
Computing Networks:
A General Framework to Contrast
Neural and Swarm Architectures

Carlos Gershenson1,2

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
Universidad Nacional Autónoma de México

Ciudad Universitaria
Apdo. Postal 20-726 / Admón. No. 20

01000 México D.F. México
cgg@unam.mx http://turing.iimas.unam.mx/~cgg

2 Centro de Ciencias de la Complejidad
Universidad Nacional Autónoma de México

January 28, 2010

Abstract

Computing Networks (CNs) are defined. These are used to generalize neural and
swarm architectures, namely artificial neural networks, ant colony optimization, and
particle swarm optimization. The description of these architectures as CNs allows
their comparison, distinguishing which properties enable them to perform complex
computations and exhibit complex cognitive abilities. In this context, the most relevant
characteristics of CNs are the existence multiple dynamical and functional scales.

1 Introduction

The complex behavior exhibited by swarms has been actively studied in recent decades
(Hölldobler and Wilson, 1990; Aron et al., 1990; Reznikova, 2007; Ryabko and Reznikova,
2009) and exploited in engineering (Bonabeau et al., 1999; Dorigo and Stützle, 2004). Recent
research has highlighted the similarities between swarms and brains (Couzin, 2009; Marshall
et al., 2009; Passino et al., 2008; Trianni and Tuci, 2009). Contributing to the effort of
understanding these similarities, with biological and engineering aims, this paper generalizes
models of swarm and neural architectures. In particular, artificial neural networks (ANNs),
ant colony optimization (ACO), and particle swarm optimization (PSO) are described under
the same general framework. The generalization, named computing networks (CNs), pro-
vides a common ground for comparison and for studying the underlying mechanisms and
computational properties common to swarms and brains.

1

ar
X

iv
:1

00
1.

52
44

v1
 [

cs
.N

E
]

 2
8

Ja
n

20
10

mailto:cgg@unam.mx
http://turing.iimas.unam.mx/~cgg

In the next section, the concept of computing network (CN) is defined. In the following
sections, this concept is used to describe ANNs, ACO & PSO. Then, there is an extended
comparison and discussion. In this section, similarities and differences of the architectures
are explored, followed by the discussion multiple dynamical and functional scales. Then, the
suitability and equivalence of different architectures is considered. The discussion continues
with the cognition of swarm and neural architectures and finishes with an examination of
alternate descriptions of the architectures. Conclusions close the paper.

2 Computing Networks: A General Descriptive Frame-

work

Many systems can be described as networks, i.e. nodes connected by edges (Newman, 2003;
Newman et al., 2006). In this paper, we use the concept of computing network (CN) as
a generalization of artificial neural networks (Rumelhart et al., 1986; Hopfield, 1988), ant
colony optimization (Dorigo et al., 1991; Dorigo and Stützle, 2004; Dorigo and Blum, 2005;
Dorigo, 2007), and particle swarm optimization (Kennedy and Eberhart, 1995, 2001; Dorigo
et al., 2008). In this way, the similarities and differences between these characteristic models
of neural and swarm intelligence are studied under the same formalism.

A computing network C(N,K, a, f) is defined as a set of nodes N linked by a set
of edges K used by an algorithm a to compute a function f . Nodes and edges
can have internal variables that determine their state, and functions that deter-
mine how their state changes. This is a very general definition, and can be applied to
describe many architectures and models beyond those discussed in this paper. Computing
networks can be stochastic or deterministic (depending on the determinism of functions and
algorithms), synchronous or asynchronous (depending on the updating used for the change
of states of nodes and edges (Gershenson, 2002, 2004b)), discrete (Wuensche, 1998) or con-
tinuous (depending on the type of variables of nodes and edges).

3 Artificial Neural Networks

Artificial Neural Networks (ANNs) were originally proposed as logical models of the neo-
cortex (McCulloch and Pitts, 1943). However, their computing power (Hopfield, 1982) has
shifted the research focus from their plausibility as neural models to their application in
different fields. There are many different types of ANNs, with different properties and im-
plementations. Here there will be no focus on any particular type of ANN.

In an ANN instantiation of a CN, nodes are neurons or units. Each neuron i typically
has a continuous state (output) determined by a function yi which is composed by two other
functions: the weighted sum Si of its inputs x̄i and an activation function Ai such as the
hyperbolic tangent. Directed edges ij (synapses) relate outputs yi of neurons i to inputs xj
of other neurons j, as well as external inputs and outputs with the network. Edges have a
continuous state wij (weight) that relates the states of neurons. The function f may be given
by the states of a subset of N (outputs ȳ), or by the complete set N . ANNs usually have two
dynamical scales: a “fast” scale where the network function f is calculated by the functional

2

composition of the function yi of each neuron i, and a “slow” scale where an algorithm a
adjusts the weights wij (states) of edges. There is a broad diversity of algorithms a used to
update weights in different types of ANN. Figure 1 illustrates ANNs as CNs.

yi=Ai(Si(x̄i))
yij, wij

f⊆y̅
a→Δwij, ∀i,j

Figure 1: Schematic of an ANN instantiation of a CN. Nodes have a function yi that is
computed from its inputs (x̄i). Edges have weights wij to determine the importance of the
interaction and also carry the output of neurons and network inputs. The network function
f or output is given by a subset of node functions ȳ. The algorithm a changes weights on
edges.

4 Ant Colony Optimization

Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find
approximate solutions to difficult optimization problems (Dorigo, 2007). ACO is inspired in
the collective behavior of ants and their stigmergic interactions through pheromones.

In an ACO instantiation of a CN, nodes are locations that contain a list of “artificial ants”
at their location. Each ant k has a path which represents a partial solution spk, from which
variables such as distance travelled and nodes visited can be extracted. Edges (trails) have
two variables: heuristic value ηij (e.g. distance or cost between two nodes) and pheromone
value τij. There have been different algorithms proposed to calculate function f , which
is given by the shortest path found. In ACO there are also two timescales: a “fast” one
in which ants travel through the network, generating paths (solutions) by choosing edges
probabilistically at each visited node depending on their state ηij,τij, and a “slow” one, where
the pheromone values τij of edges are updated. This is similar to weight adjustment in ANNs.
The pheromone update consists of an “evaporation” phase, where all levels are reduced
(similar to “forgetting” in some ANNs) and an additive phase (similar to “reinforcement” in
some ANNs), where pheromone levels associated with good solutions are increased. In some
versions of ACO, there is a “middle” scale, where “demon” (problem specific) actions are
taken, such as the application of a local search (Dorigo, 2007). Figure 2 illustrates ACO as
a CN.

3

 ...
ηij, τij

f=min(sk
p, ∀k)

a→Δτij, ∀i,j

sk
p

Figure 2: Schematic of an ACO instantiation of a CN. Nodes contain ants that construct
paths spk. Edges contain heuristic ηij and pheromone τij values. The function f is given by
the best path found. Algorithm a adjusts pheromone concentrations τij.

5 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic approach for solving
continuous and discrete optimization problems (Dorigo et al., 2008). It was originally inspired
by flocking algorithms (Reynolds, 1987) and social psychology research. In PSO, “particles”
move in a search space. Their position represents a candidate solution. Particles adjust their
position and velocity depending on their neighboring particles.

In a PSO instantiation of a CN, nodes are particles with position x̄i, velocity v̄i, value
of the best solution found b̄i, and a function y(x̄i) that the network is trying to optimize.
The position x̄i represents a tentative solution. The function f is simply the best solution
found by N . Edges represent the relationships between neighboring particles. Typically
they contain information about the neighborhood’s best solution, which can be represented
as l̄ij = max(b̄i, b̄j) for nodes i, j related by edge ij. There is a variety of algorithms to relate
the way in which particles adjust their state. Again, two timescales can be identified: a “fast”
one, where particles evaluate the function they are trying to optimize (y(x̄i)), and a “slow”
one, where the velocity and position of particles are adjusted by algorithm a depending on
their previous states and those of their neighbors (links). Figure 3 illustrates PSO as a CN.

For PSO, hypernetworks (Johnson, 2010) can be used as generalization, so that a single
edge can link more than two nodes and to represent the best solution of a neighborhood l̄j.

6 Comparison and Discussion

Table 1 shows a comparison of the language used to relate ANNs, ACO, and PSO in terms
of CNs. It can be seen that all three architectures have the same basic components: nodes,
edges, an algorithm, and a function. However, there are differences in the particularities of
each architecture.

ACO and PSO have been used mainly for optimization. This explains why their f
is the minimum (best) of the solutions found. In contrast, ANNs have been used to solve

4

x̅i
v̅i
b̅i

y(x̅i)

li̅j

f=min(b̅i, ∀i)
a→Δx̅i,v̅i, ∀i

Figure 3: Schematic of an PSO instantiation of a CN. Each node contains the position x̄i
and velocity v̄i of a particle, as well as its best solution found b̄i and a function y(x̄i). Edges
contain the neighborhood’s best solution l̄ij. Function f is the best solution found by all
particles. Algorithm a changes the position x̄i and velocity v̄i of particles depending on the
values of their neighbors.

Table 1: Particular instantiations of CNs: ANN, ACO, and PSO.

CN ANN ACO PSO
Nodes Neurons or units (func-

tion yi = Ai(Si(x̄i)))
Nodes (ants k (path spk)) Particles (position x̄i,

velocity v̄i, best solution
b̄i, function y(x̄i))

Edges Synapses (weight wij.) Trails (heuristic value
ηij, pheromone concen-
tration τij.)

Relationships (neigh-
borhood’s best solution
l̄ij)

Algorithm Adjust edges (∆wij.) Adjust edges (∆τij.) Adjust nodes (∆x̄i,
∆v̄i)

Function Composition of func-
tions of nodes

Shortest path (min(spk)) Best solution (min(b̄i))

5

many different tasks, e.g. classification, generalization, recognition, error correction, and time
sequence retention. Still, all the architectures can be described as computing a function f
in a distributed fashion. This is because they require the interaction of nodes to produce f .

It is interesting to note that, even when ACO and PSO are inspired by swarming systems,
algorithms of ANN and ACO are more similar between themselves than with PSO, in the
sense that they update edges, while PSO algorithms update nodes. However, if we decided
to extend the models from networks to hypernetworks (Johnson, 2010), where there is a
duality between nodes and edges, i.e. one can exchange nodes and edges while preserving
the functionality of the hypernetwork. In this case, then PSO particles can be described
as hyperedges, and their interactions as nodes. Then, the PSO algorithm a would update
edges.

6.1 Dynamical scales

One common characteristic among all three architectures studied is that they have “slow”
(a) and “fast” (f) dynamical scales. This is no coincidence. Having multiple dynamical
scales is a requirement for computing complex functions. If there is only change at a single
scale, then the phase space of f can be explored, but it cannot be changed. Having two
dynamical scales, one can explore changes in the phase space of f as well. This property
is essential when f is not known beforehand: the algorithm explores different phase spaces
until one that satisfies f is found.

The tasks solved by real neural and swarm systems also need to exploit the advantages
of multiple dynamical scales. In the case of neural systems, learning (synapse modification)
enables the correct adjustment of a particular function of a circuit, e.g. categorization. For
swarming insects, local interactions (direct or stigmergic) enable the colony to make complex
decisions, e.g. choosing a new nest.

Would it be useful to have three dynamical scales? This would imply the exploration of
changes in the space of phase spaces of f . For example, this is used in “evo-devo” (Fontana,
2002; Munteanu and Solé, 2008) or epigenetic (Balkenius et al., 2001) algorithms, where
there is a function f , its phase space is explored through the “lifetime” of an “organism”
(learning), and the space of possible organisms is explored at an evolutionary scale, e.g. with
evolutionary algorithms. Figure 4 illustrates the change possible at one, two and three
dynamical scales.

A question that arises is whether CNs with three dynamical scales are computationally
equivalent, or more powerful, than CNs with two dynamical scales. The reader is invited to
ponder on this question, which is already out of the scope of this paper.

6.2 Functional scales and the relevance of interactions

Apart from having multiple dynamical scales, CNs have multiple functional scales. The most
clear scales are those of node (local) and network (global). Subnetworks, modules, layers, or
motifs can also form intermediate scales. In CNs, nodes compute certain “local” functions.
These functions are combined to produce the CN’s “global” function f . However, f cannot
be reduced to the node functions alone. Since the states of the nodes depend on other nodes,
interactions are relevant to determine the future state of nodes, and thus f .

6

A

f

B

f

C

f

Figure 4: Changes at different dynamical scales: (A) single scale: values can vary only along
f , (B) double scale: apart from changes along f , f can also be varied, and (C) triple scale:
changes in ways in which f can be varied can also be explored. Note that these diagrams
are only illustrative. f can certainly be multidimensional, i.e. in Rn.

As in the case of dynamical scales, having multiple functional scales is a requirement for
computing complex functions. In this context, interactions can be described as operators.
Local structures (e.g. nodes, motifs) can store certain information and can compute certain
functions. However, in many cases, the information produced by local structures is less
complex than the one that produced by the global structure (i.e. network). This is because
the interactions between local structures integrate information produced at the lower scales
to compute the global f . The exceptions are trivial, e.g. when all the interactions are weak or
absent, or the local structures are redundant. In these cases, one can say that the complexity
of the local structures is the same as the complexity of the global one.

This will be clearer introducing a definition of what is meant by complexity: Complex-
ity is the amount of information necessary to describe a phenomenon at a particular scale
(Bar-Yam, 2004; Prokopenko et al., 2009; Gershenson, 2007b). With a CN, in most cases
more information is necessary to describe the whole network than the collection of all its
nodes, namely because of the information contained in edges, which represent interactions.
Repeating what was stated above, f cannot be reduced to N only, namely because of K.

A clear example of the relevance of interactions can be seen with cellular automata (CA)
(von Neumann, 1966; Wolfram, 1986; Wuensche and Lesser, 1992; Wolfram, 2002), which
can also be described in terms of CNs. The states of cells (nodes) depend on the state
of their neighbors (edges) according to a certain rule. In the case of elementary cellular
automata (ECA) 110 (Wolfram, 2002; Juárez Mart́ınez et al., 2007), the state at time t+ 1
of each cell depends on its state and of its closest neighbors (3 cells in total) at time t. The
updating is done synchronously according to the values shown in Table 2. Figure 5 shows
the temporal evolution of ECA 110 for a particular initial state. Even when the behavior of
ECA 110 is determined by very simple rules, it is capable of universal computation (Cook,
2004), exploiting the interactions between emergent structures (Juárez Mart́ınez et al., 2007)
that arise from the simple interactions of the local neighborhoods.

7

Figure 5: Temporal evolution of ECA 110. Each cell is represented by a column and time
flows downwards, i.e. each row represents the state of the CA at successive time steps. Black
cells represent ’0’ and white cells represent ’1’. The first row (initial state) consists of a
single ’1’. The state of other rows depends on the state of the row above. It is not possible
to compute a priori the state of the last row from the first row without computing all the
intermediate states.

8

Table 2: ECA 110 lookup table. The first column shows the eight possible states of the 3
cells used to update every cell, while the second column shows the state of the updated cell.

t t+ 1
000 0
001 1
010 1
011 1
100 0
101 1
110 1
111 0

With ECA 110, the relevance of interactions is clearly seen. CNs with simple nodes and
functions are capable of complex computations because of the relevant information contained
in edges. Note that interactions are not necessarily physical, but they are real. For different
systems, there are different “implementations” of edges, e.g. synapses, pheromones, or cues
(Couzin, 2009). Still, they all have the same role: to relate states of nodes to compute a
distributed function f . With the CN formalism, it is clear that the computational power
of a brain is much more complex than that of a large collection of isolated neurons, and
the computational power of a swarm is much more complex than that of a group of isolated
insects.

For functional scales, we can also ask whether only two scales are less powerful than more
than two scales. However, again, the question is beyond the scope of this paper.

6.3 Which architecture is the best?

One might wonder which architecture—ANNs, ACO, or PSO—is the best. There is no
best architecture independently of a specific context (Wolpert and Macready, 1995, 1997;
Gershenson, 2004a). Different implementations of CNs will be more adequate for different
problems, either giving better solutions, or improved speed. The convenience of a particular
architecture does not depend only on the problem: different methods will be more useful for
different people, depending on their experience and expertise.

A valid question would be: which architecture—ANNs, ACO, or PSO—is more compu-
tationally powerful? Since the architectures are so general, it can be conjectured that they
all are capable of (theoretical) universal computation (Turing, 1936). There are several ways
to show this: each architecture can implement a Turing machine, calculate any computable
function, or implement ECA 110, which is already capable of universal computation (Cook,
2004). Moreover, one could implement e.g. an ANN based on ACO or PSO, e.g. where the
function of a node is itself determined by an ACO or PSO CN. Similarly, one can implement
an ACO or PSO based on ANNs. Finally, one can also develop ACO based on PSO and vice
versa. It might not be useful at all, but the idea shows that computationally (in Turing’s
sense) they all have similar capacities. There will be more differences on particular imple-

9

mentations of ANNs (e.g. given by number of nodes and edges) than between a given ANN
and an equivalent ACO or PSO.

The literature is rich in examples of hybrid systems, where some properties of one archi-
tecture are combined with those of another one, e.g. (Kennedy and Eberhart, 1995; Wang
et al., 2004; Chen et al., 2004; Blum and Socha, 2005; Mozafari et al., 2006) to cite a few
of them. Actually, the original PSO paper (Kennedy and Eberhart, 1995) used PSO as an
example to train an ANN. This illustrates that for a particular problem and for a particular
expertise of the developers, no single approach gives the best solutions.

Having discussed the similarity of the computational capacities of neural and swarm
architectures, we can continue with the discussion about the role of the architectures in
cognition.

6.4 Cognition

Cognition comes from the Latin cognoscere, which means “get to know”. We can say that a
system is cognitive if it knows something (Gershenson, 2004a). With this definition,
it is not possible to draw a boundary between cognitive and non-cognitive systems. Since
somebody has to judge whether a system knows or not, it is partly observer-dependent.
Instead of discussing whether a system is cognitive or not, it is more fruitful to distinguish
different types of cognition (e.g. human, animal, biological (including plant and bacterial),
social, artificial, adaptive, systemic (Gershenson, 2004a)), to compare and better understand
them.

From this perspective, it is clear that swarms are cognitive systems because they know
how to forage, find sites, build nests, and even add and subtract small numbers (Reznikova,
2007; Ryabko and Reznikova, 2009). Neural architectures are cognitive because they know
how to categorize, classify, remember, etc. (Hopfield, 1982). To compare both types of
cognition, we can use the concept of computing networks proposed in this paper.

Cognition can be seen as the ability to compute a function f . This is because if
a system can compute f , we can say that it knows how to calculate f . This vocabulary does
not aim at ascribing to CNs a “mind”, “consciousness”, or other difficult-to-define property
usually associated with human cognition. The aim of this use of language is to be able to
compare the cognitive capacities of neural and swarm architectures. As discussed in the
previous subsection, neural and swarm architectures have similar computational abilities,
shown by their generalization as CNs. If we describe cognition as computation, it naturally
follows that neural and swarm architectures have similar cognitive capacities, in theory. In
practice, different implementations will have different cognitive abilities, just as a human
brain has different abilities as a rat brain: the former is potentially better at poetry, the
latter is potentially better at navigation.

The great advantage of swarm and neural cognition is that they manage to exploit the
benefits of multiple functional and dynamical scales to exhibit complex cognitive abilities. As
discussed above, multiple scales enable CNs to compute more complex functions. In cognitive
terms, this enables neural and swarm architectures to exhibit a more complex cognition, as
compared to a system with a single functional or dynamical scale, e.g. a thermostat. We
can see that there are cognitive systems with more than two scales, e.g. group cognition
(Stahl, 2006), which exploit and combine the cognitive abilities of a collection of humans.

10

Naturally, swarms are another example of multiple scale cognition, since the cognition of
individual insects is provided by a neural architecture.

6.5 Alternative descriptions

The description of ANN, ACO, and PSO in terms of computing networks is only one of
several possible languages that can be used to compare the architectures. For example, a
multi-agent description can be also used: Nodes can be described as agents and edges can
be described as interactions. An algorithm regulates the interactions between agents to
reach a global state (equivalent to function f). This global state can be described as being
reached by self-organization (Gershenson and Heylighen, 2003). This self-organization in
a multi-agent system is comparable to the distributed computation of f . The system can
compute the same function f , only the description changes. For the purposes pursued in
this paper, the network description seems more appropriate. A multi-agent description can
be valuable in the process of designing algorithms, since goals of agents and systems can
be defined. Then, the algorithm should minimize “friction” (i.e. negative interactions) and
promote “synergy” (positive interactions) (Gershenson, 2007a). This will necessarily increase
the system’s “satisfaction”, which is basically what we want the system to do, i.e. f .

Yet another description that can be used is that of information (Gershenson, 2007b).
Nodes, edges, algorithms, and functions can be all seen as information, while computation
is simply a change of information. This is a more general description, so it is not so useful
for making a comparison as the one presented here. The information framework might be
useful for finding general principles across disciplines, since everything can be described in
terms of information.

Different descriptions are suitable for different contexts (Gershenson, 2004a), and the one
of computing networks was developed specifically to compare neural and swarm architectures.
It will not be as good as their original descriptions for developing e.g. new learning algorithms
in ANNs or new optimization algorithms in ACO. This is because the computing networks
description is more general and vague than an actual instantiation of an ANN or PSO.
More details are required at the implementation level, which were neglected here. The
goal of defining CNs is more theoretical than practical: to understand the similarities and
differences of neural and swarm architectures, not to improve current technical algorithms.

7 Conclusions

As Trianni and Tuci suggest (Trianni and Tuci, 2009), the principles of swarms can be
useful tools for studying the neuroscientific basis of cognition. Here it was shown that both
swarm and neural architectures share similar computational and cognitive abilities. This
was achieved by defining computing networks (CNs), which are able to generalize neural
and swarm architectures, allowing their comparison. By studying the general principles
that enable CNs to perform complex computations, one can understand better what are the
requirements of neural and swarm systems to exhibit complex cognition. In this paper, we
discussed the importance of having multiple dynamical and functional scales to achieve this.
From a cognitive perspective, CNs support the thesis of neural and swarm architectures

11

having similar cognitive abilities.

References

Aron, S., Deneubourg, J. L., Goss, S., and Pasteels, J. M. (1990). Functional
self-organization illustrated by inter-nest traffic in ants: The case of the argentinian ant.
In Biological Motion, W. Alt and G. Hoffman, (Eds.). Lecture Notes in BioMathematics,
vol. 89. Springer, Berlin, 533–547. URL http://tinyurl.com/ye28smr.

Balkenius, C., Zlatev, J., Brezeal, C., Dautenhahn, K., and Kozima, H., Eds.
(2001). Proceedings of the First International Workshop on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems. Vol. 85. Lund University Cognitive Studies,
Lund, Sweden. URL http://www.lucs.lu.se/LUCS/085/.

Bar-Yam, Y. (2004). Multiscale variety in complex systems. Complexity 9 (4): 37–45.
URL http://necsi.org/projects/yaneer/multiscalevariety.pdf.

Blum, C. and Socha, K. (2005). Training feed-forward neural networks with ant colony
optimization: An application to pattern classification. Hybrid Intelligent Systems, Inter-
national Conference on: 233–238. URL http://dx.doi.org/10.1109/ICHIS.2005.104.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford University Press, New York.

Chen, Y., Yang, B., and Dong, J. (2004). Evolving flexible neural networks using ant
programming and pso algorithm. Advances in Neural Networks –ISNN 2004 : 211–216.
URL http://dx.doi.org/10.1007/b99834.

Cook, M. (2004). Universality in elementary cellular automata. Complex Systems 15 (1):
1–40.

Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sci-
ences 13 (1): 36 – 43. URL http://dx.doi.org/10.1016/j.tics.2008.10.002.

Dorigo, M. (2007). Ant colony optimization. Scholarpedia 2 (3): 1461. URL http:

//www.scholarpedia.org/article/Ant_colony_optimization.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical
Computer Science 44 (2-3): 243–278. URL http://dx.doi.org/10.1016/j.tcs.2005.

05.020.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991). Positive feedback as a search
strategy. Tech. Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano.

Dorigo, M., Montes de Oca, M. A., and Engelbrecht, A. (2008). Particle swarm
optimization. Scholarpedia 3 (11): 1486. URL http://www.scholarpedia.org/article/

Particle_swarm_optimization.

12

http://tinyurl.com/ye28smr
http://www.lucs.lu.se/LUCS/085/
http://necsi.org/projects/yaneer/multiscalevariety.pdf
http://dx.doi.org/10.1109/ICHIS.2005.104
http://dx.doi.org/10.1007/b99834
http://dx.doi.org/10.1016/j.tics.2008.10.002
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press.

Fontana, W. (2002). Modelling ’evo-devo’ with RNA. BioEssays 24 (12): 1164–1177.
URL http://tinyurl.com/ykdbdpe.

Gershenson, C. (2002). Classification of random Boolean networks. In Artificial Life VIII:
Proceedings of the Eight International Conference on Artificial Life, R. K. Standish, M. A.
Bedau, and H. A. Abbass, (Eds.). MIT Press, pp. 1–8. URL http://alife8.alife.org/

proceedings/sub67.pdf.

Gershenson, C. (2004a). Cognitive paradigms: Which one is the best? Cognitive Systems
Research 5 (2) (June): 135–156. URL http://dx.doi.org/10.1016/j.cogsys.2003.

10.002.

Gershenson, C. (2004b). Updating schemes in random Boolean networks: Do they
really matter? In Artificial Life IX Proceedings of the Ninth International Confer-
ence on the Simulation and Synthesis of Living Systems, J. Pollack, M. Bedau, P. Hus-
bands, T. Ikegami, and R. A. Watson, (Eds.). MIT Press, pp. 238–243. URL http:

//uk.arxiv.org/abs/nlin.AO/0402006.

Gershenson, C. (2007a). Design and Control of Self-organizing Systems. CopIt Arxives,
Mexico. http://tinyurl.com/DCSOS2007. URL http://tinyurl.com/DCSOS2007.

Gershenson, C. (2007b). The world as evolving information. In Proceedings of Inter-
national Conference on Complex Systems ICCS2007, Y. Bar-Yam, (Ed.). URL http:

//uk.arxiv.org/abs/0704.0304.

Gershenson, C. and Heylighen, F. (2003). When can we call a system self-organizing?
In Advances in Artificial Life, 7th European Conference, ECAL 2003 LNAI 2801,
W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, (Eds.). Springer, Berlin,
pp. 606–614. URL http://uk.arxiv.org/abs/nlin.AO/0303020.

Hölldobler, B. and Wilson, E. O. (1990). The Ants. Belknap Press.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences 79 (8): 2554. URL
http://www.pnas.org/content/79/8/2554.abstract.

Hopfield, J. (1988). Artificial neural networks. Circuits and Devices Magazine, IEEE 4 (5)
(Sep): 3–10. URL http://dx.doi.org/10.1109/101.8118.

Johnson, J. (2010). Hypernetworks in the Science of Complex Systems. Series on Com-
plexity Science, vol. 1. World Scientific. URL http://www.worldscibooks.com/chaos/

p533.html.

Juárez Mart́ınez, G., McIntosh, H. V., Seck Tuoh Mora, J. C., and Chapa Ver-
gara, S. V. (2007). Rule 110 objects and other collision-based constructions. Journal of
Cellular Automata 2 (3): 219–242.

13

http://tinyurl.com/ykdbdpe
http://alife8.alife.org/proceedings/sub67.pdf
http://alife8.alife.org/proceedings/sub67.pdf
http://dx.doi.org/10.1016/j.cogsys.2003.10.002
http://dx.doi.org/10.1016/j.cogsys.2003.10.002
http://uk.arxiv.org/abs/nlin.AO/0402006
http://uk.arxiv.org/abs/nlin.AO/0402006
http://tinyurl.com/DCSOS2007
http://uk.arxiv.org/abs/0704.0304
http://uk.arxiv.org/abs/0704.0304
http://uk.arxiv.org/abs/nlin.AO/0303020
http://www.pnas.org/content/79/8/2554.abstract
http://dx.doi.org/10.1109/101.8118
http://www.worldscibooks.com/chaos/p533.html
http://www.worldscibooks.com/chaos/p533.html

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks. IEEE Press, Piscataway, NJ,
pp. 1942–1948. URL http://tinyurl.com/y8ho5cr.

Kennedy, J. and Eberhart, R. (2001). Swarm Intelligence. Morgan Kaufmann, San
Francisco, CA.

Marshall, J. A., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., and
Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies.
Journal of the Royal Society Interface. URL http://dx.doi.org/10.1098/rsif.2008.

0511.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biology 5 (4): 115–133. URL http://dx.doi.

org/10.1007/BF02478259.

Mozafari, B., Ranjbar, A. M., Amraee, T., Mirjafari, M., and Shirani, A. R.
(2006). A hybrid of particle swarm and ant colony optimization algorithms for reactive
power market simulation. Journal of Intelligent and Fuzzy Systems 17 (6) (January):
557–574. URL http://tinyurl.com/ygx63rc.

Munteanu, A. and Solé, R. V. (2008). Neutrality and robustness in evo-devo: Emer-
gence of lateral inhibition. PLoS Comput Biol 4 (11) (11): e1000226. URL http:

//dx.doi.org/10.1371%2Fjournal.pcbi.1000226.

Newman, M., Barabási, A.-L., and Watts, D. J., Eds. (2006). The Structure and
Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM
Review 45: 167–256. URL http://arxiv.org/abs/cond-mat/0303516.

Passino, K. M., Seeley, T. D., and Visscher, P. K. (2008). Swarm cognition in
honey bees. Behavioral Ecology and Sociobiology 62 (3) (January): 401–414. URL http:

//dx.doi.org/10.1007/s00265-007-0468-1.

Prokopenko, M., Boschetti, F., and Ryan, A. (2009). An information-theoretic
primer on complexity, self-organisation and emergence. Complexity 15 (1): 11 – 28. URL
http://dx.doi.org/10.1002/cplx.20249.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics 21 (4): 25–34. URL http://www.red3d.com/cwr/papers/1987/

boids.html.

Reznikova, Z. (2007). Animal Intelligence From Individual to Social Cognition. Cambridge
University Press.

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, Eds.
(1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
MIT Press.

14

http://tinyurl.com/y8ho5cr
http://dx.doi.org/10.1098/ rsif.2008.0511
http://dx.doi.org/10.1098/ rsif.2008.0511
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://tinyurl.com/ygx63rc
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000226
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000226
http://arxiv.org/abs/cond-mat/0303516
http://dx.doi.org/10.1007/s00265-007-0468-1
http://dx.doi.org/10.1007/s00265-007-0468-1
http://dx.doi.org/10.1002/cplx.20249
http://www.red3d.com/cwr/papers/1987/boids.html
http://www.red3d.com/cwr/papers/1987/boids.html

Ryabko, B. and Reznikova, Z. (2009). The use of ideas of information theory for studying
“language” and intelligence in ants. Entropy 11 (4): 836–853. URL http://dx.doi.org/

10.3390/e11040836.

Stahl, G. (2006). Group Cognition: Computer Support for Building Collaborative Knowl-
edge. MIT Press.

Trianni, V. and Tuci, E. (2009). Swarm cognition and artificial life. In Advances in
Artificial Life. Proceedings of the 10th European Conference on Artificial Life (ECAL
2009).

Turing, A. M. (1936). On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2 42: 230–265.
URL http://www.abelard.org/turpap2/tp2-ie.asp.

von Neumann, J. (1966). The Theory of Self-Reproducing Automata. University of Illinois
Press. Edited by A. W. Burks.

Wang, Z., Durst, G. L., Eberhart, R. C., Boyd, D. B., and Miled, Z. B. (2004).
Particle swarm optimization and neural network application for qsar. In In HiCOMB.
pp. 26–30.

Wolfram, S. (1986). Theory and Application of Cellular Automata. World Scientific.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media. URL http://www.

wolframscience.com/thebook.html.

Wolpert, D. and Macready, W. (1997). No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation 1 (1): 67–82.

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search.
Tech. Rep. SFI-WP-95-02-010, Santa Fe Institute. URL http://tinyurl.com/yz274ej.

Wuensche, A. (1998). Discrete dynamical networks and their attractor basins. In Complex
Systems ’98, R. Standish, B. Henry, S. Watt, R. Marks, R. Stocker, D. Green, S. Keen,
and T. Bossomaier, (Eds.). University of New South Wales, Sydney, Australia, pp. 3–21.
URL http://tinyurl.com/y6xh35.

Wuensche, A. and Lesser, M. (1992). The Global Dynamics of Cellular Automata;
An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Santa Fe
Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading, MA.

15

http://dx.doi.org/10.3390/e11040836
http://dx.doi.org/10.3390/e11040836
http://www.abelard.org/turpap2/tp2-ie.asp
http://www.wolframscience.com/thebook.html
http://www.wolframscience.com/thebook.html
http://tinyurl.com/yz274ej
http://tinyurl.com/y6xh35

	1 Introduction
	2 Computing Networks: A General Descriptive Framework
	3 Artificial Neural Networks
	4 Ant Colony Optimization
	5 Particle Swarm Optimization
	6 Comparison and Discussion
	6.1 Dynamical scales
	6.2 Functional scales and the relevance of interactions
	6.3 Which architecture is the best?
	6.4 Cognition
	6.5 Alternative descriptions

	7 Conclusions

