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Abstract

We employ a Lax pair representation of the two-component BKP hi-
erarchy and construct its bihamiltonian structure with R-matrix tech-
niques.
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1 Introduction

The Kadomtsev-Petviashvili (KP) hierarchy of type B (BKP for short) was
introduced in [6, 7], and generalized to multi-component cases by Date,
Jimbo, Kashiwara, Miwa [4] in the form of bilinear equations. Among these
multi-component integrable systems, the two-component BKP hierarchy is
of special interest.

As the two-component BKP hierarchy was proposed, it was shown that
the solution space of tau functions of this hierarchy can be regarded as the
vacuum orbit in the two-component neutral free fermionic Fock representa-
tion of the infinite dimensional Lie algebra D∞ [5, 14], which corresponds
to the infinite Dynkin diagram of type D [15]. The Lie algebra D∞ can

be reduced to the affine Lie algebra D
(1)
n under the (2n − 2, 2)-reduction in

[5], see also [14, 17]. This reduction leads the two-component BKP hier-
archy to a hierarchy that is equivalent with the Kac-Wakimoto hierarchy
corresponding to the principal vertex operator realization of the basic rep-

resentation of D
(1)
n , the Drinfeld-Sokolov hierarchy associated to the Lie

algebra D
(1)
n and the zeroth vertex c0 of its Dynkin diagram, as well as

the Givental-Milanov hierarchy satisfied by the total descendant for the Dn
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singularity, see [9, 12, 13, 16, 19, 26] and references therein. Such a reduc-
tion is analogous with the one that reduces the KP hierarchy to the nth
Gelfand-Dickey hierarchy (see e.g. [8]) that corresponds to the reduction of

Lie algebras: A∞ 7→ A
(1)
n . So in this sense to compare the two-component

BKP hierarchy with the KP hierarchy would deepen our understanding of
integrable hierarchies and relevant theories, such as Jacobi/Prym varieties
in algebraic geometry and Landau-Ginzburg Models of topological strings,
see e.g. [22, 23].

In this article our aim is to study the two-component BKP hierarchy
from the view point of Hamiltonian structures. To our best knowledge,
this topic has not been considered in the literature, possibly for the reason
that the KP-analogue Lax pair representation of the two-component BKP
hierarchy was unknown. Recall that the two-component BKP hierarchy was
defined to be the bilinear equation of a single tau function:

reszz
−1X(t; z)τ(t, t̂)X(t′;−z)τ(t′, t̂′)

= reszz
−1X(t̂; z)τ(t, t̂)X(t̂′;−z)τ(t′, t̂′), (1.1)

where t = (t1, t3, t5, · · · ), t̂ = (t̂1, t̂3, t̂5, · · · ), and X is a vertex operator
given by

X(t; z) = exp



∑

k∈Zodd
+

tkz
k


 exp


−

∑

k∈Zodd
+

2

k zk
∂

∂tk


 .

Here the residue of a Laurent series is taken as resz(
∑

i∈Z fiz
i) = f−1. In [22]

Shiota proposed a scalar Lax representation of the hierarchy (1.1), though
this did not draw much attention for it contains pseudo-differential operators
with derivations of two spatial variables. Recently, a Lax pair representation
of the two-component BKP hierarchy was found by Liu, Zhang and one of
the authors [19]. It was shown that the hierarchy (1.1) can be redefined by
certain extension of the following Lax equations (see Section 3 below):

∂P

∂tk
= [(P k)+, P ],

∂P̂

∂tk
= [(P k)+, P̂ ], (1.2)

∂P

∂t̂k
= [−(P̂ k)−, P ],

∂P̂

∂t̂k
= [−(P̂ k)−, P̂ ] (1.3)

with k ∈ Z
odd
+ , where

P = D +
∑

i≥1

uiD
−i, P̂ = D−1û−1 +

∑

i≥1

ûiD
i with D =

d

dx

are pseudo-differential operators such that P ∗ = −DPD−1, P̂ ∗ = −DP̂D−1.
Note that the first equation in (1.2) is just the Lax representation of the BKP
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hierarchy appearing in [6]. Our arguments will be based on the Lax pair
representation (1.2), (1.3) of the two-component BKP hierarchy.

One can see that the expression (1.2), (1.3) is very similar with the Lax
pair representation of the two-dimensional Toda hierarchy [25]. Since the
latter hierarchy carries a tri-Hamiltonian structure [1], following the idea
of [1] we want to use the R-matrix theory to construct a bihamiltonian
structure of the hierarchy (1.2), (1.3).

We are also motivated by the recent work [2], in which Carlet, Dubrovin
and Mertens constructed an infinite-dimensional Frobenius manifold under-
lying the two-dimensional Toda hierarchy. Due to the similarity of the Lax
representations mentioned above, we expect that there also exists an infinite
dimensional Frobenius manifold that underlies the two-component BKP hi-
erarchy. A hint is that the potential F of the dispersionless two-component
BKP hierarchy (in the notion of [23], namely the dispersionless limit of the
logarithm of the tau function, see Section 3 below) was discovered to satisfy
certain infinite-dimensional WDVV-type associativity equations [3]. While
in the finite-dimensional case, the concept of Frobenius manifolds [10] can
be regarded as a geometric description of the WDVV equations, and as-
sociated to certain nondegenerate Frobenius manifold there lives a Poisson
pencil so that a bihamiltonian hierarchy can be constructed [11]. We hope
that this article and follow-up work might help to understand the theory of
infinite-dimensional manifolds.

This article is arranged as follows. In next section we recall the definition
and some properties of pseudo-differential operators introduced in [19], and
in Section 3 we recall the Lax pair representation of the two-component
hierarchy. In Sections 4 and 5, an R-matrix will be used to construct Poisson
brackets on an algebra of pseudo-differential operators, and after appropriate
reductions of the Poisson brackets we obtain a bihamiltonian structure of
the two-component BKP hierarchy. Finally we compute the dispersionless
limit of this bihamiltonian structure in Section 6, and give some remarks in
Section 7.

2 Pseudo-differential operators

For preparation we first recall the notion of pseudo-differential operators
over a differential algebra with a gradation as introduced in [19].

Let A be a commutative ring with unity, and D : A → A be a derivation.
The algebra of usual pseudo-differential operators is

D− =

{
∑

i<∞

fiD
i | fi ∈ A

}
. (2.1)

This algebra is topologically complete with a topological basis given by the
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following filtration:

· · · ⊂ D−
(d−1) ⊂ D−

(d) ⊂ D−
(d+1) ⊂ · · · , D−

(d) =




∑

i≤d

fiD
i | fi ∈ A



 ,

and in this algebra two elements are multiplied as series of the following
product of monomials:

fDi · gDj =
∑

r≥0

(
i

r

)
f Dr(g)Di+j−r, f, g ∈ A. (2.2)

Now assume there is a gradation on A such that

A =
∏

i≥0

Ai, D : Ai → Ai+1, Ai · Aj ⊂ Ai+j,

and consider the linear space

D =

{
∑

i∈Z

fiD
i | fi ∈ A

}
.

Obviously D− ⊂ D.

For any k ∈ Z, denote by Dk the set of homogeneous operators with
degree k in D−, i.e.,

Dk =




∑

i≤k

fiD
i | fi ∈ Ak−i



 .

Let D+ be a subspace of D that reads

D+ =
⋃

d∈Z

D+
(d), D+

(d) =
∏

k≥d

Dk, (2.3)

and D+ have a topological basis given by the filtration

· · · ⊃ D+
(d−1) ⊃ D+

(d) ⊃ D+
(d+1) ⊃ · · · .

In fact, every element A ∈ D+ has the following normal expansion [19]

A =
∑

i∈Z




∑

j≥max{0,m−i}

ai,j


Di, ai,j ∈ Aj

with some integer m. Note that Dk · Dl ⊂ Dk+l according to the multiplica-
tion defined by (2.2), then this multiplication can be naturally extended to
D+ such that D+ becomes an associative algebra.
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Definition 2.1 ([19]) Elements of D− (resp. D+) are called pseudo-differential
operators of the first type (resp. the second type) over A. The intersection
of D− and D+ in D is denoted by

Db = D− ∩ D+,

and its elements are called bounded pseudo-differential operators.

Sometimes to indicate the algebra A and the derivation D, we will use
the notations D±(A,D) instead of D±.

Pseudo-differential operators of the second type have similar properties
with the operators in D−. For any operator

A =
∑

i∈Z

fiD
i ∈ D±, (2.4)

its positive part, negative part, residue and adjoint operator are defined to
be respectively

A+ =
∑

i≥0

fiD
i, A− =

∑

i<0

fiD
i, (2.5)

resA = f−1, A∗ =
∑

i∈Z

(−D)i · fi. (2.6)

Note that the projections given in (2.5) induce the following decompositions
of spaces

D± = (D±)+ ⊕ (D±)−, (2.7)

particularly one easily sees that

(D−)+ ⊂ Db, (D+)− ⊂ Db. (2.8)

An element A of (D±)+ is call a differential operator, and it is denoted
by A(f) the action of a differential operator A on f ∈ A.

We need more notations below. Elements of the quotient space F =
A/D(A) are called local functionals, which are denoted as

∫
f dx = f +D(A), f ∈ A.

Introduce a map

〈 〉 : D → F , A 7→ 〈A〉 =

∫
resAdx. (2.9)

Then the pairing
〈A,B〉 = 〈AB〉 (2.10)
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defines an inner product on each of D±.

Given any subspace S ⊂ D±, we denote by S∗ the dual space of S (c.f.
the notation of adjoint operators). Via the above inner product, we have
the following identification of dual spaces

(D±)∗ = D±. (2.11)

Consider the decompositions (2.7), it is easy to see that

(
(D±)±

)∗
= (D±)∓.

We decompose D± in another way as

D± = D±
0 ⊕D±

1 , (2.12)

where
D±

ν =
{
A ∈ D± | A∗ = (−1)νA

}
, ν = 0, 1.

Since 〈A〉 = −〈A∗〉 for A ∈ D±, then the dual subspaces of D±
ν read

(D±
ν )

∗ = D±
1−ν , ν = 0, 1. (2.13)

For more details on properties of pseudo-differential operators one can
refer to [8, 19].

3 The two-component BKP hierarchy

The two types of pseudo-differential operators serve in [19] to give a scalar
Lax pair representation of the two-component BKP hierarchy, which is re-
viewed as follows.

Let M̃ be an infinite-dimensional manifold with local coordinates

(a1, a3, a5, . . . , b1, b3, b5, . . . ),

and Ã be the algebra of differential polynomials on M̃ :

Ã = C∞(M̃)[[a
(s)
k , b

(s)
k | k ∈ Z

odd
+ , s ≥ 1]].

We assign a gradation on Ã by

deg f = 0 for f ∈ C∞(M̃ ), deg a
(s)
k = deg b

(s)
k = s

which make Ã a topologically complete algebra:

Ã =
∏

i≥0

Ãi, Ãi · Ãj ⊂ Ãi+j.
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Note that this gradation is induced from the derivation

D : Ã → Ã, D =
∑

s≥0

∑

k∈Zodd
+

(
a
(s+1)
k

∂

∂a
(s)
k

+ b
(s+1)
k

∂

∂b
(s)
k

)

with a
(0)
k = ak, b

(0)
k = bk. So one can define the algebras D̃± = D±(Ã,D) of

pseudo-differential operators as was done in last section.

Introduce two operators

Φ = 1 +
∑

i≥1

aiD
−i ∈ D̃−, Ψ = 1 +

∑

i≥1

biD
i ∈ D̃+, (3.1)

where a2, a4, a6, . . . , b2, b4, b6, · · · ∈ Ã are determined by the following con-
ditions

Φ∗ = DΦ−1D−1, Ψ∗ = DΨ−1D−1. (3.2)

Then the two-component BKP hierarchy (1.1) can be redefined to be

∂Φ

∂tk
= −(P k)−Φ,

∂Ψ

∂tk
=
(
(P k)+ − δk1P̂

−1
)
Ψ, (3.3)

∂Φ

∂t̂k
= −(P̂ k)−Φ,

∂Ψ

∂t̂k
= (P̂ k)+Ψ, (3.4)

where k ∈ Z
odd
+ , and the operators P , P̂ read

P = ΦDΦ−1 ∈ D̃−, P̂ = ΨD−1Ψ−1 ∈ D̃+. (3.5)

It was shown that the operators P and P̂ have the following expressions:

P = D +
∑

i≥1

uiD
−i, P̂ = D−1û−1 +

∑

i≥1

ûiD
i, (3.6)

with û−1 = (Ψ−1)∗(1), and they satisfy

P ∗ = −DPD−1, P̂ ∗ = −DP̂D−1, (3.7)

which implies

(P k)+(1) = 0, (P̂ k)+(1) = 0, k ∈ Z
odd
+ . (3.8)

Observe that the coefficients of P and P̂ are elements of the quotient algebra
Ã/I, where I is an ideal of Ã defined by the equations (3.5), moreover,
among these coefficients only the ones with odd subscript are independent,
while the others are determined by the conditions (3.7).

Assume that
u = (u1, u3, . . . , û−1, û1, û3, . . . ) (3.9)
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serves as a coordinate of some infinite-dimensional manifold M . Let A be
the algebra of differential polynomials on M :

A = C∞(M)[[u(s) | s ≥ 1]],

namely A = Ã/I. Similarly as above, one can assign a gradation to A that
is induced from the derivation

D : A → A, D =
∑

s≥0

u(s+1) ·
∂

∂u(s)

with u(0) = u, and define the algebras D± = D±(A,D) of pseudo-differential
operators over A. Obviously P ∈ D−, P̂ ∈ D+. Then it is easy to see
that the two-component BKP hierarchy (3.3), (3.4) can be restricted to the
algebra A as follows:

∂P

∂tk
= [(P k)+, P ],

∂P̂

∂tk
= [(P k)+, P̂ ], (3.10)

∂P

∂t̂k
= [−(P̂ k)−, P ],

∂P̂

∂t̂k
= [−(P̂ k)−, P̂ ] (3.11)

with k ∈ Z
odd
+ .

In the present paper we regard the two-component BKP hierarchy as the
evolutionary equations (3.10), (3.11) defined on the algebra A. In fact, the
hierarchy (3.10), (3.11) possesses a tau function τ = τ(t, t̂) that solves the
bilinear equation (1.1). More exactly, this tau function is defined by [19]

ω = d(2 ∂x log τ) with x = t1, (3.12)

where ω is a closed 1-form:

ω =
∑

k∈Zodd
+

(resP k dtk + res P̂ k dt̂k).

Remark 3.1 The dispersionless limit of the flows (3.10), (3.11) first exists
in [23], where Takasiki also considered the dispersionless limit of the loga-
rithm of the tau function as given in (3.12). Inspired by [23], Chen and Tu
[3] discovered that the leading term of log τ solves an infinite-dimensional
associativity equation of WDVV type.

4 R-matrix and pseudo-differential operators

To show that the two-component BKP hierarchy (3.10), (3.11) possesses
a bihamiltonian structure, we need to construct a Poisson pencil for it.
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The method is to use the standard R-matrix theory and introduce Poisson
brackets on a Lie algebra (see [21, 18, 20] and references therein), then
restrict the Poisson brackets to certain submanifold of the Lie algebra. Our
approach is similar with that used by Carlet [1] for the two-dimensional
Toda hierarchy.

We first recall the R-matrix formalism. Let g be a Lie algebra, and
R : g → g be a linear transformation. Then R is called an R-matrix [21] on
g if it defines a Lie bracket by

[X,Y ]R = [R(X), Y ] + [X,R(Y )], X, Y ∈ g. (4.1)

A sufficient condition for a transformation R being an R-matrix is that R
solves the modified Yang-Baxter equation [21]

[R(X), R(Y )]−R([X,Y ]R) = −[X,Y ] (4.2)

for all X, Y ∈ g.

Assume that g is an associative algebra, with the Lie bracket defined
naturally by commutators, and there is a map 〈 〉 : g → C that defines a
non-degenerate symmetric invariant bilinear form (inner product) 〈 , 〉 by

〈X,Y 〉 = 〈XY 〉 = 〈Y X〉, X, Y ∈ g.

Via this inner product one can identify g with its dual space g∗. The tangent
and the cotangent bundles of g are denoted by Tg and T ∗g respectively, with
fibers at any point A ∈ g of the form TAg = g, T ∗

Ag = g∗.

Let R∗ be the adjoint transformation of R with respect to the above
inner product. We introduce the notations of the symmetric and the anti-
symmetric parts of R respectively as

Rs =
1

2
(R+R∗), Ra =

1

2
(R−R∗).

The R-matrix formalism is briefly stated as follows. Given an R-matrix
R : g → g that satisfies certain conditions, there define three compatible
Poisson brackets on g, say, the linear, the quadratic and the cubic brackets
in the notion of [18, 20].

In particular, let us recall the quadratic bracket, which will be used to
construct a Poisson pencil for the two-component BKP hierarchy.

Lemma 4.1 ([18, 20]) Let f , g be two arbitrary smooth functions on g,
and ∇f,∇g ∈ T ∗

Ag be their gradients at any point A ∈ g. Given a linear
transformation R : g → g, if both R and its anti-symmetric part Ra satisfy
the modified Yang-Baxter equation (4.2), then the quadratic bracket

{f, g}(A) =
1

4

(
〈[A,∇f ], R(A∇g +∇g ·A)〉 − 〈[A,∇g], R(A∇f +∇f · A)〉

)

(4.3)
defines a Poisson bracket on g.
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Note that the bracket (4.3) can be rewritten as

{f, g}(A) = 〈∇f,PA(∇g)〉,

where P : T ∗g → Tg is a Poisson tensor given by

PA(∇g) =−
1

4
[A,R(A∇g +∇g ·A)]−

1

4
AR∗([A,∇g]) −

1

4
R∗([A,∇g])A,

namely,

PA(∇g) =−
1

2
A
(
Rs(A∇g) +Ra(∇g ·A)

)
+

1

2

(
Ra(A∇g) +Rs(∇g · A)

)
A.

(4.4)

Henceforth we take g to be the algebra

D = D− ×D+,

where D− and D+ are the sets of pseudo-differential operators of the first
type and the second type over some differential algebra A as defined in
Section 2. In D the elements read X = (X, X̂), and the operations are
defined diagonally as

(X, X̂) + (Y, Ŷ ) = (X + Y, X̂ + Ŷ ), (X, X̂)(Y, Ŷ ) = (XY, X̂Ŷ ).

So D is indeed an associative algebra. It is easy to see that D is equipped
with an inner product define by

〈(X, X̂), (Y, Ŷ )〉 = 〈(X, X̂)(Y, Ŷ )〉 = 〈X,Y 〉+ 〈X̂, Ŷ 〉,

see (2.9), (2.10). Via this inner product we have the identification of dual
spaces as above:

D∗ = (D−)∗ × (D+)∗ = D− ×D+ = D.

Consider an R-matrix on D that has the same form with the one used in
[1] to construct the tri-Hamiltonian structure of the two-dimensional Toda
hierarchy, namely,

R : D → D, (X, X̂) 7→ (X+ −X− + 2X̂−, X̂− − X̂+ + 2X+). (4.5)

As done in [1], since R = Π− Π̃, where

Π(X, X̂) = (X+ + X̂−, X̂− +X+), Π̃(X, X̂) = (X− − X̂−, X̂+ −X+)

are two projections of D onto its subalgebras, more exactly,

ΠD = {(X,X) | X ∈ Db}, Π̃D = (D−)− × (D+)+,
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Π2 = Π, Π̃2 = Π̃, Π̃Π = 0 = ΠΠ̃, Π+ Π̃ = id,

then transformation R satisfies the modified Yang-Baxter equation (4.2) and
is indeed an R-matrix on D. Moreover, according to the inner product on
D introduced above, the adjoint transformation of R reads

R∗ : D → D, (X, X̂) 7→ (X− −X+ + 2X̂−, X̂+ − X̂− + 2X+),

hence the symmetric and anti-symmetric parts of R are given by

Rs(X, X̂) = 2(X̂−,X+), Ra(X, X̂) = (X+ −X−, X̂− − X̂+). (4.6)

Observe that Ra can be expressed as the difference of two projections onto
subalgebras ofD, hence Ra also solves the Yang-Baxter equation (4.2). Thus
the R-matrix given in (4.5) fulfills the condition of Lemma 4.1.

We regard D as an infinite-dimensional manifold, whose coordinate is
given by the coefficients of the general expression of its elements

A =

(
∑

i∈Z

wiD
i,
∑

i∈Z

ŵiD
i

)
∈ D, (4.7)

and let the set F of local functionals over the differential algebra A (see
Section 2) play the role of C∞(g). For any F ∈ F , the variational gradient
of F at the point A given in (4.7) is defined to be

δF

δA
=

(
∑

i∈Z

D−i−1 δF

δwi(x)
,
∑

i∈Z

D−i−1 δF

δŵi(x)

)
,

where δF/δw(x) =
∑

j≥0(−D)j
(
∂F/∂w(j)

)
. Note that δF/δA is not con-

tained in D∗ = D in general, so to go forward we need to do some restriction.

It shall be indicated that, in this paper we only consider functionals with
variational gradients lying inD. We denote by F0 the set of such functionals.

Now one can use Lemma 4.1 and the formulae (4.4), (4.6) to obtain the
following result.

Lemma 4.2 Let F and G be two arbitrary functionals in F0. On the algebra
D there is a quadratic Poisson bracket

{F,G}(A) =

〈
δF

δA
,PA

(
δG

δA

)〉
, A = (A, Â) ∈ D, (4.8)

where the Poisson tensor P : TD∗ → TD is defined by

P(A,Â)(X, X̂) =
(
A(XA)− − (AX)−A−A(ÂX̂)− + (X̂Â)−A,

Â(X̂Â)+ − (ÂX̂)+Â− Â(AX)+ + (XA)+Â
)
. (4.9)
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Aiming at Hamiltonian structures of the two-component BKP hierarchy,
we need to reduce the Poisson structure (4.9) to an appropriate submanifold
of D. Recall the decompositions (2.12), let us decompose the space D as

D = D0 ⊕D1, (4.10)

where Dν = D−
ν × D+

ν for ν = 0, 1. Then the subspaces D0 and D1 are
dual to each other with respect to the inner product on D defined above.
So for any A ∈ Dν we have T ∗

A
Dν = (Dν)

∗ = D1−ν for ν = 0, 1. It is
straightforward to verify the following lemma.

Lemma 4.3 The Poisson structure (4.9) on D can be properly restricted to
each of its subspaces D0 and D1.

5 Bihamilonian representation of the two-component

BKP hierarchy

In this section, we are to find a submanifold of D where lives the Poisson
pencil for the two-component BKP hierarchy, then after a further reduction
of the Poisson structure constructed in last section we express the hierarchy
(3.10), (3.11) to the form of Hamiltonian equations.

Recall the operators P ∈ D−, P̂ ∈ D+ given in (3.5), we let

A = (P 2D−1,DP̂ 2). (5.1)

It is easy to see that A ∈ D1 (see (4.10)), and A = (A, Â) has the following
expression:

A = P 2D−1 = D +
∑

i≥0

(v−iD
−2i−1 + f−iD

−2i−2), (5.2)

Â = DP̂ 2 = ρD−1ρ+
∑

i≥1

(v̂iD
2i−1 + f̂iD

2i−2), ρ = û−1. (5.3)

Denote v̂0 = ρ2, and v = (v0, v−1, . . . , v̂0, v̂1, . . . ). It is easy to see that the
coordinate v is related to u given in (3.9) by a Miura-type transformation,
and that f−i, f̂i are linear functions of derivatives of v determined by the
symmetry property (A∗, Â∗) = −(A, Â). Hence the flows of the hierarchy
(3.10), (3.11) can be described in the coordinate v.

Given any local functional F ∈ F0 (remind the notation F0 in last sec-
tion), its variational gradient with respect to A, say δF/δA, is defined to
be X = (X, X̂) ∈ D with

X =
1

2

∑

i≥0

(
δF

δv−i(x)
D2i +D2i δF

δv−i(x)

)
, (5.4)
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X̂ =
1

2

∑

i≥0

(
δF

δv̂i(x)
D−2i +D−2i δF

δv̂i(x)

)
. (5.5)

Or in a coordinate-free way, δF/δA = X can be defined by

δF = 〈X, δA〉, X ∈ D0. (5.6)

Note that in the latter definition, the variational gradient is determined up
to a kernel part Z = (Z, Ẑ) ∈ D0 such that

Z+ = 0, Ẑ− = 0, Ẑ+(ρ) = 0. (5.7)

Let us consider the coset (D, 0) + U consisting of operators of the form
(5.1), where

U = (D−
1 )− ×

(
(D+

1 )+ ×M
)
, M = {ρD−1ρ | ρ ∈ A}. (5.8)

Here M is regarded as a 1-dimensional manifold with coordinate ρ, and this
manifold has tangent spaces of the form

TρM = {ρD−1f + fD−1ρ | f ∈ A}.

So the tangent bundle, denoted by TU , of the coset (D, 0) + U has fibers

TAU = (D−
1 )− ×

(
(D+

1 )+ × TρM
)
, A ∈ (D, 0) + U , (5.9)

while the cotangent bundle T ∗U of (D, 0) + U is composed of

T ∗
AU = (D−

0 )+ ×
(
(D+

0 )− × T ∗
ρM

)
, T ∗

ρM = A. (5.10)

From (5.4), (5.5) one sees that δF/δA ∈ T ∗
A
U for any F ∈ F0. Now we are

ready to do the desired reduction of the Poisson structure.

Lemma 5.1 The map
P : T ∗U → TU (5.11)

defined by the formula (4.9) is a Poisson tensor on the coset (D, 0)+U that
consists of operators of the form (5.1).

Proof. We only need to show that the map defined by (4.9) admits the
restriction to the coset (D, 0) + U , i.e., the following map is well defined:

PA : T ∗
AU → TAU , A ∈ (D, 0) + U . (5.12)

Assume X = (X, X̂) ∈ T ∗
A
U ⊂ D0. From Lemma 4.3 one has PA(X) ∈

D1. Moreover, it is easy to see that the first component of PA(X) belongs
to (D−

1 )−. On the other hand, for any Ŷ ∈ (D+)+ we have

(ÂŶ + Ŷ ∗Â)− =(ρD−1ρŶ + Ŷ ∗ρD−1ρ)−

13



=− (Ŷ ∗ρD−1ρ)∗− + Ŷ ∗(ρ)D−1ρ

=ρD−1Ŷ ∗(ρ) + Ŷ ∗(ρ)D−1ρ ∈ TρM,

then by taking Ŷ = (X̂Â)+, (AX)+ it follows that the second component of
PA(X) lies in (D+

1 )+ × TρM. Thus PA(X) ∈ TAU , i.e., the map (5.12) is
well defined. The lemma is proved. �

Remark 5.2 The proof of this lemma is the simplest case of the Dirac
reduction procedure for Poisson tensors, see e.g. [20]. In fact, one can
express the manifolds D1 and D∗

1 as

D1 = U × V = TAU × VA, D∗
1 = D0 = T ∗

AU × V∗
A, (5.13)

where

V = VA = (D−
1 )+ ×N , N = {X ∈ (D+

1 )− | resX = 0},

V∗
A = (D−

0 )− × (T ∗
ρ )

⊥M, (T ∗
ρ )

⊥M = {Ŷ ∈ (D+
0 )+ | Ŷ (ρ) = 0}.

Similar as the proof of Lemma 5.1, one can show that the map

PA =


 PUU

A
PUV
A

PVU
A

PVV
A


 : T ∗

AU × V∗
A → TAU × VA

defined by (4.9) is diagonal. Hence from Lemma 4.3 it follows that the map
(4.9) gives a Poisson tensor on the coset (D, 0) + U ⊂ D1.

Lemma 5.3 On the coset (D, 0) +U there are two compatible Poisson ten-
sors defined by the following formulae:

P1(X, X̂) =
(
A(XD−1)− +D−1(XA)− − (D−1X)−A− (AX)−D

−1

−A(DX̂)− −D−1(ÂX̂)− + (X̂D)−A+ (X̂Â)−D
−1,

Â(X̂D)+ +D(X̂Â)+ − (DX̂)+Â− (ÂX̂)+D

− Â(D−1X)+ −D(AX)+ + (XD−1)+Â+ (XA)+D
)
,

(5.14)

P2(X, X̂) =
(
A(XA)− − (AX)−A−A(ÂX̂)− + (X̂Â)−A,

Â(X̂Â)+ − (ÂX̂)+Â− Â(AX)+ + (XA)+Â
)

(5.15)

with (X, X̂) ∈ T ∗
A
U at any point A = (A, Â) ∈ (D, 0) + U .

Proof. It follows from Lemma 5.1 that P2 is a Poisson tensor on the coset
(D, 0) + U .
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Introduce a shift transformation on (D, 0) + U as

S : (A, Â) 7→ (A+ sD−1, Â+ sD)

with s being a parameter. Then the push-forward of the Poisson tensor P2

reads

(S∗P2)(X, X̂) = P2(X, X̂) + sP1(X, X̂) + s2P0(X, X̂), (5.16)

where

P0(X, X̂) =
(
D−1(XD−1)− − (D−1X)−D

−1 −D−1(DX̂)− + (X̂D)−D
−1,

D(X̂D)+ − (DX̂)+D −D(D−1X)+ + (XD−1)+D
)
.

By virtue of the symmetry property (X∗, X̂∗) = (X, X̂) that yields the
formulae

(XD−1)± = X±D
−1 ∓X+(1)D

−1,

(D−1X)± = D−1X± ∓D−1 ·X+(1),

(DX̂)± = DX̂±, (X̂D)± = X̂±D,

one can check P0(X, X̂) = 0. Hence the expansion (5.16) implies that P1 is
a Poisson tensor, moreover, compatible with P2. The lemma is proved. �

Denote by {·, ·}1,2 the Poisson brackets given in (4.8) with Poisson ten-
sors being P1,2 respectively. Now we arrive at the main result of this article.

Theorem 5.4 The two-component BKP hierarchy (3.10), (3.11) can be ex-
pressed in the following bihamiltonian recursion form

∂F

∂tk
= {F,Hk+2}1(A) = {F,Hk}2(A), (5.17)

∂F

∂t̂k
= {F, Ĥk+2}1(A) = {F, Ĥk}2(A) (5.18)

with k ∈ Z
odd
+ , where F ∈ F0, A = (P 2D−1,DP̂ 2) as given in (5.1), and

the Hamiltonians are

Hk =
2

k
〈P k〉, Ĥk = −

2

k
〈P̂ k〉, k ∈ Z

odd
+ . (5.19)

Proof. First let us compute the variational gradients of the Hamiltonian
functionals. Since

δHk = 〈P k−2, δP 2〉 = 〈DP k−2, δ(P 2D−1)〉 = 〈(DP k−2, 0), δA〉
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and similarly
δĤk = 〈(0,−P̂ k−2D−1), δA〉,

then up to kernel parts given in (5.7) we have the variational gradients of
the Hamiltonians:

δHk

δA
= (DP k−2, 0),

δĤk

δA
= (0,−P̂ k−2D−1) (5.20)

One can easily see that different choices of the kernel parts do not change
the definition of the Poisson tensors P1,2.

According to the flows (3.10), (3.11) one has

∂A

∂tk
=
(
[(P k)+, P

2]D−1,D[(P k)+, P̂
2]
)
.

Note that
∂F

∂tk
=

〈
δF

δA
,
∂A

∂tk

〉
,

then to show (5.17) we only need to verify the equations

∂A

∂tk
= P1

(
δHk+2

δA

)
= P2

(
δHk

δA

)
. (5.21)

The verification is straightforward by substituting (5.20) into (5.14), (5.15)
and by using the formulae induced from (3.8):

(DP kD−1)± = D(P k)±D
−1, (DP̂ kD−1)± = D(P̂ k)±D

−1, k ∈ Z
odd
+ .

In the same way one can check the equations (5.18). The theorem is proved.
�

This theorem implies that the tau function (3.12) of the two-component
BKP hierarchy is defined from the tau-symmetry of Hamiltonian densities
[11] up to the signs of Ĥk.

Remark 5.5 One can also construct Hamiltonian structures of the two-
component BKP hierarchy by reducing the linear and the cubic Poisson
brackets induced from the R-matrix mentioned in last section. However,
from these brackets we could not find any bihamiltonian recursion relations
like (5.17), (5.18).

6 Dispersionless limit of the bihamiltonian struc-

ture

Before studying the infinite-dimensional Frobenius manifolds, let us compute
the leading term of the bihamiltonian structure of the two-component BKP
hierarchy.
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The method is to replace pseudo-differential operators by Laurent series
of symbols. In the dispersionless case, the operator A = (P 2D−1,DP̂ 2)
becomes

(a(z), â(z)) =


z +

∑

i≥0

v−iz
−2i−1,

∑

i≥0

v̂iz
2i−1


 , (6.1)

and the coordinate-type local functionals v−i(y), v̂j(y) have variational gra-
dients (z2iδ(x − y), 0), (0, z−2jδ(x − y)) respectively. By substituting them
into the Poisson brackets defined by the formulae (4.8), (5.14), (5.15), we
obtain the following result. Here for the convenience of expression we set
v1 = 1, vi = 0 when i ≥ 2, and v̂j = 0 when j ≤ −1.

i) The first bracket: for i, j ≥ 0,

{v−i(x), v−j(y)}
[0]
1 = (1− δi0 − δj0)

(
2(i+ j − 1)v−i−j+1(x) δ

′(x− y)

+ (2j − 1)v′−i−j+1(x) δ(x − y)
)
, (6.2)

{v̂i(x), v̂j(y)}
[0]
1 = −(1− δi0 − δj0)

(
2(i+ j − 1)v̂i+j(x) δ

′(x− y)

+ (2j − 1)v̂′i+j(x) δ(x − y)
)
, (6.3)

{v−i(x), v̂j(y)}
[0]
1

= 2(i− j)
(
(1− δj0)vj−i(x) + (1− δi0)v̂j−i+1(x)

)
δ′(x− y)

− (2j − 1)
(
(1− δj0)v

′
j−i(x) + (1− δi0)v̂

′
j−i+1(x)

)
δ(x− y).

(6.4)

ii) The second bracket: for i, j ≥ 0,

{v−i(x), v−j(y)}
[0]
2

=

i−1∑

r=−1

(
2(i+ j − 2r − 1)v−r(x) v−i−j+r+1(x) δ

′(x− y)

+ (2j − 2r − 1)v−r(x) v
′
−i−j+r+1(x) δ(x − y)

+ (2i− 2r − 1)v′−r(x) v−i−j+r+1(x) δ(x − y)
)
, (6.5)

{v̂i(x), v̂j(y)}
[0]
2 = −

i∑

r=0

(
2(i+ j − 2r + 1)v̂r(x) v̂i+j−r+1(x) δ

′(x− y)

+ (2j − 2r + 1)v̂r(x) v̂
′
i+j−r+1(x) δ(x − y)

+ (2i− 2r + 1)v̂′r(x) v̂i+j−r+1(x) δ(x − y)
)
, (6.6)

{v−i(x), v̂j(y)}
[0]
2

=

i−1∑

r=max{−1,i−j−1}

(
2(i− j)v−r(x) v̂−i+j+r+1(x) δ

′(x− y)
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+ (2r − 2j + 1)v−r(x) v̂
′
−i+j+r+1(x) δ(x − y)

+ (2r − 2i+ 1)v′−r(x) v̂−i+j+r+1(x) δ(x − y)
)
. (6.7)

7 Concluding remarks

We start from the Lax pair presentation (3.10), (3.11) of the two-component
BKP hierarchy, and arrive at a bihamiltonian representation of this hierar-
chy. Our method in the construction of the Poisson brackets is to employ
the standard R-matrix formalism, which is analogous with that for the two-
dimensional Toda hierarchy [1]. In comparison with the two-dimensional
Toda hierarchy, we expect to find an infinite-dimensional Frobenius mani-
fold underlying the two-component BKP hierarchy.

As mentioned in the beginning of this article, the two-component BKP
hierarchy (3.10), (3.11) is reduced to the Drinfeld-Sokolov hierarchy of type

(D
(1)
n , c0) under the constraint P 2n−2 = P̂ 2. Whether such a constraint in-

duces a reduction of the bihamiltonian structure is unclear yet. We hope
that considering this problem would help to understand the relations be-
tween Frobenius manifolds of infinite and finite dimensions.
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