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Deformations of Poisson structures
by closed 3-form

O. I. Mokhov

Abstract

We prove that an arbitrary Poisson structure w®(u) and an arbitrary closed 3-
form T};,(u) generate the local Poisson structure A% (u,u,) = M!(u,u,)w* (u), where
M (u, ug) (65 + w™ (u)Tpr(u)ul) = 6%, on the corresponding loop space. We obtain also
a special graded e-deformation of an arbitrary Poisson structure w®(u) by means of an
arbitrary closed 3-form 75 (u).

In this paper we prove that an arbitrary Poisson structure w”(u) and an arbitrary
closed 3-form T;;x(u) generate the local Poisson structure

A (u, uz) = By(u, ug)w™ (u), (1)
where . '
Bi(u, ug) M (u, ug) = 65, M;(u, Uy) = 65 + wSp(u)ijk(u)u';, (2)
i.e., the matrix operator A% (u,u,) gives the Poisson bracket
or . 0J
I,J} = | ——AY z)——d 3
(1) = [ s A ) e Q

on the space of functionals on the corresponding loop space.

Let M¥ be an arbitrary smooth N-dimensional manifold with the local coordinates
u = (ul,...,ul). By the loop space QM of the manifold MY we mean, in this paper,
the space of all smooth parametrized mappings of the circle S* into M», ~ : St — MY,
v(z) = {u'(z)}, € S*. The tangent space T,QM of the loop space QM at the point
consist of all smooth vector fields £ = {£*, 1 < i < N}, defined along the loop 7 with
§(yv(z)) € TyyM, Vo € S, where T,(,)M is a tangent space of the manifold M at the
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point y(z). All closed 2-forms (presymplectic structures) on the loop space QM that
are given by matrix operators of the form w;;(u, ug, ..., uwy), i.e., all closed 2-forms of
the form

(&) = [ €yt ua)rds, ()

where &, n € T,QM, were completely described in [1] (see also descriptions of various
differential-geometric classes of symplectic (presymplectic) and Poisson structures in
2]-{9).

Theorem 1 [1]. A bilinear form {) is a closed skew-symmetric 2-form (a presym-
plectic structure) on the loop space QM if and only if

Wij(ua Ug, - - - ,U(k)) = ngk(“)u;’: + Qz‘j(u), (5)

where Ty (u) is an arbitrary closed 3-form on the manifold M™ and Q;;(u) is an arbitrary
closed 2-form on M.

If the matrix w;;(u, Uy, ..., ur)) is nondegenerate, det(w;;(u, Uy, ..., ur))) # 0, then
the corresponding presymplectic form (@), (B) is symplectic and the inverse matrix
W (U, Uy -+ Uy )y WS (U Uy, .y Uy )W (U Uy - Ur)) = 5;., gives the Poisson struc-

ture
o0J

(1,7} = / %&)ww'(u,uw, e (6)

on the loop space QM i.e., the bracket (@) is skew-symmetric and satisfy the Jacobi
identity. Therefore Theorem 1 gives the complete description of all nondegenerate
Poisson structures on the loop space 2M that are given by matrix operators of the
form w®(u, ug, . . . ;U ), 1.e., all the nondegenerate Poisson brackets of the form (@),
det(w” (u, Uy, . .., ug))) # 0 (such nondegenerate Poisson structures were studied by As-
tashov and Vinogradov in [9], see also [7]-[8] and [1]-[6]). We note that if the closed
2-form ;;(u) is nondegenerate, det(€2;;(u)) # 0, i.e, the form €2;;(u) is symplectic on
M™ | then the 2-form (f) is a nondegenerate form on QM for any closed 3-form T;;(u)
on the manifold M” since it is obvious that in this case det(T};;(u)u? + Q;;(u)) # 0.
Thus we can define, on the loop space of an arbitrary symplectic manifold M?¥, the
Poisson bracket

{I,J} = / %{x)wij(u, ux)%dm, (7)
where
W' (uy ) (Tigr (w)uy + Qi (w)) = 65, (8)

I and J being arbitrary functionals on QM. The Poisson bracket (@), () is a par-
tial case of the bracket (I))-(3]), namely, the case when the Poisson structure w®(u) is
nondegenerate, det(w” (u)) # 0, w"(u) = QY (u), Q*(u)Qy;(u) = 0%, since

w (u, uy) = C;(ua ux)Qsj (w), 9)
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where
Cl(u, ug) (85 + Q" (u) Ty (u)ul) = 6% (10)

The case of degenerate Poisson structures w®(u), det(w®(u)) = 0, is much more com-
plicated. We note that in contrast to the case of all closed 2-forms (presymplectic
structures) of the form (@) (Theorem 1) the problem of description of all degenerate
Poisson structures of the form (@) is a very complicated and unsolved problem.

Theorem 2. An arbitrary Poisson structure w"(u) and an arbitrary closed 3-form
Tk (u) give the local Poisson bracket (II)-(3)).

First of all, we note that obviously the matrix operator A% (u,u,) (), @) is skew-
symmetric.

Lemma. A skew-symmetric matriz operator A" (u,u,) () gives a Poisson bracket
@) if and only if the following relations hold:

W () (u) S = W (e () S (11)

' oMs . d [OMS duid .
w”(u)w”’(u)w —w J(u)% ( S Y p(u)) + S P(u)M; (u) +
oMr d , . oMp . Ow's
T - is T Tj

out * dx (")) oul, W (u) + our
oM d , . oM Ow™ ;
—T _ 1p —T TSs rs ] —

S + o (w (u)) o w'(u) + S " (u)M!(u) =0. (12)

" (w)w™ (u)

W™ (u) MP (u) +

7

™ (u)w" (u)

If Mi(u,u,) = 0; + WP (u)Tyjr(w)uk, then relations (), (I2) hold for an arbitrary
Poisson structure w* (u) and an arbitrary closed 3-form T (u).
Let us add an arbitrary parameter ¢ in the formula for our Poisson structure:

Aij(a, Uy Uy) = Bé(e, u, ux)wsj(u), (13)
where . '
B:(e,u, uz)(5j + cwP(u) Ty, (u)ub) = 05 (14)

We can now expand the Poisson structure A% (e, u,u,) in series in &:
A (e, u,u,) = w (u) — ew™ (u) Typp (w)w™ (w)ul + - - - (15)

This expansion give an e-deformation of an arbitrary Poisson structure w®(u) by means
of an arbitrary closed 3-form Tj;x(u).

We note that this e-deformation of an arbitrary Poisson structure w® (u) belongs to a
special class of graded e-deformations of Poisson structures (see, for example, [10], [11]).
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