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In this Rapid Communication we investigate spatially constrained networks that realize optimal
synchronization properties. After arguing that spatial constraints can be imposed by limiting the
amount of ‘wire’ available to connect nodes distributed in space, we use numerical optimization
methods to construct networks that realize different trade-offs between optimal synchronization and
spatial constraints. Over a large range of parameters such optimal networks are found to have a
link length distribution characterized by power law tails P (l) ∝ l

−α, with exponents α increasing as
the networks become more constrained in space. It is also shown that the optimal networks, which
constitute a particular type of small world network, are characterized by the presence of nodes of
distinctly larger than average degree around which long distance links are centred.
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In recent years much insight has been gained about the
structure and function of many complex systems by map-
ping them to networks, nodes being associated with ele-
mentary units and links describing the coupling between
them. Surprisingly, universal categories of networks have
been found: scale-free [1] and small world (SW) networks
[2] being the most important hallmarks. Recent review
articles can be found in [3]. After considerable insight
has been gained about the structure of many real-world
networks, one important strand in network science is to
understand how the dynamics of a system can be con-
strained by the structure of the coupling topology. Due
to their wide range of applications including biological
and ecological problem settings, opinion formation in so-
cial science, engineering applications and laser physics,
synchronization problems on networks have recently at-
tracted much attention in this field, cf. [4] for a recent
review. Note that spatial constraints play a role in almost
all of these applications.

Starting with the study of Watts and Strogatz [2],
investigating the dynamics of synchronization of cou-
pled oscillators has faciliated the discovery of important
classes of networks, SW networks being the prime exam-
ple. SW networks combine properties of the underlying
spatial organization with those of random graphs and
can be seen as arising from a tendency to minimize the
cost to connect nodes distributed in space while at the
same time trying to achieve shortest pathlengths on the
network [5].

SWs have been associated with enhanced synchroniza-
tion properties, but have later been shown not to be
optimal for synchronization [6]. Reminiscent of the un-
derlying spatial organisation, SWs are characterised by
the presence of many short loops. In contrast, networks
with optimal synchronisability are so-called entangled
networks [6]. These networks, are regular and small, but
have large girths, i.e. these networks are marked by the
avoidance of small loops and thus also by the lack of lo-

cal connections. By addressing the question: “How many
long links does a SW need to synchronize?” we will inves-
tigate this apparent trade-off between spatial embedded-
ness and synchronization in this Rapid Communication.
Tuning the constraining effect of space on network orga-
nization, we construct ensembles of synchrony-optimized
networks, which combine properties of the underlying
space and synchrony-optimality in different ways. We
find that such networks are characterized by power laws
in the link size distribution, thus replicating an inter-
esting pattern that has, for instance, been observed in
the human brain [7, 8]. We also show that SWs can be
networks with optimal synchronization properties, if the
network organization is constrained by the underlying
spatial structure.

Let us consider the dynamics given by the following
equation, coupling the dynamics of oscillators each de-
scribed by its individual dynamics given by φ̇i = f(φ),

φ̇i = f(φi) + σ
∑

j

Aij [g(φj)− g(φi)], (1)

where the function g describes the coupling, σ the cou-
pling strength and the matrix A = (Aij) the adjacency
matrix of the coupling network. In the following we con-
sider connected undirected graphs corresponding to sym-
metrical adjacency matrices A.

In an analysis of the stability of the fully synchronized
state f(s) = 0 of Eq. (1) Pecora and Carroll derived a
‘master stability’ function, relating the stability of syn-
chronized solutions to the eigenvalues of the graph Lapla-
cian Lij = kiδij − Aij , where ki =

∑
j Aij [9]. Since we

consider connected undirected graphs, the eigenvalues of
L are all real and there is exactly one zero eigenvalue.
Let the eigenvalues of L be labelled in ascending order
0 = λ0 < λ1 ≤ ... ≤ λN . According to [9] for many
classes of oscillators the stability of the fully synchro-
nized state is related to a small eigenratio e = λN/λ1,
such that a tightly packed spectrum of L begets stability
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of the synchronized state. It needs to be emphasised that
this eigenvalue ratio is only a measure for the stability of
the synchronized state and does not a priori give any in-
formation about the onset or transition towards synchro-
nization. However, its generality and independence of
the particulars of the analyzed system has led to it being
widely adopted as a measure for the ‘synchronizability’
of a network, cf. [4]. This notion is further supported by
[10], which demonstrates for a class of networks that a
smaller eigenratio also implies an earlier onset of synchro-
nization, even for non-identical units. For these reasons
we follow previous studies and adopt the eigenratio as a
measure for the synchronizability of networks.
We consider a set of N identical oscillators coupled by

Eq. (1) that are uniformly distributed in a 1-dimensional
space with periodic boundary conditions, e.g. with spa-
tial locations xi = iδ, i = 0, ..., N − 1. The parameter δ
gives the distance between adjacent nodes and we fix min-
imum length scales to δ = 1 in the following considera-
tions. In one dimension the distance between nodes i and
j is then given by d(i, j) = min(|xi −xj |, Nδ− |xi−xj |).
Thus, the amount of ‘wire’ required to realize the con-
nections of a network topology A is obtained from W =∑

i<j Aijd(i, j).
Spatial constraints on the network organisation can be

formulated as constraints on the amount of wire avail-
able to connect the network. The minimum amount of
wire to connect all units is (N − 1)δ corresponding to
a linear chain that connects spatial nearest neighbours,
while δN(N2 − 1)/16 for a fully connected network gives
the maximum amount of wire that can be used. If estab-
lishing physical connections is very expensive, i.e. only a
very limited amount of wire is available, links will mostly
be restricted to short, i.e. local connections. For expen-
sive wire there is a pressure for networks to be organized
as a spatial grid. On the other hand, if wire is cheap and
plenty is available, no constraint towards local connec-
tions is enforced and the effects of the underlying spa-
tial organization will not be important. Thus tuning the
amount of available wire allows to systematically change
the influence of spatial constraints on network organiza-
tion.
To proceed, we consider networks that minimize an

energy-like quantity

E(λ) = λW + (1− λ)e, (2)

where W gives the amount of wire used to connect the
network, e the eigenratio, and the parameter λ measures
the relative weight of the cost of wire and desirablity of
superior synchronization properties in the cost function.
The limiting cases λ = 0 correspond to no cost for wire
in which case a fully connected network with e = 1 re-
alizes the optimum and λ = 1 in which a linear chain
is optimal. Below we use the formalism of Eq. (2) as a
convenient description to investigate networks with opti-
mal synchronization properties for differing pressure from

spatial constraints. We have, however, also explored op-
timizing networks for synchronization for given amounts
of wire, a procedure that essentially corroborates the re-
sults presented below.

In the following we construct optimal network config-
urations with a numerical optimization scheme via sim-
ulated annealing. In principle, the scheme is similar to
schemes employed in other studies like [6, 11, 12] which
have investigated optimal network topologies in other
contexts. In its essentials, the scheme works as follows:
an alteration in the network arrangement, being either
the addition or deletion of a link or the rewiring of a link
to a link vacancy is suggested. Then the ‘fitness’ Er(λ)
of the new network is calculated and the altered configu-
ration is accepted with probability q = 1 if Er(λ) < E(λ)
or with probability q ∝ exp(β(E(λ)−Er(λ))) otherwise.
The parameter β, which is gradually increased during the
optimization, gives the inverse temperature of the anneal-
ing procedure. We repeat the guided rewiring mechanism
till no improvement in the network’s fitness was found for
a number of T = 10L configurations. It is important to
note that the number of links, the network organization
and the distribution of link lengths are all emergent prop-
erties from the optimization.

Numerically, the cost of the optimization increases
steeply with the number of simulated oscillators N . Fur-
ther, spatial effects only become apparent if the average
spatial distances are not too small compared to the sys-
tem size. Since on a d-dimensionsional grid with peri-
odic boundary conditions the maximum spatial distance
scales as dmax = δ

√
d/2N1/d, requirements for the sys-

tem size grow steeply with d. For this reason we limit
the paper to d = 1 where link lengths up to δN/2 can
be observed. As the networks analyzed below have been
constructed by a numerical optimization procedure, it is
not possible to prove that they represent global minima
of the energy defined in Eq. (2). However, we repeated
the stochastic optimization with different initial networks
and found that the optimized configurations were always
structurally similar.

By giving a series of optimal example network config-
urations for different λ and the link length distributions
for the respective ensembles of optimal networks, Figure
1(a)-(h) illustrates some details of the simulation results.
For small λ = .05, cf. panels (a) and (e), many con-
nections are formed. Most links are small, however also
longer links are found and the link length distribution
is approximately exponential. When λ is increased, the
increased weight of the cost of wire in the cost function
Eq. (2) allows for less links to be formed. By the same
token, the link length distribution becomes more skewed.
Remarkably, in the range of 0.1 ≤ λ ≤ .9 the link length
distributions fit inverse power laws P (l) ∼ l−α, cf. panels
(f) and (g). As expected, costlier wire leads to an increas-
ing dominance of short links and thus larger exponents
α. When wire becomes very expensive, cf. α = 0.95
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FIG. 1: (a)-(d): Example networks constructed for λ = 0.05, 0.3, 0.8 and 0.95. (e)-(h) Link size distributions for λ = 0.05,
0.3, 0.8 and 0.95. N = 100, for each value of λ an ensemble of 100 networks has been constructed. In (e) and (h) points are
connected to guide the eyes, straight lines in (f), (g) and (h) compare with power laws with exponents α = 1.05, α = 1.44 and
α = 1.5, respectively. In panels (c) and (d) it can easily be observed that a few nodes attract a disproportionately large share
of long links.
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FIG. 2: Distribution of link length for optimal networks with
N = 400 constructed for λ = 0.9 (filled circles). The data
represent averages over 10 networks. The dotted line indicates
an inverse power law with exponent α = 1.7, cf. the solid line.
For comparison, also the link length distribution for random
networks with the same degree distributions and no constraint
on wire (open circles) and for random networks with the same
degree distribution and same total length of wire (open boxes)
are given. As expected, the link length distribution is uniform
for the first and exponential for the second, see dotted lines.
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FIG. 3: Dependence of (a) the ratio r
2

k between the variances
of the degree distributions of the optimal and that of random
networks with the same number of links and the same amount
of wire and (b) the average pairwise slope of the average link
length-degree dependence on λ. Data for N = 100 averaged
over 100 constructed networks.

in panels (d) and (h), constraints from the requirement
for networks to be connected manifest themselves. The
network to be connected requires additional small links,
such that deviations from the power law are found for
small link lengths, which are excessively abundant.

To substantiate the important finding that optimal
networks where spatial constraints are relevant are SWs
with a link length distribution that follows a power
law, we have also constructed some larger networks with
N = 400. Figure 2 gives the link length distribution for
these networks, clearly indicating a power law tail that
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holds over several orders of magnitude. For comparison,
the figure also shows the link length distributions for two
ensembles of reference networks: (i) random networks
with the same number of links and (ii) random networks
with the same number of links and the same amount
of wire. Both ensembles are constructed from rewiring
the optimal network configurations. As one expects, the
link length distribution becomes uniform in the case of
the first ensemble and exponential for the second ensem-
ble. Ensemble (ii) is also a reference ensemble of random
networks to evaluate the structure of the optimal config-
urations.
We continue with an analysis of the structure of the op-

timal networks, concentrating on the range .1 < λ < .9
for which neither the requirement for synchronization nor
the demand to minimize the amount of wire dominate.
Comparing to random networks with the same number of
links and the same amount of wire, the optimal networks
are found to be smaller, have substantially lower clus-
tering coefficients, and strongly disassortative. All these
statistics of network organization have been associated
with superior synchronization before [4]. Additionally,
however, in-signal homogeneity has been indentified as
an essential determinant of an enhanced synchronizabil-
ity of networks [6, 13]. Importantly, the data in Fig.
3a highlight that the spatial constraints prevent the op-
timal networks from becoming homogeneous. For this
purpose we measured the ratio between the degree vari-
ances σ2

k =
∑

i(ki − 〈k〉)2 between the optimal and ran-
dom networks. Even though the ratio is always smaller
than one, the optimal networks only become homogenous
when spatial constraints cease to be relevant.
In fact, this residual degree heterogeneity appears to

be required for an enhanced synchronizability in space.
More detailed analysis shows that the average length
〈l(k)〉 of a link connected to a node of degree k grows
strongly with k. The correlation is manifested by a Pear-
son correlation coefficient between 〈l(k)〉 and k which
gives values in the range between .5 and .7, showing
a decline of the strength of the correlation with de-
creasing λ. We further calculated a weighted average
pairwise slope d〈l(k)〉/dk =

∑
i<j ninj1/(j − i)(〈l(j)〉 −

〈l(i)〉)/∑i<j ninj , where ni gives the number of nodes
with degree i and 〈l(i)〉 is the average over all link length
of links incident to nodes with degree i. The data, cf.
Fig. 3b emphasize what we observed for the degree-link
length correlation coefficient before: Apart from finite
size effects for very large λ the stronger the role spatial
constraints play in the network optimization, the larger
the slope of the 〈l(k)〉-dependence. Hence, optimal syn-
chronization in spatially constrained networks is achieved
via the formation of (relative) hubs, around which long
distance connections are centred.
It is noteworthy that the organization of the hubs is

different from what has been observed for distance mini-
mizing small worlds in [5], in so far as no hierarchical core

of hub nodes is formed. In contrast, the hub nodes source
information from nodes of average degree at far away lo-
cations and distribute it to nodes of small degrees close
by.

In summary, in this Rapid Communication we have
constructed networks that optimize synchronization for
varying spatial constraints. We have shown that such
networks are classified by link length distributions with
power law tails P (l) ∝ l−α, with a continuous increase
of the steepness α when spatial constraints grow in im-
portance. In constrained networks, optimal synchroniza-
tion is achieved by a residiual heterogeneity in the de-
gree distribution: ‘hubs’ with more than average connec-
tions serving as centres for long range communication. As
an aside, we note that a random walk on a synchrony-
optimized SW with power law tail of the link length dis-
tribution describes a Levy flight on the underlying space.
This is of interest, since Levy flights in space have, for
instance, been associated with optimal search strategies
[14] or human travel patterns [15].

This research was undertaken on the NCI National Fa-
cility in Canberra, Australia, which is supported by the
Australian Commonwealth Government.
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