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Abstract

We employ a Lax pair representation of the two-component BKP hi-
erarchy and construct its bihamiltonian structure with R-matrix tech-
niques.
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1 Introduction

The Kadomtsev-Petviashvili (KP) hierarchy of type B (BKP for short) was
introduced in [6, [7], and generalized to multi-component cases by Date,
Jimbo, Kashiwara, Miwa [4] in the form of bilinear equations. Among these
multi-component integrable systems, the two-component BKP hierarchy is
of special interest.

As the two-component BKP hierarchy was proposed, it was shown that
the solution space of tau functions of this hierarchy can be regarded as the
vacuum orbit in the two-component neutral free fermionic Fock representa-
tion of the infinite dimensional Lie algebra Do, [5l [14], which corresponds
to the infinite Dynkin diagram of type D [15]. The Lie algebra Do, can
be reduced to the affine Lie algebra D,(f) under the (2n — 2,2)-reduction in
[5], see also [14], 17]. This reduction leads the two-component BKP hier-
archy to a hierarchy that is equivalent with the Kac-Wakimoto hierarchy
corresponding to the principal vertex operator realization of the basic rep-
resentation of D,(f , the Drinfeld-Sokolov hierarchy associated to the Lie
algebra DS) and the zeroth vertex ¢y of its Dynkin diagram, as well as
the Givental-Milanov hierarchy satisfied by the total descendant for the D,
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singularity, see [9], 12, 13} [16] 19 26] and references therein. Such a reduc-
tion is analogous with the one that reduces the KP hierarchy to the nth
Gelfand-Dickey hierarchy (see e.g. [8]) that corresponds to the reduction of

Lie algebras: Ay, +— AS). So in this sense to compare the two-component
BKP hierarchy with the KP hierarchy would deepen our understanding of
integrable hierarchies and relevant theories, such as Jacobi/Prym varieties
in algebraic geometry and Landau-Ginzburg Models of topological strings,
see e.g. [22, 23].

In this article our aim is to study the two-component BKP hierarchy
from the view point of Hamiltonian structures. To our best knowledge,
this topic has not been considered in the literature, possibly for the reason
that the KP-analogue Lax pair representation of the two-component BKP
hierarchy was unknown. Recall that the two-component BKP hierarchy was
defined to be the bilinear equation of a single tau function:

res,z X (t;2)7(t, t) X (t/; —2)7(t, t))
=res,z 1X(f: 2)71(t,6) X (X —2)7(t, 1), (1.1)

where t = (ti,t3,t5,---), t = (f1,%3,%5,---), and X is a vertex operator
given by

Here the residue of a Laurent series is taken as res (), fiz*) = f-1. In [22]
Shiota proposed a scalar Lax representation of the hierarchy (III), though
this did not draw much attention for it contains pseudo-differential operators
with derivations of two spatial variables. Recently, a Lax pair representation
of the two-component BKP hierarchy was found by Liu, Zhang and one of
the authors [19]. It was shown that the hierarchy (L) can be redefined by
certain extension of the following Lax equations (see Section 3 below):

or

a—tk = [(Pk)-HP]? a—tk = [(Pk)-f-vp]v (1 2)
opr - opr Shy 7
3—£]€ - [_(Pk)_’P]’ 8£k - [_(Pk)—7p] (1 3)

with k € Zﬁ_dd, where
L , d
P=D+ wD' P=DY%_1+4+Y D" with D=—

are pseudo-differential operators such that P* = —DPD™!, P*=_DPD 1.
Note that the first equation in (L2) is just the Lax representation of the BKP



hierarchy appearing in [6]. Our arguments will be based on the Lax pair
representation (L2]), (T3] of the two-component BKP hierarchy.

One can see that the expression (L2)), (L3)) is very similar with the Lax
pair representation of the two-dimensional Toda hierarchy [25]. Since the
latter hierarchy carries a tri-Hamiltonian structure [I], following the idea
of [I] we want to use the R-matrix theory to construct a bihamiltonian

structure of the hierarchy (L2)), (3.

We are also motivated by the recent work [2], in which Carlet, Dubrovin
and Mertens constructed an infinite-dimensional Frobenius manifold under-
lying the two-dimensional Toda hierarchy. Due to the similarity of the Lax
representations mentioned above, we expect that there also exists an infinite
dimensional Frobenius manifold that underlies the two-component BKP hi-
erarchy. A hint is that the potential F' of the dispersionless two-component
BKP hierarchy (in the notion of [23], namely the dispersionless limit of the
logarithm of the tau function, see Section 3 below) was discovered to satisfy
certain infinite-dimensional WDV V-type associativity equations [3]. While
in the finite-dimensional case, the concept of Frobenius manifolds [10] can
be regarded as a geometric description of the WDVV equations, and as-
sociated to certain nondegenerate Frobenius manifold there lives a Poisson
pencil so that a bihamiltonian hierarchy can be constructed [I1]. We hope
that this article and follow-up work might help to understand the theory of
infinite-dimensional manifolds.

This article is arranged as follows. In next section we recall the definition
and some properties of pseudo-differential operators introduced in [19], and
in Section 3 we recall the Lax pair representation of the two-component
hierarchy. In Sections 4 and 5, an R-matrix will be used to construct Poisson
brackets on an algebra of pseudo-differential operators, and after appropriate
reductions of the Poisson brackets we obtain a bihamiltonian structure of
the two-component BKP hierarchy. Finally we compute the dispersionless
limit of this bihamiltonian structure in Section 6, and give some remarks in
Section 7.

2 Pseudo-differential operators

For preparation we first recall the notion of pseudo-differential operators
over a differential algebra with a gradation as introduced in [19].

Let A be a commutative ring with unity, and D : A — A be a derivation.
The algebra of usual pseudo-differential operators is

D = {Z fiD"| f; € A}. (2.1)

This algebra is topologically complete with a topological basis given by the



following filtration:

-C D

(d+1)c"'a D(;l): ZszZ’fzeA )

i<d

and in this algebra two elements are multiplied as series of the following
product of monomials:

fD gD =y <i>fDr(g) DT fgeA (2:2)
r>0

Now assume there is a gradation on A such that

A= HAi, D:A — A1, Ai-Aj C Ay,

i>0
and consider the linear space
D:{ZfiDi]fieA}.
€L
Obviously D~ C D.

For any k € Z, denote by Dj the set of homogeneous operators with
degree k in D7, i.e.,

Dy =< > fiD'| fi € A

i<k
Let D be a subspace of D that reads

Dt =Jf, Df =112 (2.3)
dez k>d

and DT have a topological basis given by the filtration

- + +
DD DD DDy D -

In fact, every element A € DT has the following normal expansion [19]

A= Z Z Qg ; Di, aij € .Aj

i€Z \j>max{0,m—i}

with some integer m. Note that Dy - D; C Dy according to the multiplica-
tion defined by (2.2), then this multiplication can be naturally extended to
DT such that DT becomes an associative algebra.



Definition 2.1 ([19]) Elements of D~ (resp. D) are called pseudo-differential
operators of the first type (resp. the second type) over A. The intersection
of D~ and D" in D is denoted by

Db =D~ NnDT,

and its elements are called bounded pseudo-differential operators.

Sometimes to indicate the algebra A and the derivation D, we will use
the notations DE(A, D) instead of D*.

Pseudo-differential operators of the second type have similar properties
with the operators in D~. For any operator

A=>"f,D' e D¥, (2.4)
1€EZ

its positive part, negative part, residue and adjoint operator are defined to
be respectively

Ap=>"fD', A=) fD', (2.5)
i>0 i<0

resA=f_, A*=) (-D)f (2.6)

€L

Note that the projections given in ([2.5]) induce the following decompositions
of spaces
D* — (D%), @ (D*)._, (2.7)

particularly one easily sees that
(D7) c Db, (D). c D (2.8)

An element A of (DF), is call a differential operator, and it is denoted
by A(f) the action of a differential operator A on f € A.

We need more notations below. Elements of the quotient space F =
A/D(A) are called local functionals, which are denoted as

/fdx:f+D(A), FeA
Introduce a map
(): D—F, Ar—><A>:/resAdx. (2.9)

Then the pairing
(A,B) = (AB) (2.10)



defines an inner product on each of D*.

Given any subspace S C D*, we denote by S* the dual space of S (c.f.
the notation of adjoint operators). Via the above inner product, we have
the following identification of dual spaces

(D%)* = D*. (2.11)
Consider the decompositions (2.7)), it is easy to see that
(D%)2)" = (D¥)s.
We decompose DT in another way as
D* = Df @ Df, (2.12)

where

Dr ={AeD* | A* = (-1)VA}, v=0,1

Since (A) = —(A*) for A € D*, then the dual subspaces of D read
(DEHY =D ,, v=0,1. (2.13)

v

For more details on properties of pseudo-differential operators one can
refer to [8], 19].

3 The two-component BKP hierarchy

The two types of pseudo-differential operators serve in [19] to give a scalar
Lax pair representation of the two-component BKP hierarchy, which is re-
viewed as follows.

Let M be an infinite-dimensional manifold with local coordinates
(a1,as,as,...,b1,b3,b5,...),
and A be the algebra of differential polynomials on M:
A=c(n)lay b | ke 23, s > 1.
We assign a gradation on A by
deg f = 0 for f € C°°(M), degaés) = degbl(j) =5
which make A a topologically complete algebra:

.[l = H./th, ./th . Aj C .[llurj.

1>0



Note that this gradation is induced from the derivation

D:fl—)ft, D:Z Z (a,(:ﬂ) (9(8 —|—b/,(:+1)—a )

) (s)
520 pezsdd day, by,

with a,go) = ay, b,(co) = by.. So one can define the algebras D* = D*(A, D) of
pseudo-differential operators as was done in last section.

Introduce two operators

®=1+Y aD'eD, U=1+)» bhD €D, (3.1)
i>1 i>1
where as, a4, ag, . .., by, ba, bg, - - - € A are determined by the following con-
ditions
®*=po 'D7' v =Dy DL (3.2)

Then the two-component BKP hierarchy (L)) can be redefined to be
0P

ov -
% = —(P")_®, = (P*)y =6 P70, (3.3)
oL . or .
— = —(PH_o, — =(P",v, 3.4
o7, (%) 0%, (P%)+ (3.4)

where k € Zﬁ_dd, and the operators P, P read
P=®D®'eD™, P=0D'Uu!leDt (3.5)
It was shown that the operators P and P have the following expressions:

P=D+> wD™, P=Dla,+Y aD" (3.6)
i>1 i>1

with 47 = (U~1)*(1), and they satisfy
P*=_-DPD™', P*=_-DPD7!, (3.7)
which implies
(PHe(1) =0, (Ph)a(1)=0, kezg (3.8)
Observe that the coefficients of P and P are elements of the quotient algebra

A/Z, where T is an ideal of A defined by the equations (Z3), moreover,
among these coefficients only the ones with odd subscript are independent,

while the others are determined by the conditions (B.7)).

Assume that
11:(ul,U3,...,ﬂfl,ﬂl,ﬂgg,...) (39)



serves as a coordinate of some infinite-dimensional manifold M. Let A be
the algebra of differential polynomials on M:

A=) | s> 1]]

namely A = .[l/I Similarly as above, one can assign a gradation to A that
is induced from the derivation

0

: A
D:A= A D=)u )

s>0

with u(®) = u, and define the algebras D* = D*(A, D) of pseudo-differential
operators over A. Obviously P € D=, P € D*. Then it is easy to see
that the two-component BKP hierarchy ([B.3)), (8:4]) can be restricted to the
algebra A as follows:

O (PPl ST = (PR P (3.10)
oP - op L

with k € Z334.

In the present paper we regard the two-component BKP hierarchy as the
evolutionary equations (B.10)), (3I1]) defined on the algebra A. In fact, the
hierarchy (3I0), (3II) possesses a tau function 7 = 7(t,t) that solves the
bilinear equation (ILT]). More exactly, this tau function is defined by [19]

w=d(20;logT) with =z =1, (3.12)
where w is a closed 1-form:

w= Z (res P* dt), + res P* di},).

dd
keZs

Remark 3.1 The dispersionless limit of the flows (B.10), (B11]) first exists
in [23], where Takasiki also considered the dispersionless limit of the loga-
rithm of the tau function as given in (8.12)). Inspired by [23], Chen and Tu
[3] discovered that the leading term of log T solves an infinite-dimensional
associativity equation of WDVV type.

4 R-matrix and pseudo-differential operators

To show that the two-component BKP hierarchy (B.I0), (3.I1I]) possesses
a bihamiltonian structure, we need to construct a Poisson pencil for it.



The method is to use the standard R-matrix theory and introduce Poisson
brackets on a Lie algebra (see [21, I8, [20] and references therein), then
restrict the Poisson brackets to certain submanifold of the Lie algebra. Our
approach is similar with that used by Carlet [I] for the two-dimensional
Toda hierarchy.

We first recall the R-matrix formalism. Let g be a Lie algebra, and

R : g — g be a linear transformation. Then R is called an R-matrix [21I] on
g if it defines a Lie bracket by

(X,Y]r=[R(X), Y]+ [X,R(Y)], XY egy. (4.1)

A sufficient condition for a transformation R being an R-matrix is that R
solves the modified Yang-Baxter equation [21]

[R(X), R(Y)] = R([X,Y]r) = —[X,Y] (4.2)
forall X, Y €g.
Assume that g is an associative algebra, with the Lie bracket defined

naturally by commutators, and there is a map () : g — C that defines a
non-degenerate symmetric invariant bilinear form (inner product) (,) by

(X,Y)=(XY)=(YX), X,Y€g.

Via this inner product one can identify g with its dual space g*. The tangent
and the cotangent bundles of g are denoted by T'g and T™g respectively, with
fibers at any point A € g of the form Thg =g, Thg = g*.

Let R* be the adjoint transformation of R with respect to the above
inner product. We introduce the notations of the symmetric and the anti-
symmetric parts of R respectively as

1 1
Ry = 3(R+R), Ry=(R-R).

The R-matrix formalism is briefly stated as follows. Given an R-matrix
R : g — g that satisfies certain conditions, there define three compatible
Poisson brackets on g, say, the linear, the quadratic and the cubic brackets
in the notion of [18] 20].

In particular, let us recall the quadratic bracket, which will be used to
construct a Poisson pencil for the two-component BKP hierarchy.

Lemma 4.1 ([18, 20]) Let f, g be two arbitrary smooth functions on g,
and Vf, Vg € Thg be their gradients at any point A € g. Given a linear
transformation R : g — g, if both R and its anti-symmetric part R, satisfy
the modified Yang-Baxter equation ([A2)), then the quadratic bracket

1£.9}(4) = 3 ({14, V1, R(AVg + Vg 4)) — {[4, V], R(AVf + V[ - 4)))
(4.3)

defines a Poisson bracket on g.



Note that the bracket (£.3)) can be rewritten as
where P : T*g — T'g is a Poisson tensor given by

1 | L.

Pa(Vg) = = 714, R(AVg + Vg A)] = AR (|4, Vg]) - R*([4, V)4,

namely,

1 1
Pa(Vg) == 5A(Rs(AVg) + Ra(Vg - A)) + 5 (Ra(AVg) + Rs(Vg - A)) A.

(4.4)
Henceforth we take g to be the algebra
D=D xDT,

where D~ and DT are the sets of pseudo-differential operators of the first
type and the second type over some differential algebra A as defined in
Section 2. In ® the elements read X = (X,X ), and the operations are
defined diagonally as

(X, X)+ (Y, Y)=(X+YV,X+Y), (X, X)(V,Y)=(XY,XY).

So © is indeed an associative algebra. It is easy to see that © is equipped
with an inner product define by

(X, X),(Y,Y) = (X, X)(Y,Y)) = (X, V) + {X.Y),

see (29), (2I0). Via this inner product we have the identification of dual
spaces as above:

D*=(D ) x (D)*=D xD" =2.

Consider an R-matrix on ® that has the same form with the one used in
[1] to construct the tri-Hamiltonian structure of the two-dimensional Toda
hierarchy, namely,

R:D—9, (X,X)— (Xy—-X_+2X X —X,+2X,). (45)
As done in [1], since R = IT — II, where
X, X)= (X, +X_,X_+X,), OX,X)=(X_-X_, X, —X,)
are two projections of ® onto its subalgebras, more exactly,

9 ={(X,X) | X €eD’}, 11D =(D")_x(D"),,

10



M2=1I, M?=1I, OI0=0=1III, I+1I=id,

then transformation R satisfies the modified Yang-Baxter equation (£.2]) and
is indeed an R-matrix on ®. Moreover, according to the inner product on
® introduced above, the adjoint transformation of R reads

R:D -9, (X, X)) (X_-X,+2X_ X, —X_ +2X,),
hence the symmetric and anti-symmetric parts of R are given by
Ry(X,X)=2(X_,Xy), Ru(X,X)=(X;-X_ X —X;). (46)

Observe that R, can be expressed as the difference of two projections onto
subalgebras of ©, hence R, also solves the Yang-Baxter equation (42]). Thus
the R-matrix given in (4.5]) fulfills the condition of Lemma [4.T]

We regard © as an infinite-dimensional manifold, whose coordinate is
given by the coefficients of the general expression of its elements

A= (Z w; DY, ZwiD’) €D, (4.7)

€L €L

and let the set F of local functionals over the differential algebra A (see
Section 2) play the role of C*°(g). For any F' € F, the variational gradient
of F' at the point A given in (A7) is defined to be

oF ., OF ., OF
Dial— D—z—l D—z—l
A <Z dw;(z)’ Z 511%(35)) ’

1€EL 1€EZ

where 0F/dw(x) = ijo(—D)j (aF/aw(j)). Note that 0F'/0A is not con-
tained in ®* = ® in general, so to go forward we need to do some restriction.

It shall be indicated that, in this paper we only consider functionals with
variational gradients lying in ®. We denote by Fy the set of such functionals.

Now one can use Lemma [.]] and the formulae ([@4]), (46l to obtain the
following result.

Lemma 4.2 Let F' and G be two arbitrary functionals in Fo. On the algebra
D there is a quadratic Poisson bracket

oF 0G P
{F,G}(A) = <E’PA <E>> , A=(A4A) €D, (4.8)
where the Poisson tensor P : T®* — T is defined by

Poay(X, X) =(A(XA)_ — (AX)_A— A(AX)_+ (XA)_4,
ARA), — (AX) A - A(AX),: + (XA)LA).  (49)

11



Aiming at Hamiltonian structures of the two-component BKP hierarchy,
we need to reduce the Poisson structure (£.9]) to an appropriate submanifold
of ©. Recall the decompositions ([2.12]), let us decompose the space D as

D=3 Dy, (4.10)

where ©, = D, x D} for v = 0,1. Then the subspaces Dy and D are
dual to each other with respect to the inner product on © defined above.
So for any A € ©, we have Th®, = (9,)* = D;_, for v = 0,1. It is
straightforward to verify the following lemma.

Lemma 4.3 The Poisson structure (£9) on ® can be properly restricted to
each of its subspaces D¢ and ;.

5 Bihamilonian representation of the two-component
BKP hierarchy

In this section, we are to find a submanifold of © where lives the Poisson
pencil for the two-component BKP hierarchy, then after a further reduction

of the Poisson structure constructed in last section we express the hierarchy
BI10), (BII) to the form of Hamiltonian equations.

Recall the operators P € D™, P € Dt given in (33, we let
A = (P’D7!, DP?). (5.1)

It is easy to see that A € D (see (@I0)), and A = (A, A) has the following

expression:

A=P D' =D+ (v D¥ 4 f ;D72 (5.2)
>0
A=DP?>=pD 'p+> (D% '+ fiD*?), p=ri,. (5.3)
i>1
Denote 9y = p?, and v = (vg,v_1,...,00,01,...). It is easy to see that the

coordinate v is related to u given in ([B.9) by a Miura-type transformation,
and that f_;, fl are linear functions of derivatives of v determined by the
symmetry property (A*, A*) = —(A, A). Hence the flows of the hierarchy
(BI0), (BII) can be described in the coordinate v.

Given any local functional F' € Fj (remind the notation Fp in last sec-
tion), its variational gradient with respect to A, say dF /A, is defined to
be X = (X, X) € © with

1 OF o 9i OF
X 2 Z (52}@-(:6)1) D 52}@-(:6)) ’ (54)

>0

12



~ 1 oF iy _9; OF
X:§Z<6®i(x)D %4 p? 5@i(x)>. (5.5)

Or in a coordinate-free way, 6F/dA = X can be defined by
0F = (X,0A), X €Dy. (5.6)

Note that in the latter definition, the variational gradient is determined up
to a kernel part Z = (Z,Z) € Dg such that

Z,=0, Z_=0, Zi.(p)=0. (5.7)

Let us consider the coset (D,0) + U consisting of operators of the form

1)), where
U= (Dy)-x((Df)s x M), M={pD7p[peA}. (58

Here M is regarded as a 1-dimensional manifold with coordinate p, and this
manifold has tangent spaces of the form

T,M = {pD"f + fD1p| f € A}.
So the tangent bundle, denoted by TU, of the coset (D,0) + U has fibers
TaU = (D7) x (D)4 x T,M), A€ (D,0)+U, (5.9)
while the cotangent bundle T*U of (D,0) + U is composed of
TAU = (Dy )y x (D) xTyM), T, M= A (5.10)

From (5.4)), (55)) one sees that dF/0A € TxU for any F' € Fy. Now we are
ready to do the desired reduction of the Poisson structure.
Lemma 5.1 The map

P:T"U—TU (5.11)
defined by the formula ([£9) is a Poisson tensor on the coset (D,0)+U that
consists of operators of the form (&.1)).

Proof. We only need to show that the map defined by (4.9) admits the
restriction to the coset (D,0) 4+ U, i.e., the following map is well defined:

Pa: Titd — Tald, A € (D,0)+U. (5.12)

Assume X = (X, X) € ThU C Dg. From Lemma 3 one has P (X) €
©1. Moreover, it is easy to see that the first component of Pa (X) belongs
to (D] )—. On the other hand, for any Y € (D) we have

(AY +Y*A)_ =(pD~'pY + Y*pD 1p)_

13



~(Y*pD"'p)* +Y*(p)D
=pD~'Y*(p) + Y*(p)D 1p€TM
then by taking ¥ = (X A)4, (AX), it follows that the second component of
Pa(X) lies in (D} )4 x T,M. Thus Pa(X) € Tald, i.e., the map (5.12) is
well defined. The lemma is proved. O

Remark 5.2 The proof of this lemma is the simplest case of the Dirac
reduction procedure for Poisson tensors, see e.g. [20]. In fact, one can
express the manifolds ©; and D7 as

D1 =UxXV=TAU X Va, D]=90=TrU xVj, (5.13)
where
V=Va=(D])y xN, N={X¢e(D)_|resX =0},
Vi = (Dy)- x (I;)"M, (T;)*M={Y € (D5)+ | Y(p) =0}.
Similar as the proof of Lemma [5.1], one can show that the map
7)%2/1 fPZ/{V

Pa = AL TEU X Vi = Tald x Va
PR PYY

defined by (£.9)) is diagonal. Hence from Lemma [£.3]it follows that the map
([£9]) gives a Poisson tensor on the coset (D,0) +U C D;.

Lemma 5.3 On the coset (D,0)+U there are two compatible Poisson ten-
sors defined by the following formulae:
Pi(X,X) =(A(XD)_ +D—1(XA) — (D —1X) A—(AX)_D
~ A(DX)- — D' (AX)_ + (XD)-A+ (XA)-D
AXD), + D(XA) —(DX), A (AX)
+

— A(D7'X): - D(AX); + (XD ") A+ (XA), D),
(5.14)

Po(X,X) =(A(XA)_ — (AX)_A - A(AX)_ 4 (XA)_A4,
AXA)y — (AX); A — A(AX); + (XA) 4 A) (5.15)

with (X, X) € T{U at any point A = (A, A) € (D,0) +U.

Proof. Tt follows from Lemma [B.1] that Ps is a Poisson tensor on the coset

(D,0) +U.

14



Introduce a shift transformation on (D,0) + U as
7 (A A) = (A+sD™ L A+sD)

with s being a parameter. Then the push-forward of the Poisson tensor P,
reads

(LPa) (X, X) = Pa(X, X) + sP1(X, X) + s*Po(X, X), (5.16)
where
Po(X,X)=(D"Y(XD™")_ —(D'X)_D' - DYDX)_ + (XD)_D7,
D(XD); — (DX)1D — D(D7'X); + (XD1), D).
By virtue of the symmetry property (X*,X*) = (X,X) that yields the
formulae
(XD He=X.D'FX,(1)D7},
(D7'X): =D 'X: ¥ D' X4 (1),
(DX)+ = DX:, (XD)i=X4D,

one can check Po(X, X) = 0. Hence the expansion (5.I6) implies that Py is
a Poisson tensor, moreover, compatible with Ps. The lemma is proved. [

Denote by {-,-}1,2 the Poisson brackets given in (4.8]) with Poisson ten-
sors being P; 2 respectively. Now we arrive at the main result of this article.

Theorem 5.4 The two-component BKP hierarchy (B.10), BII) can be ex-
pressed in the following bihamiltonian recursion form

O (P Hupah () = (F, Hi(A), )
gf; = {F. Hs2}1(A) = {F, Hi }2(A) (5.18)

with k € 7999, where F € Fy, A = (P2D~',DP?) as given in (51), and
the Hamiltonians are

. 2 .
Hy, = Z(P%, Hy=—-2(P%), kezyd (5.19)

Ell V)
=N

Proof. First let us compute the variational gradients of the Hamiltonian
functionals. Since

6H), = (P*=2 6P?) = (DP*=2 §(P2D~')) = (DP*72,0),6A)
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and similarly
§Hy = ((0,—P*2D71) §A),

then up to kernel parts given in (5.7)) we have the variational gradients of
the Hamiltonians:

SHy, SH,,

0A oA

One can easily see that different choices of the kernel parts do not change
the definition of the Poisson tensors P 2.

According to the flows ([B.10), (B11I]) one has

= (DP*2,0), = (0,—P* 2D 1) (5.20)

0A k 21 -1 ky P2
o = (PR, PAIDT DI(PY). P))
Note that
OF  /O0F 0A
Ot \0A’ 0t /]’
then to show (5.17)) we only need to verify the equations
oA 0Hpi2\ 0Hj,
8tk—731< SA >—732<5A>. (5.21)

The verification is straightforward by substituting (520) into (5.14]), (B.15)
and by using the formulae induced from (B.8):

(DP*D™Y L = D(P*)+D', (DP*D™ 1)y = D(P*).D, ke z3%.
In the same way one can check the equations (5.I8]). The theorem is proved.

O

This theorem implies that the tau function ([B.12]) of the two-component
BKP hierarchy is defined from the tau-symmetry of Hamiltonian densities
[11] up to the signs of Hy.

Remark 5.5 One can also construct Hamiltonian structures of the two-
component BKP hierarchy by reducing the linear and the cubic Poisson
brackets induced from the R-matrix mentioned in last section. However,
from these brackets we could not find any bihamiltonian recursion relations

like (5.17), (518).

6 Dispersionless limit of the bihamiltonian struc-
ture

Before studying the infinite-dimensional Frobenius manifolds, let us compute

the leading term of the bihamiltonian structure of the two-component BKP
hierarchy.
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The method is to replace pseudo-differential operators by Laurent series
of symbols. In the dispersionless case, the operator A = (P?2D~!, DP?)
becomes

(a(2),a(2) = [ 24+ > v_z 271 0227 (6.1)

i>0 i>0

and the coordinate-type local functionals v_;(y), ;(y) have variational gra-
dients (2%6(z — y),0), (0,2=2§(x — y)) respectively. By substituting them
into the Poisson brackets defined by the formulae (@8], (5.14), (BI5), we
obtain the following result. Here for the convenience of expression we set
vy =1, v; = 0 when ¢ > 2, and 9; = 0 when j < —1.

i) The first bracket: for i,j > 0,

{v_i(), o) = (1610 — 8j0) (20 + j — Dv_i—j1(2) &' (x — )
+ (27 = Dol_jiq (@) 6(z — ), (6.2)
(o3 (2), ;) = —(1 = 610 — 8j0) (201 + j — Vi () &' (z — )
+ (27 = Doy (z) 6(z — y)), (6.3)

o ()}
=20 = (L= djo)v-i(x) + (1 = G0)dj-i41(2)) 8 (& — )
= (2 = 1)((1 = 80)0 ) + (1= 810} s34 (1)) 8l — ).

{v- (96)

(6.4)
ii) The second bracket: for i, > 0,
fo-i(@) 05 ()}
-y (26 4+ = 2r = Doy (@) voimgria(@) O (2 = )

22— D@ jarai(2)0(z — )

(20— 28 = D (@) v (2) 0@ — ) ) (6.5)
@ N = =37 (2645 - 2+ 100 By rea )2 — )

(2 -2+ Tgrm oy rya (1) 6(z — )

(20 = 20+ 1)) () D141 (2) 6z — ) (6.6)

{v_i(x), 0 (y)}5"

i—1

_ D (2(2‘ — (@) D jria (2) 8 (2 — )

r=max{—1,i—j—1}
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+(2r — 25 + v () @,—i—l—j—l—r—f—l(x) é(z —y)
(20 = 20+ D (@) i (2) 0@ — ) ) (6.7)

7 Concluding remarks

We start from the Lax pair presentation (3.10), (3.11]) of the two-component
BKP hierarchy, and arrive at a bihamiltonian representation of this hierar-
chy. Our method in the construction of the Poisson brackets is to employ
the standard R-matrix formalism, which is analogous with that for the two-
dimensional Toda hierarchy [I]. In comparison with the two-dimensional
Toda hierarchy, we expect to find an infinite-dimensional Frobenius mani-
fold underlying the two-component BKP hierarchy.

As mentioned in the beginning of this article, the two-component BKP
hierarchy (3I0]), (3I1)) is reduced to the Drinfeld-Sokolov hierarchy of type
(DSLI), co) under the constraint P?"~2 = P2, Whether such a constraint in-
duces a reduction of the bihamiltonian structure is unclear yet. We hope
that considering this problem would help to understand the relations be-
tween Frobenius manifolds of infinite and finite dimensions.
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