reactive)
trajectories. In the 1970’s Pechukas, Pollak and others
showed how to rigorously construct such a dividing sur-
face from a periodic orbit giving the so-called periodic

orbit dividing surface (PODS) [2]. The generalization to
more degrees of freedoms has posed a major problem, and
was solved only recently using ideas from dynamical sys-
tems theory (see [3]). This shows that the transition state
at energy E is formed by a normally hyperbolic invariant

manifold (NHIM) (see [4]), which in this case is an in-
variant sphere of dimension 2d−3, where d is the number
of degrees of freedoms, and normal hyperbolicity means
that the contraction and expansion rates associated with
the directions normal to the sphere dominate those of
the directions tangential to the sphere. For d = 2, this
simply is the unstable periodic orbit of the PODS [5]. In
fact, the NHIM spans another sphere which is of dimen-
sion 2d − 2 and hence has one dimension less than the
energy surface and can be taken as a dividing surface.
The NHIM forms the equator of this sphere and divides
it into one hemisphere crossed exactly once by all forward
reactive trajectories and one hemisphere crossed exactly
once by all backward reactive trajectories. The NHIM
itself is invariant and can be viewed as the energy sur-
face of an invariant subsystem (the ‘transition state’ or
‘activated complex’) with one degree of freedom less than

the full system (i.e. with the reaction coordinate being
frozen at a particular value). All these phase space struc-
tures can be explicitly constructed from a normal form

which at the same time gives a simple expression for the
flux through the dividing surface. In [6] the quantization
of this normal form has been used to develop a quantum
version of transition state theory. This quantum normal

form has been demonstrated to give an efficient method
to compute cumulative reaction probabilities (the quan-
tum analogue of the classical flux) and Gamov-Siegert
resonances associated with the activated complex [6, 7].
In this letter we use these results to show that the cu-
mulative reaction probability can be expressed as a sum
over periodic orbits contained in the activated complex.

The normal form representation of the activated com-

plex and the computation of reaction rates.—We consider
a molecular system with d = 1 + f degrees of freedom
which has a saddle-center-. . . -center equilibrium point
(‘saddle’ for short), i.e. the matrix associated with the
linearized Hamilton’s equations has one pair of real eigen-
values ±λ, and f pairs of purely imaginary eigenvalues
±iωk, k = 1, . . . , f . We will restrict ourselves to the
generic case of linear frequencies ωk fulfilling no reso-
nance condition m1ω1+ . . .+mfωf = 0 for any vector of
integers m = (m1, . . . ,mf ) 6= 0. Such saddles are char-
acteristic for reaction type dynamics as for energies near
the energy of the saddle, they induce a bottleneck type
structure of the energy surface near the saddle through
which the system has to pass in order to react.

Normal form theory shows that in the neighbor-
hood of the saddle there is a canonical transformation
such that the transformed Hamiltonian is of the form
H0(I, J1, . . . , Jf ), where I = (p20 − q20)/2 is an inte-
gral associated with the reaction coordinate, and the
Jk = (p2k + q2k)/2, k = 1, . . . , f , are action integrals
associated with the bath modes. The activated com-
plex is the invariant subsystem given by p0 = q0 = 0.
Its motions are described by the reduced Hamiltonian
H0(0, J1, . . . , Jf ), and thus is integrable, i.e. in action

angle variables (J,ϕ) the equations of motion are J̇ = 0
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and ϕ̇ = ∇JH0(0,J) with solutions J(t) = const and

ϕ(t) = ϕ0+tΩ(J) mod 2π , where Ω(J) := ∇JH0(0,J) .
(1)

The motion is thus quasiperiodic. It takes place on invari-
ant f dimensional Liouville-Arnold tori [8] which foliate
the phase space of the activated complex. The motion
becomes periodic for the J for which Ω(J) = am, where
m ∈ Z

f and a ∈ R. We call the torus corresponding to
this J a resonant torus. Fixing the energy E the energy
surface of the activated complex,

ΣE = {J ∈ R
f
+ : H0(0, J1, . . . , Jf ) = E} , (2)

is the action space projection of the NHIM mentioned
in the introduction. The volume it encloses in the space
of the actions J is proportional to the directional flux
through the dividing surface (see Fig. 1).
A quantum normal form procedure based on the Weyl

symbol calculus [6] shows that in the quantum mechan-
ical case a unitary transformation can be found which
transforms the Hamilton operator to the form Ĥ =
H(Î , Ĵ1, . . . , Ĵn) which is a polynomial function of the
operators Î = (−~

2∂2
q1 − q21)/2 and Ĵk = (−~

2∂2
qk + q2k)/2

associated with the classical integrals. The polynomial
defining the quantum normal form operator has the ~

expansion H(I,J) = H0(I,J) + ~H1(I,J) + . . ., where
Hk(I,J) are independent of ~, and H0(I,J) coincides
with the classical normal form Hamiltonian.
The cumulative reaction probability at energy E is

then given by

N(E) =
∑

n∈N
f
0

1

1 + e−2πIn/~
, (3)

where In = In(E) is implicitly defined by

H(In, J1, . . . , Jf ) = E , (4)

and n = (n1, . . . , nf) ∈ N
f
0 is the vector of quantum

numbers for the Bohr-Sommerfeld quantized actions,

Jk = ~(nk +
αk

2
) , k = 1, . . . , f . (5)

Here the αk = 2 are Maslov indices which for later refer-
ence we group in the vector α = (α1, . . . , αf ) (see [9] for
an earlier reference and [6] where this result is derived in
a systematic semiclassical expansion in ~). In the follow-
ing we derive a formula which expresses N(E) in terms
of a sum over periodic orbits.
A periodic orbit formula for the cumulative reaction

probability.— To derive our periodic orbit formula it is
convenient to consider the energy derivative of the cumu-
lative reaction probability (3),

n(E) :=
dN(E)

dE
=

∑

n∈N
f
0

2π

~

dIn
dE

1

4 cosh2(πIn/~)
. (6)
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FIG. 1: For d = 3 degrees of freedom, the left panel shows
an energy surface H0(I, J2, J3) = E for an energy above the
saddle energy. The red lines mark the Bohr-Sommerfeld quan-
tized actions J. The right panel shows the energy surface of
the activated complex ΣE defined in (2) marked as the blue
line in the left panel. The enclosed area is proportional to the
classical flux, and equivalently, to the mean number of states
of the activated complex.

Using (4) the factor dIn/dE can be written as

dIn
dE

=
∂H

∂I

∣

∣

∣

∣

−1

I=In,Jk=~(nk+
1
2
)

. (7)

We can obtain a periodic orbit formula for n(E) follow-
ing a computation similar to the derivation of the Berry-
Tabor trace formula for the density of states of classically
integrable systems [10]. Following [10] we use the Poisson
summation formula to rewrite (6) as

n(E) =
∑

m∈Zf

nm(E) :=
∑

m∈Zf

2π

~f+1
e−iπαm/2×

∫

dfJ
∂H

∂I

∣

∣

∣

∣

−1

I=I(E,J)

1

4 cosh2(πI(E,J)/~)
e2πim·J/~ ,

(8)

where I(E,J) is determined by

H(I(E,J), J1, . . . , Jf ) = E . (9)

Note that the ~ expansion of the quantum normal form
Hamiltonian implies, via (9), an ~ expansion of I(E,J),
i.e. I(E,J) = I0(E,J)+ ~I1(E,J)+ . . .. In the following
we separately discuss the term n0 which we refer to as
the Thomas-Fermi term [10], and the remaining sum over
m 6= 0 which we refer to as the oscillatory term nosc(E).
The Thomas-Fermi term.— For m = 0, we get

n0(E) =
2π

~f+1

∫

dfJ
∂H

∂I

∣

∣

∣

∣

−1

I=I(E,J)

1

4 cosh2(πI(E,J)/~)
.

(10)
This term can easily be interpreted from considering its
integrated version

N0(E) =

∫ E

−∞

dE′ n0(E
′) =

1

~f

∫

dfJ
1

1 + e−2πI(E,J)/~
.

(11)
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In the semiclassical limit, ~ → 0, the integrand can be
viewed as a characteristic function on the action space
region I(E,J) > 0. The integral in (11) hence gives the
action space volume enclosed by the surface I(E,J) = 0,
and accordingly N0(E) is given by the classical flux di-
vided by the elementary volume (2π~)f , which agrees
with the mean number of states of the activated complex
to energy E [6] (see Fig. 1). The term n0(E) is the cor-
responding differential version, i.e. the mean density of
states of the activated complex at energy E.
The oscillatory term.— To compute the terms nm(E)

for m 6= 0 we use [11]

1

4 cosh2(πx)
=

1

(2π)2

∫ ∞

−∞

dy
y/2

sinh(y/2)
e−iyx (12)

to rewrite (8) as

nm(E) =
e−iπmα/2

2π~f+1

∫

dy

∫

J≥0

dfJ

(

∂H

∂I

)−1

I(E,J)

×

y/2

sinh(y/2)
ei[2πmJ−yI(J,E)]/~ .

(13)

This integral can be evaluated by the method of station-
ary phase. The stationary phase conditions are

2πm = y∇JI0(E,J) , I0(E,J) = 0 , (14)

and by differentiating H0(I0(E,J),J) = E we obtain

2πm = − y

λ(J)
Ω(J) , where λ(J) :=

∂H0

∂I
(0,J) .

(15)
The second condition in (14) restricts J to the energy
surface of the activated complex ΣE defined in (2). The
first conditions then fixes a point Jm on ΣE (or a finite
number of points Jm,i) by requiring that the frequency
vector Ω(J) at Jm is proportional to m. By (1) this
means that the torus corresponding to Jm is resonant,
and by (15) we have

|y| = 2π
λ

|Ω| |m| , (16)

where y < 0 (y > 0) if m and Ω are parallel (anti-
parallel). Here all functions of J are evaluated at Jm.
Let Q be the (f+1)×(f+1) matrix of second derivatives
of the phase function in (13) evaluated at Jm and y, and
β its signature. We then find for nm(E),

(2π)
f−1

2 e−i[πmα/2+2π|m|λI1/|Ω|+πβ/4]

~
f+1

2 λ
√

|detQ|
y/2

sinh(y/2)
e2πimJm/~ .

(17)

To evaluate the determinant of Q it is useful to intro-
duce the curvature tensor K of ΣE . Let e1, e2, . . . , ef−1

be f−1 orthogonal unit vectors which are tangent to ΣE

at J. Noting that ΣE is the hypersurface I0(E,J) = 0
we can write the components of K at Jm as

Kij = − 1

|∇JI0|
ei · I ′′0 ej = − 1

|∇JH0|
ei ·H ′′

0 ej , (18)

where I
′′

0 and H ′′
0 denote the matrices of second deriva-

tives with respect to J. Let e1 be the unit vector parallel
to ∇JH0 = Ω. Then in the basis of the ej the matrix Q
becomes

Q =





0 |Ω|/λ 0T

|Ω|/λ −ye1I
′′
0 e1 a

T

0 a y|∇JI0|K



 , (19)

where a has components e1I
′′
0 ej . The determinant of

this matrix can be evaluated straightforwardly, but to
determine as well the signature it is useful to rewrite it
as follows. Let A be the upper left 2 × 2 block of (19),
D = y|∇I0|K and B =

(

0 a
)

, then if detK 6= 0 we can
form
(

A BT

B D

)

=

(

I BTD−1

0 I

)(

A−BTD−1B 0
0 D

)(

I 0
D−1B I

)

.

By the special structure of B we find that BTD−1B =
(

0 0
0 c

)

for some number c. Hence det(A−BTD−1B) =

−|Ω|2/λ2 < 0 and so A−BTD−1B has signature 0. The
signature β of Q is thus determined by D = y|∇JI0|K
and we find

β = sign y signK , (20)

and with y∇JI0 = 2πm, by (14), the determinant is

√

|detQ| = (2π|m|) f−1

2

√

|detK| |Ω|/λ

evaluated at J = Jm.
We notice that if Jm and y are a solution to the station-

ary phase condition for m, then Jm and qy are a solution
for qm for any q ∈ Z\{0}. It is natural to choose µ ∼ m

with positive coprime components and combine the two
terms with qµ and −qµ. This way the n(E) contribution
of the qth repetition of a resonant torus with Ω ∼ µ is
given by

nµ,q(E) =
2π

~(f+1)/2

λ

sinh
(

πq |µ|
|Ω|λ

)
×

cos
(

q(2πµ · J/~− πµα/2− 2π|µ|λI1/|Ω|) + πβ/4
)

q(f−3)/2|µ|(f−3)/2|Ω|2
√

| detK(Jµ)|
.

(21)

Example.— We consider the example of a system com-
posed of an Eckart barrier and two Morse oscillators. Its
quantum normal form Hamiltonian is given by [6]

Ĥ = (
π

a0

√

V0

2m
+ Î)2 −

2
∑

k=1

(
√

Dk −
ak√
2m

Ĵk)
2 . (22)
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FIG. 2: Energy surfaces with resonance lines µ1/µ2 of the ac-
tivated complex which consists of two Morse oscillators. The
insets show the resonant tori with µ1, µ2 ≤ 3 projected to the
configuration space of the oscillators.

Here H = H0, and hence I1 = 0. The frequencies are

Ωk = ∂Jk
H0 = ak

√

2Dk

m
− a2k

m
Jk , k = 1, 2 , (23)

and

λ =
∂H0

∂I

∣

∣

∣

∣

I=0

=
2π

a0

√

V0

2m
. (24)

We choose D2 = a1 = a2 = 1, D1 = 5/6, a0 = 4π,
V0 = 5/4, and ~ = 0.1. Figure 2 shows energy surfaces
ΣE of the activated complex consisting of the two Morse
oscillators together with some resonance lines Ω1/Ω2 =
µ1/µ2. The sign of the curvature matrix is β = −1. The
exact cumulative reaction probability, and its derivative
n(E) can be computed analytically for this system [6]. Its
oscillatory part, nosc = n(E)− n0(E), is shown together
with its approximation by the periodic orbit sum over
the terms (21) for µ1, µ2 ≤ 3 in Fig. 3.
Conclusions.— In this letter we derived a periodic or-

bit formula for the cumulative reaction probability, and
demonstrated its applicability for a simple example. In
the limit λ → 0 (no tunneling through the potential bar-
rier) our periodic orbit formula reduces to the Berry-
Tabor trace formula for the density of states of the acti-
vated complex. In the general case λ 6= 0, our periodic
orbit formula is (as opposed to the Berry-Tabor trace for-
mula) absolutely convergent due to an additional factor
which leads to an exponential damping of contributions
of long periodic orbits. Although we incorporated only
six periodic obits (and their repetitions) in our example
the agreement with the exact result is already very good.
This is even more impressive as we have so far only taken

-0.4 -0.2 0 0.2
E

-60

-40

-20

0

20

40

60

n os
c(E

)

FIG. 3: Exact (dashed line) and periodic orbit approximation
(solid line) of the energy derivative of the cumulative reaction
probability including resonant tori with µ1, µ2 ≤ 3.

into account simple stationary points associated with res-
onant tori, and no isolated and ghost orbits which would
naturally arise in a more elaborate uniform approxima-
tion [10, 12]. Similarly, the integral associated with the
reaction direction can be cast into a periodic orbit sum
over the instanton orbits [9] extending the applicability
of our periodic orbit formula to energies below the saddle
energy. These aspects will be discussed in more detail in
a longer version of this letter.
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