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Abstract
Holographic functional methods are introduced as probes of discrete time-stepped maps that lead

to chaotic behavior. The methods provide continuous time interpolation between the time steps,

thereby revealing the maps to be splintered Hamiltonian systems underlain by novel potentials.

A sequence of successively deepening switchback potentials for a particle driven by Hamiltonian

dynamics explains, in very physical terms, the frequency doubling and trajectory folding that occur

on the particular route to chaos revealed by the logistic map, x 7→ 4x(1− x).
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1. INTRODUCTION

In a previous paper [1] we have discussed how functions of position, defined on a discrete
lattice of time points, may be smoothly interpolated in time by functions of both x and t,
defined on a continuum of time points, through the use of solutions to Schröder’s nonlinear
functional equation [2]. If the effect of the first discrete time step is given as the map
x 7→ f1 (x, s), for some parameter s, Schröder’s functional equation is

sΨ (x, s) = Ψ (f1 (x, s) , s) , (1)

with Ψ to be determined. So, f1 (x, s) = Ψ−1 (sΨ (x, s) , s), where the inverse function Ψ−1

obeys Poincaré’s equation,

Ψ−1 (sx, s) = f1
(

Ψ−1 (x, s) , s
)

. (2)

The nth iterate of (1) gives snΨ (x, s) = Ψ (f1 (· · · f1 (f1 (x, s) , s) · · · , s) , s), with
f1 acting n times, and thus the nth order functional composition, fn (x, s) ≡
f1 (· · · f1 (f1 (x, s) , s) · · · , s) = Ψ−1 (snΨ (x, s) , s) — the so-called “splinter” of the func-
tional equation. A continuous interpolation between the integer lattice of time points is
then, for any t,

ft (x, s) = Ψ−1
(

stΨ (x, s) , s
)

. (3)

This can be a well-behaved and single-valued function of x and t provided that Ψ−1 (x, s) is
a well-behaved, single-valued function of x, even though Ψ (x, s) might be, and typically is,
multi-valued.

As discussed in [1], the interpolation can be envisioned as the trajectory of a particle,

x (t) = ft (x, s) , (4)

where the particle is moving under the influence of a potential according to Hamiltonian
dynamics. The velocity of the particle is then found by differentiating (3) with respect to t,

dx (t)

dt
= (ln s) stΨ (x)

(

Ψ−1
(

stΨ (x)
))′

, (5)

where any dependence of Ψ on s is implicitly understood. Therefore, the velocity will inherit
and exhibit any multi-valuedness possessed by Ψ (x).

Indeed, suppose that Hamiltonian dynamics have been specified, trajectories have been
computed, and f1 = x (t = 1) has emerged in terms of initial velocity and initial position
x (t = 0) ≡ x. A solution of the functional equation (1) can then be constructed, and
expressed in very physical terms, as just an exponential of the time elapsed along any such
particle trajectory that passes through position x. That solution is

Ψ (x) = sT (x)Ψ0 , T (x) =

∫ x dy

v (y)
. (6)

Here v (x) is the velocity as a function of the position along the trajectory. For a particle
moving in a potential V (x) at fixed energy, E, it can be expressed in the usual way as

v (x) = ±
√

E − V (x), with suitably chosen mass units.
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When written in a form more closely related to Schröder’s functional equation, the solu-
tion (6) is simply

Ψ (ft (x)) = s
∫ ft(x)
x

dy

v(y) Ψ (x) . (7)

At t = 1,
∫ f1(x)

x

dy

v(y)
= 1, and Schröder’s equation (1) re-emerges. But, as this construction

clearly shows, one must be careful at turning points where v = 0, especially if these are
encountered at finite times along the trajectory. Typically these turning points produce
branch points in Ψ so that it is multi-valued.

The interpolation (3) can also be viewed as a holographic specification on the x, t plane
[3], determining ft (x) in the surrounded “bulk” from the total data given at the bounding
times, {x} ∪ {f1 (x)}. In this point of view, fixed points in x complete the boundary data
and facilitate the solution of Schröder’s equation through power series in x, hence leading
to V (x) which was not known a priori [1].

In this holographic approach, the potential first appears as a quadratic in Ψ/Ψ′,

V (x) = − (ln s)2
(

Ψ (x)

Ψ′ (x)

)2

, (8)

up to an additive constant, where any dependence of Ψ on s is again implicit. The x
dependence of the potential, V (x) ≡ −v2 (x), follows from that of the velocity profile of the
interpolation, defined and given by [4]

v (x) ≡ dft (x)

dt

∣

∣

∣

∣

t=0

= (ln s)Ψ (x)
(

Ψ−1 (Ψ (x))
)′
=

ln s
d
dx

lnΨ (x)
. (9)

Monotonic motions between two fixed points, such as occur for the Ricker model [5], provide
the most elementary examples [1]. However, situations where one or both of the fixed points
are absent were not fully addressed in our previous work. This is precisely the situation
that occurs when turning points are encountered at finite times in the particle dynamics
interpretation, and leads to an intriguing modification in the physical picture involving the
potential and its effect on the particle trajectories. We consider here a specific example
of such a situation involving the well-studied logistic map of chaotic dynamics, namely,
x 7→ sx (1− x) [6–10].

Applying our functional methods to that example, the resulting interpolations from a
discrete lattice of time points to a time continuum then allow us to appreciate analytic
features of the logistic map, and to derive the governing differential evolution laws — indeed,
subtly time-translation-invariant Hamiltonian dynamical laws — of the underlying physical
system, hence to obtain potentials that were not previously known.

For the all-familiar logistic map illustrating transition to chaos, the functional interpo-
lation reveals that there are well-defined expressions for the continuous time evolution of
this map for all parametric values of the map, whether chaotic or not. We obtain agree-
ment with the explicit closed-form solutions of (1) for the special values of the parameters:
s = −2, 2, and 4. (These explicit solutions have been known for almost a century and
a half [2].) Moreover, as indicated, from (8) we can now find the potentials needed to
produce these explicit, continuously evolving trajectories in Hamiltonian dynamics.

A new feature for the potentials so obtained for the s = 4 case is that they must change at
discrete intervals of the envisioned Hamiltonian particle’s motion, to be consistent with the
evolution trajectories: Every time the particle hits a turning point, the potential changes!
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We therefore call the corresponding V s “switchback potentials.” These potentials deepen
successively and thus lead to more rapid, higher frequency motion, in agreement with the
familiar chaotic behavior of the discrete s = 4 logistic map that they interpolate. The famil-
iar frequency-doubling-and-folding behavior of the chaotic discrete map is thus understood
from — indeed, explained by — the properties of the switchback potentials.

2. THE LOGISTIC MAP

Consider in detail the logistic map x 7→ sx (1− x) on the unit interval, x ∈ [0, 1].
Schröder’s equation for this map is

sΨ (x, s) = Ψ (sx (1− x) , s) . (10)

The inverse function satisfies the corresponding Poincaré equation,

Ψ−1 (sx, s) = sΨ−1 (x, s)
(

1−Ψ−1 (x, s)
)

. (11)

As originally obtained by Schröder, there are three closed-form solutions known, for s = −2,
2, and 4:

Ψ (x,−2) =

√
3

6

(

2π − 3 arccos

(

x− 1

2

))

, Ψ−1 (x,−2) =
1

2
− cos

(

2x√
3
+

π

3

)

,

Ψ (x, 2) = −1

2
ln (1− 2x) , Ψ−1 (x, 2) =

1

2

(

1− e−2x
)

,

Ψ (x, 4) =
(

arcsin
√
x
)2

, Ψ−1 (x, 4) =
(

sin
√
x
)2

. (12)

Note that, while the Ψ are multi-valued, the inverse functions are all single-valued. More
generally, consider a power series for any s.

Ψ−1 (x, s) = x+ x
∞
∑

n=1

xncn (s) . (13)

The Poincaré equation then leads to a recursion relation for the s-dependent coefficients.

cn+1 =
1

1− sn+1

n
∑

j=0

cjcn−j , (14)

with c0 = 1, c1 = 1
1−s

, c2 = 2
(1−s)(1−s2)

, etc. The explicit coefficients are easily recognized

for s = −2, 2, and 4, and immediately yield the three closed-form cases. Similarly let

Ψ (x, s) = x+ x
∞
∑

n=1

(−x)n dn (s) . (15)

Then, as a consequence of Schröder’s equation, d1 = 1/ (1− s), and for n ≥ 2,

dn =
1

1− sn

⌊n+1
2 ⌋
∑

k=1

(

n + 1− k

k

)

sn−kdn−k . (16)
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where ⌊· · · ⌋ is the (integer-valued) floor function. In principle, these series solve (11) and
(10) for any s, within their radii of convergence. The first few terms for Ψ and Ψ−1 for
generic s are given explicitly by

Ψ (x, s) = x+
x2

s− 1
+

2s

(s+ 1)

x3

(s− 1)2
+

s (1 + 5s2)

(s2 + s+ 1) (s+ 1)

x4

(s− 1)3

+
2s3 (3 + 2s+ 7s3)

(s2 + 1) (s2 + s+ 1) (s + 1)2
x5

(s− 1)4

+
2s3 (1 + 3s+ 14s3 + 14s4 + 7s5 + 21s7)

(s4 + s3 + s2 + s+ 1) (s2 + 1) (s2 + s+ 1) (s+ 1)2
x6

(s− 1)5
+O

(

x7
)

, (17)

Ψ−1 (x, s) = x+
x2

1− s
+

2

(s+ 1)

x3

(s− 1)2
+

5 + s

(s+ 1) (s2 + s+ 1)

x4

(1− s)3

+
2 (7 + 3s+ 2s2)

(s2 + 1) (s2 + s+ 1) (s + 1)2
x5

(s− 1)4

+
2 (21 + 14s+ 14s2 + 8s3 + 3s4)

(s4 + s3 + s2 + s+ 1) (s2 + 1) (s2 + s+ 1) (s+ 1)2
x6

(1− s)5
+O

(

x7
)

, (18)

from which we infer that Ψ (x, s) /x and Ψ−1 (x, s) /x are actually series in x/ (1− s) with
s-dependent coefficients that are analytic near s = 1.

The trajectories interpolating the splinter (integer t) of the logistic map are then,

x (t) = Ψ−1
(

stΨ (x, s) , s
)

= st x+
st (1− st)

s− 1
x2 +

2st (1− st) (s− st)

(s+ 1) (s− 1)2
x3

+
st (1− st) (s− st) (1 + 5s2 − (s+ 5) st)

(s+ 1) (s2 + s+ 1) (s− 1)3
x4

+
2st (1− st) (s− st) (s2 − st) (7s3 + 2s+ 3− st (2s2 + 3s+ 7))

(s+ 1)2 (s2 + 1) (s2 + s+ 1) (s− 1)4
x5 +O

(

x6
)

. (19)

The trajectories are single-valued functions of the time so long as Ψ−1 is single-valued, and
in fact, they exist even for s → 1 as series solutions. Explicitly,

lim
s→1

Ψ−1
(

stΨ (x, s) , s
)

= x− t x2 + t (t− 1) x3 − 1

2
t (t− 1) (2t− 3) x4

+
1

3
t (t− 1) (t− 2) (3t− 4) x5 − 1

12
t (t− 1) (t− 2)

(

12t2 − 41t+ 31
)

x6

+
1

30
t (t− 1) (t− 2)

(

30t3 − 171t2 + 302t− 157
)

x7 +O
(

x8
)

. (20)

For the three special cases, s = −2, 2, and 4, there are closed-form results for various
quantities of interest. For example, for s = 4, the trajectory and velocity are given by

x (t)|s=4 = Ψ−1
(

4t Ψ (x, 4) , 4
)

=
(

sin
(

2t arcsin
√
x
))2

, (21)

(as originally presented in [2], p 306) and by

d

dt
x (t) =

(

21+t ln 2
)

sin
(

2t arcsin
√
x
)

cos
(

2t arcsin
√
x
)

arcsin
√
x (22a)

= (ln 4)
√

x (t) (1− x (t)) arcsin
√

x (t) . (22b)
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The last expression evinces a continuous time-translational invariance. However, this ve-
locity function has branch points (i.e. turning points) at x (t) = 0 and x (t) = 1, so some
care is needed to determine which branch of the function is involved, particularly when the
turning points are encountered at finite times, as explained below.

With this caveat in mind, we may thus deduce the velocity profile v (x) = dx(t)
dt

∣

∣

∣

t=0
,

effective potential, and force for an underlying Hamiltonian system:

v (x) =
dx (t)

dt

∣

∣

∣

∣

s=4,t=0

= (ln 4)
√

x (1− x) arcsin
√
x , (23)

V (x) = −v2 (x) = (ln 4)2 x (x− 1) arcsin2
√
x , (24)

F (x) = − d

dx
V (x) = (ln 4)2

(

arcsin
√
x
)

(

√

x (1− x)− (2x− 1) arcsin
√
x
)

. (25)

Note x = 0 is an unstable fixed point for the system. Similar closed-form results hold for
the other two solvable cases, s = −2 and s = 2.

In principle, there are also potentials underlying the trajectories for other s by dint of
the series constructions. From the general expression for x (t) in terms of Ψ and Ψ−1, and
with use of the chain rule, the potential may be expressed entirely in terms of (lnΨ)′, as
given in the Introduction by (8). The Schröder auxiliary function is then recognized as just
an exponential of the time function

T (x) =

∫ x dy
√

−V (y)
, (26)

computed along a zero-energy trajectory, as given by (6).

3. NOVEL POTENTIALS AND SWITCHBACK EFFECTS

The effective potentials for all three closed-form cases are somewhat unusual:

V (x, s = 4) = (ln 4)2 x (x− 1) arcsin2
√
x , (27)

V (x, s = 2) = −
(

ln
√
2
)2

(1− 2x)2 ln2 (1− 2x) , (28)

V (x, s = −2) =
1

36
(ln (−2))2 (2x+ 1) (2x− 3)

(

2π − 3 arccos

(

x− 1

2

))2

. (29)

Another way to express the potential for s = 4 is similar in form to that for s = −2, namely,

V (x, s = 4) = (ln 2)2 x (x− 1) (π − arccos (2x− 1))2 . (30)

Indeed, it is well-known that the logistic maps for s = 4 and s = −2 are intimately related
through the functional conjugacy of the underlying Schröder equations. But note the
potential for s = −2 is in fact complex, since ln (−2) = ln 2 + iπ, as are the trajectories
under real time evolution for this case. Of course, since the complexity of V (x, s = −2)
is solely a multiplicative factor, if we switch to complex time, τ = (ln 2 + iπ) × t, then
d2x
dτ2

= − ∂
∂x

V (x,s=−2)

2(ln 2+iπ)2
again yields real trajectories x (τ). Nevertheless, this does raise several

questions about complex x, and about the behavior of V in the complex plane. We discuss
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only one aspect of this behavior here, and consider non-principal values for the multi-valued
functions v (x, s = 4) and V (x, s = 4). In particular, all branches of the arcsin function are
important to understand the behavior of the explicit trajectories (21).

Switchbacks on the road to chaos. An interesting new feature, which we shall call
the switchback effect, appears for a particle moving in the s = 4 effective potential. This
is a distinguishing feature that we encounter for the s = 4 chaotic map, but not, say, for
the non-chaotic s = 2 map. The effect is traceable to the fact that, while the trajectory
is single-valued as a function of the time, the velocity and hence the effective potential are
not single-valued as functions of position. Moreover, the branch points of the multi-valued
functions are encountered by zero-energy trajectories at finite times for the s = 4 case,
unlike, say, for the s = 2 case. For the latter case, it takes an infinite time for a particle
with zero energy to reach a turning point.

Switchbacks are essentially transitions from one branch of the position-dependent velocity
function to another, and occur at the turning points encountered at finite times by the
interpolating particle trajectories, (21). The effect is easily seen upon viewing animations
of these trajectories [11].

Consider a particle with zero total energy that starts in the V (x, s = 4) potential given
above, in the region 0 < x < 1. If the particle is initially moving to the left, it will continue
towards x = 0, taking an infinite amount of time to reach that turning point. But if the
particle is initially moving to the right, it will reach the x = 1 turning point in a finite
amount of time that depends on its initial x, as given by

∆t0 (x) =
1

ln 4

∫ 1

x

dy
√

y (1− y)
(

arcsin
√
y
) =

1

ln 2
ln

(

π/2

arcsin
√
x

)

. (31)

Upon reaching x = 1, the explicit form of the time-dependent solution (21) exhibits the
classical counterpart of a sudden transition that keeps E = 0, but changes the potential for
the return trip towards x = 0, exactly as follows from the particle moving on a different
branch of the arcsin function. Explicitly, the potential deepens to

V (x, s = 4) =⇒ V1 (x) = (ln 4)2 x (x− 1)
(

−π + arcsin
√
x
)2

, (32)

with the particle’s speed changing accordingly as a function of x. The return velocity profile
is now negative, and given by

v1 (x) = (ln 4)
√

x (1− x)
(

−π + arcsin
√
x
)

. (33)

The arcsin in this last expression, as well as in V1, is understood to be the principal value.
Moving in this modified negative potential, it now takes the zero-energy particle a finite

amount of time to travel from x = 1 down to x = 0, as given by ∆t1 = 1. Upon reaching
x = 0, the exact solution (21) exhibits another sudden transition that keeps E = 0, but
again alters the potential for the return trip towards x = 1. The potential becomes

V1 (x) =⇒ V2 (x) = (ln 4)2 x (x− 1)
(

π + arcsin
√
x
)2

, (34)

with corresponding changes in the velocity profile. Again, a finite amount of time is needed
for the particle to go from x = 0 to x = 1 in the potential V2, as given by ∆t2 = ln

(

3
2

)

/ ln 2.
Upon reaching x = 1 the switchback process continues. The total energy remains at zero,
but the potential for the second return trip deepens again,

V2 (x) =⇒ V3 (x) = (ln 4)2 x (x− 1)
(

−2π + arcsin
√
x
)2

, (35)
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etc. In order for the particle to follow the interpolating trajectory (21) specified by the
Schröder equation for the s = 4 case, it has to move under the influence of successively
deepening potentials.

At later times, the effective potential seen by the particle on its zigzag path between the
turning points will depend on the total number of previous encounters with those turning
points. In this sense, the particle remembers its past. Let P be the total number of turning
points previously encountered on the particle’s trajectory. The motion of the particle before
encountering the next, (P + 1)st, turning point is then completely determined, for s = 4,
by the effective potential (again, arcsin here is understood to be the principal value)

VP (x) = (ln 4)2 x (x− 1)

(

(−)P
⌊

1 + P

2

⌋

π + arcsin
√
x

)2

, (36)

where ⌊· · · ⌋ is again the floor function [12]. That is to say, the potential deepens as P
increases. The corresponding velocity profile speeds up:

vP (x) = (ln 4)
√

x (1− x)

(

(−)P
⌊

1 + P

2

⌋

π + arcsin
√
x

)

. (37)

The particle will either be traveling to the left, with vP (x) < 0 for odd P , or traveling to
the right, with vP (x) > 0 for even P , with its speed increasing with P . As mentioned
previously, this effect is clearly evident upon viewing numerical animations of the s = 4
trajectories [11].

Alternatively, the motion may be visualized as a trajectory on the sheets of a Riemann
surface. Consider the particle moving on the complex x plane, and not just the real line
segment [0, 1], the endpoints of which are now branchpoints. There are cuts from +1 to
+∞ and from 0 to −∞. The particle first moves along the real axis, approaches the cut at
+1, and then goes around the branchpoint such that

√
x → √

x,
√
1− x → −

√
1− x, and

arcsin → π− arcsin. The particle returns along the real axis to the origin and encircles the
branchpoint at 0, such that

√
x → −√

x,
√
1− x →

√
1− x, and arcsin

√
x → − arcsin

√
x.

The particle then goes back to +1 and goes around it once more such that again
√
x → √

x,√
1− x → −

√
1− x, and arcsin → π−arcsin. The trajectory continues in this way, flipping

signs and adding πs according to the formulae (36) and (37).
The time for the zero-energy particle to traverse the complete unit interval in x while

moving through the VP potential is always finite, for P 6= 0:

∆tP =

∣

∣

∣

∣

∫ 1

0

dx

vP (x)

∣

∣

∣

∣

=
1

ln 2

∣

∣

∣

∣

∣

ln

(

1 +
1

2 (−)P
⌊

1+P
2

⌋

)
∣

∣

∣

∣

∣

=
1

ln 2
ln

(

P + 1

P

)

. (38)

This transit time decreases monotonically as P increases, with ∆tP ∼
P→∞

1
P ln 2

. Starting

from an initial x, with initial v > 0, the times at which changes in the potential occur, i.e.
the times at which the particle encounters turning points, are obtained by summing these
transit times and then adding ∆t0 (x). The transit time sums are simple enough [13]:

P−1
∑

N=1

∆tN =
lnP

ln 2
. (39)

Thus, a particle beginning at x, with initial v > 0, will encounter its P th turning point,
and the potential VP will switch on, at time tP on (x) = ∆t0 (x) +

lnP
ln 2

. The potential VP
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will remain in effect for a time span equal to the particle’s transit time, ∆tP = tP+1 on (x)−
tP on (x), i.e. until the next potential VP+1 switches on. It is instructive to plot E (t) =
v2 (x (t)) + VP (x (t)) versus t for various P , with t ≥ tP on, to check E = 0, as well as to see
how the energy would not be conserved if the potentials were not switched.

0 1 2 3
0

10

20

t

E(t)

E (t) for initial x = 1/2, using potentials VP , with P = 0, 1, 2, 3, & 4.

For particles with initial v > 0, a third way to picture the dynamics is in terms of the
total distance traveled by the particle. In this point of view, the successive VP patch
together to form a continuous potential V (X) on the real half-line, X ≥ 0, as shown in
the cover graphic (V (X) is the orange curve). Indeed, the half-line may be thought of as
a covering manifold of the unit interval in x, with the previous multi-valued functions of
x now single-valued functions of X . To avoid any hang-ups at the cusps of V (X), either
physical or conceptual, in this picture the E = 0 right-moving trajectories X (t) may be
considered as limits of positive energy right-movers, X (t) = limE↓0XE (t). This limiting
process corresponds to the encirclement of the branch points in the Riemann surface picture.

Finally, in terms of the coordinate transformation introduced in [2], namely, the angle

θ = arcsin
√
x , (40)

the motion is completely unraveled, at least for s = 4. In that case E = 0 implies
(

dθ(t)
dt

)2

− (ln 2)2 θ2 (t) = 0, and the trajectory for all t is just that of a particle moving

in a repulsive quadratic potential (inverted SHO). This is the easiest example solvable in
closed-form by the Schröder method [1]. The exponentially growing solution, θ (t) = 2tθ (0),
whose values in the real-line cover of the circle are all physically distinct, immediately leads
to x (t) for the particle moving through the various VP (x), as is evident from (21).

4. CONCLUSION

Any first order differential equation df (t) /dt = F (f (t)) can be approximated by a
finite difference equation fn+1 = fn + ∆t F (fn) where the time-step index n supplants
the continuous variable t. In the usual sense, this difference equation is equivalent to the
original differential equation only as the time step vanishes, ∆t → 0.

However, in many situations as described and illustrated in [1] and in this paper, for
any fixed time step there may also exist a second, interpolating differential equation whose
continuous time solutions fill in the “bulk” region between the “boundary data” fn+1 and
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fn, for any n. This second differential equation is found by Schröder’s functional method,
thereby interpreted as a holographic technique; but the interpolating equation is then seen to
follow from a Hamiltonian system sub rosa whose solution set, for selected energy, provides
all solutions to the finite difference equation without approximation.

For nontrivial systems such as the chaotic (s = 4) logistic map illustrated here, in order
to produce the global features of the trajectories the potential of the underlying Hamiltonian
system must change at each switchback of the motion, as occurs when turning points are
reached in finite time. The trajectories dictate and completely determine the succession of
switchback potentials, in a richly extended analogy of inverse scattering techniques.

For values of s between 2 and 4, a preliminary analysis using the techniques of this
paper leads to Hamiltonian systems involving switchbacks among sequences of potentials,
producing trajectories that eventually move between finite sets of turning points, in cycles.
However, much more work is needed to completely understand these intermediate cases.
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