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Abstract

Differential-difference equation d
dx
t(n + 1, x) = f(x, t(n, x), t(n + 1, x), d

dx
t(n, x)) with un-

known t(n, x) depending on continuous and discrete variables x and n is studied. We call an

equation of such kind Darboux integrable, if there exist two functions F and I of a finite num-

ber of arguments n, x, {t(n + k, x)}∞k=−∞,
{

dk

dxk t(n, x)
}∞

k=1
, such that DxF = 0 and DI = I,

where Dx is the operator of total differentiation with respect to x, and D is the shift oper-

ator: Dp(n) = p(n + 1). It is proved that the chain is Darboux integrable if and only if its

characteristic Lie algebras in both directions are of finite dimension. Structure of the integrals

is described. Numerous examples of Darboux integrable chains are given together with their

integrals and characteristic Lie algebras.

Keywords: semi-discrete chain, classification, x-integral, n-integral, characteristic Lie algebra,

integrability conditions.

1 Introduction

In this paper we study Darboux integrable semi-discrete chains of the form

d

dx
t(n + 1, x) = f(x, t(n, x), t(n+ 1, x),

d

dx
t(n, x)) . (1)

1e-mail: habibullinismagil@gmail.com
2e-mail: natalya@fen.bilkent.edu.tr
3e-mail: alfiya85.85@mail.ru
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Here uknown functions t = t(n, x) and t1 = t(n + 1, x) depend on discrete and continuous variables

n and x respectively; function f = f(x, t, t1, tx) is assumed to be locally analytic, and ∂f

∂tx
is not

identically zero. The last two decades the discrete pfenomena have become very popular due to

various important applications (for more details see [1]-[3] and references therein). The article deals

with a class of the chains (1) admitting in a sense a closed formula for the general solution.

Below we use a subindex to indicate the shift of the discrete argument: tk = t(n+k, x), k ∈ Z, and

derivatives with respect to x: t[1] = tx =
d

dx
t(n, x), t[2] = txx =

d2

dx2
t(n, x), t[m] =

dm

dxm t(n, x), m ∈ N.

Introduce the set of dynamical variables containing {tk}∞k=−∞; {t[m]}∞m=1. We denote through D and

Dx the shift operator and the operator of the total derivative with respect to x correspondingly. For

instance, Dh(n, x) = h(n + 1, x) and Dxh(n, x) =
d
dx
h(n, x).

Functions I and F , both depending on x, n, and a finite number of dynamical variables, are called

respectively n- and x-integrals of (1), if DI = I and DxF = 0 (see also [4]). Clearly, any function

depending on n only, is an x-integral, and any function, depending on x only, is an n-integral. Such

integrals are called trivial integrals. One can see that any n-integral I does not depend on variables

tm, m ∈ Z\{0}, and any x-integral F does not depend on variables t[m], m ∈ N.

Chain (1) is called Darboux integrable if it admits a nontrivial n-integral and a nontrivial x-

integral.

One Darboux integrable chain is t1x = t1tx/t with F = ln(t1/t) and I = tx/t as some of many

nontrivail x- and n-integrals.

The basic ideas on integration of partial differential equations of the hyperbolic type go back

to classical works by Laplace, Darboux, Goursat, Vessio, Monge, Ampere, Legendre, Egorov, etc.

Notice that understanding of integration as finding an explicit formula for a general solution was

later replaced by other, in a sense less obligatory, definitions. For instance, the Darboux method

for integration of hyperbolic type equations consists of searching for integrals in both directions

followed by the reduction of the equation to two ordinary differential equations. In order to find

integrals, provided that they exist, Darboux used the Laplace cascade method. An alternative, more

algebraic approach based on the characteristic vector fields was used by Goursat and Vessio. Namely

this method allowed Goursat to get a list of integrable equations [5]. An important contribution to

the development of the algebraic method investigating Darboux integrable equations was made by

A.B.Shabat who introduced the notion of the characteristic Lie algebra of the hyperbolic equation

ux,y = f(x, y, u, ux, uy) . (2)

It turned out that the operator of total differentiation, with respect to the variable y, defines a
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derivative in the characteristic Lie algebra in the direction of x. Moreover, the operator adDy
defined

according to the rule adDy
X = [Dy, X ] acts on the generators of the algebra in a very simple way.

This makes it possible to obtain effective integrability conditions for the equation (2).

A.V. Zhiber and F.Kh. Mukminov investigated the structures of the characteristic Lie algebras

for the so-called quadratic systems containing the Liouville equation and the sine-Gordon equation

(see [6]). In [6] and [7] the very nontrivial connection between characteristic Lie algebras and Lax

pairs of the hyperbolic S-integrable equations and systems of equations is studied, and perspectives

on the application of the characteristic algebras to classify such kinds of equations are discussed.

Recently the concept of the characteristic Lie algebras has been defined for discrete models. In

our articles [8]-[9] an effective algorithm was worked out to classify Darboux integrable models. By

using this algorithm some new classification results were obtained. It is remarkable that in the

discrete case an automorphism generated by the shift operator plays an important role.

Due to the requirement of ∂
∂tx

f(x, t, t1, tx) 6= 0, we can rewrite (at least locally) chain (1) in the

inverse form tx(n − 1, x) = g(x, t(n, x), t(n − 1, x), tx(n, x)). Since x-integral F does not depend on

variables t[k], k ∈ N, then the equation DxF = 0 becomes KF = 0, where

K =
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t1
+ g

∂

∂t−1
+ f1

∂

∂t2
+ g−1

∂

∂t−2
+ . . . . (3)

Also, XF = 0, with X = ∂
∂tx

. Therefore, any vector field from Lie algebra generated by K and X

annulates F . This algebra is called the characteristic Lie algebra Lx of chain (1) in the x-direction.

Stress that Lx is the Lie algebra over the field of the locally analitic functions, depending on x

and a finite number of dynamical variables, but not over the field of numbers. The relation between

Darboux integrability of chain (1) and its Lie algebra Lx is given by the following important criterion.

Theorem 1.1 Chain (1) admits a nontrivial x-integral if and only if its Lie algebra Lx is of finite

dimension.

The equation DI = I, defining an n-integral I, in an enlarged form becomes

I(x, n+ 1, t1, f, fx, ...) = I(x, n, t, tx, txx, ...). (4)

The left hand side contains the variable t1 while the right hand side does not. Hence we have

D−1 d
dt1

DI = 0, i.e. the n-integral is in the kernel of the operator

Y1 = D−1Y0D,
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where

Y1 =
∂

∂t
+D−1(Y0f)

∂

∂tx
+D−1Y0(fx)

∂

∂txx
+D−1Y0(fxx)

∂

∂txxx
+ ..., (5)

and

Y0 =
d

dt1
. (6)

One can show that D−jY0D
jI = 0 for any natural j. Direct calculations show that

D−jY0D
j = Xj−1 + Yj, j ≥ 2,

where

Yj+1 = D−1(Yjf)
∂

∂tx
+D−1Yj(fx)

∂

∂txx
+D−1Yj(fxx)

∂

∂txxx
+ ..., j ≥ 1 , (7)

Xj =
∂

∂t−j

, j ≥ 1. (8)

Define by N∗ the dimension of the linear space spanned by the opreators {Yj}∞1 . The Lie algebra

over the field of the locally analitic functions generated by the opreators {Yj}N
∗

1 ∪ {Xj}N
∗

1 is called

the characteristic algebra Ln of chain (1) in n-direction.

Theorem 1.2 Equation (1) admits a nontrivial n-integral if and only if its Lie algebra Ln is of finite

dimension.

The article is organized as follows. In section 2 we give the complete description or all n-integrals

and x-integrals of the Darboux integrable chains. Then we show that one can choose the minimal

order n-integral and the minimal order x-integral of a special canonical form, convenient for the

purpose of classification. In section 3 the Darboux integrebility property of the chain is reformulated

in an algebraic form in terms of the characteristic Lie algebras. Particularly, we prove that the chain is

Darboux integrable if and only if its both characteristic Lie algebras Lx and Ln are of finite dimension.

Theorems in sections 2 and 3 are considered as a basis for further investigations of the classification

problem for the chain (1) by using characterictic Lie algebras. Section 4 studies examples of Darboux

integrable chains. For each such a chain of the form t1x = tx + d(t, t1) the coresponding algebras

Ln and Lx are given. Remind that for the exponential type Darboux integrable systems of partial

diffirential equations the characteristic Lie algebras are semi-simple [10]. Our examples show, that

for the general situation it is not the case.
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2 On the structure of nontrivial x- and n- integrals

We define the order of a nontrivial n-integral I = I(x, n, t, tx, . . . , t[k]) with
∂I
∂t[k]

6= 0, as the number

k.

Lemma 2.1 Assume equation (1) admits a nontrivial n-integral. Then for any nontrivial n-integral

I∗(x, n, t, tx, . . . , t[k]) of the smallest order and any n-integral I we have

I = φ(x, I∗, DxI
∗, D2

xI
∗, . . .), (9)

where φ is some function.

Proof: Denote by I∗ = I∗(x, n, t, . . . , t[k]) an n-integral of the smallest order. Let I be any other

n-integral, I = I(x, n, t, . . . , t[r]). Clearly r ≥ k. Let us introduce new variables x, n, t, tx, . . .,

t[k−1], I
∗, DxI

∗, . . ., Dr−k
x I∗ instead of the variables x, n, t, tx, . . ., t[k−1], t[k], t[k+1], . . ., t[r]. Now,

I = I(x, n, t, tx, . . . , t[k−1], I
∗, DxI

∗, . . . , Dr−k
x I∗). We write the power series for function I in the

neighbourhood of the point ((I∗)0, (DxI
∗)0, . . . , (D

r−k
x I∗)0):

I =
∑

i0,i1,...,ir−k

Ei0,i1,...,ir−k
(I∗ − (I∗)0)

i0(DxI
∗ − (DxI

∗)0)
i1 . . . (Dr−k

x I∗ − (Dr−k
x I∗)0)

ir−k . (10)

Then

DI =
∑

i0,i1,...,ir−k

DEi0,i1,...,ir−k
(DI∗ − (I∗)0)

i0(DDxI
∗ − (DxI

∗)0)
i1 . . . (DDr−k

x I∗ − (Dr−k
x I∗)0)

ir−k .

Since DI = I, DDj
xI

∗ = Dj
xDI∗ = Dj

xI
∗ and the power series representation for function I is unique,

then DEi0,i1,...,ir−k
= Ei0,i1,...,ir−k

, i.e. Ei0,i1,...,ir−k
(x, n, t, . . . , t[k−1]) are all n-integrals. Due to the fact

that minimal n-integral depends on x, n, t, . . ., t[k], we conclude that all Ei0,i1,...,ir−k
(x, n, t, . . . , t[k−1])

are trivial n-integrals, i.e. functions depending only on x. Now equation (9) follows immeadiately

from (10).

We define the order of a nontrivial x-integral F = F (x, n, tk, tk+1, ...tm) with ∂F
∂t[m]

6= 0, as the

number m− k.

Lemma 2.2 Assume equation (1) admits a nontrivial x-integral. Then for any nontrivial x-integral

F ∗(x, n, t, t1, . . . , tm) of the smallest order and any x-integral F we have

F = ξ(n, F ∗, DF ∗, D2F ∗, . . .), (11)

where ξ is some function.

5



Proof: Denote by F ∗ = F ∗(x, n, t, t1, . . . , tm) an x-integral of the smallest order. Let F be any other

x-integral, F = F (x, n, t, t1, . . . , tl). Clearly, l ≥ m. Let us introduce new variables x, n, t, t1,

. . ., tm−1, F
∗, DF ∗, . . ., Dl−mF ∗ instead of variables x, n, t, t1, . . .,tm−1, tm, . . ., tl. Now, F =

F (x, n, t, t1, . . . , tm−1, F
∗, DF ∗, . . . , Dl−mF ∗). We write the power series representation of function F

in the neighbourhood of point ((F ∗)0, (DF ∗)0, . . . , (D
l−mF ∗)0):

F =
∑

i0,i1,...,il−m

Ki0,i1,...,il−m
(F ∗ − (F ∗)0)

i0(DF ∗ − (DF ∗)0)
i1 . . . (Dl−mF ∗ − (Dl−mF ∗)0)

il−m . (12)

Then

DxF =
∑

i0,i1,...,il−m

Dx{Ki0,i1,...,il−m
}(F ∗ − (F ∗)0)

i0(DF ∗ − (DF ∗)0)
i1 . . . (Dl−mF ∗ − (Dl−mF ∗)0)

il−m

+
∑

i0,i1,...,il−m

Ki0,i1,...,il−m
Dx{(F ∗ − (F ∗)0)

i0(DF ∗ − (DF ∗)0)
i1 . . . (Dl−mF ∗ − (Dl−mF ∗)0)

il−m}

SinceDxD
jF ∗ = DjDxF

∗ = 0, thenDx{(F ∗−(F ∗)0)
i0(DF ∗−(DF ∗)0)

i1 . . . (Dl−mF ∗−(Dl−mF ∗)0)
il−m} =

0. Therefore,

0 = DxF =
∑

i0,i1,...,il−m

Dx{Ki0,i1,...,il−m
}(F ∗−(F ∗)0)

i0(DF ∗−(DF ∗)0)
i1 . . . (Dl−mF ∗−(Dl−mF ∗)0)

il−m .

Due to the unique representation of the zero power series we have that Dx{Ki0,i1,...,il−m
} = 0, i.e. all

Ki0,i1,...,il−m
(x, n, t, . . . , tm−1) are x-integrals. Since the minimal nontrivial x-integral is of order m,

then all Ki0,i1,...,il−m
are trivial x-integrals, i.e. functions depending on n only. Now the equation (11)

follows from (12).

The next two lemmas are just discrete versions of Lemma 1.2 from [11].

Lemma 2.3 Among all nontrivial n-integrals I∗(x, n, t, tx, . . . , t[k]) of the smallest order, with k ≥ 2,

there is an n-integral I0(x, n, t, tx, . . . , t[k]) such that

I0(x, n, t, tx, . . . , t[k]) = a(x, n, t, tx, . . . , t[k−1])t[k] + b(x, n, t, tx, . . . , t[k−1]) . (13)

Proof: Consider nontrivial minimal n-integral I∗(x, n, t, tx, . . . , t[k]) with k ≥ 2. Equality DI∗ = I∗

can be rewritten as

I∗(x, n+ 1, t1, f, fx, . . . , f[k−1]) = I∗(x, n, t, tx, . . . , t[k]).

We differentiate both sides of the last equality wit respect to t[k]:

∂I∗(x, n + 1, t1, f, . . . , f[k−1])

∂f[k−1]
· ∂f[k−1]

∂t[k]
=

∂I∗(x, n, t, . . . , t[k])

∂t[k]
. (14)
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In virtue of
∂f[j]

∂t[j+1]
= ftx , the equation (14) can be rewritten as

∂I∗(x, n + 1, t1, f, . . . , f[k−1])

∂f[k−1]

ftx =
∂I∗(x, n, t, . . . , t[k])

∂t[k]
. (15)

Let us differentiate once more with respect to t[k] both sides of the last equation, we have:

∂2I∗(x, n + 1, t1, f, . . . , f[k−1])

∂2f[k−1]
f 2
tx
=

∂2I∗(x, n, t, . . . , t[k])

∂t2[k]
,

or the same,

D







∂2I∗

∂t2[k]







f 2
tx
=

∂2I∗

∂t2[k]
,

where I∗ = I∗(x, n, t, . . . , t[k]). It follows from (15) that

D







∂2I∗

∂t2[k]







{

∂I∗

∂t[k]

}2

=
∂2I∗

∂t2[k]
D







(

∂I∗

∂t[k]

)2






,

or the same, function

J :=

∂2I∗

∂t2
[k]

(

∂I∗

∂t[k]

)2

is an n-integral, and by Lemma 2.1, we have that J = φ(x, I∗). Therefore,

∂2I∗

∂t2[k]
=

∂H(x, I∗)

∂I∗

(

∂I∗

∂t[k]

)2

, where
∂H

∂I∗
= J,

or
∂

∂t[k]

{

ln
∂I∗

∂t[k]
−H(x, I∗)

}

= 0.

Hence, e−H(x,I∗) ∂I∗

∂t[k]
= eg for some function g(x, n, t, tx, . . . , t[k−1]). Introduce W in such a way that

∂W
∂I∗

= e−H(x,I∗). Then ∂W
∂t[k]

= eg and W = eg(x,n,t,...,t[k−1])t[k] + l(x, n, t, . . . , t[k−1]) is an n-integral,

where l(x, n, t, . . . , t[k−1]) is some function.

Lemma 2.4 Among all nontrivial x-integrals F ∗(x, n, t−1, t, t1, . . . , tm) of the smallest order, with

m ≥ 1, there is x-integral F 0(x, n, t−1, t, t1, . . . , tm) such that

F 0(x, n, t−1, t, t1, . . . , tm) = A(x, n, t−1, t, . . . , tm−1) +B(x, n, t, t1, . . . , tm). (16)

Proof: Consider nontrivial x-integral F ∗(x, n, t−1, t, t1, . . . , tm) of minimal order. Since DxF
∗ = 0,

then
∂F ∗

∂x
+ g

∂F ∗

∂t−1
+ tx

∂F ∗

∂t
+ f

∂F ∗

∂t1
+Df

∂F ∗

∂t2
+ . . .+Dm−1f

∂F ∗

∂tm
= 0. (17)

7



We differentiate both sides of (17) with respect to tm and with respect to t−1 separately and have

the following two equations:

{Dx +
∂

∂tm
(Dm−1f)}∂F

∗

∂tm
= 0, (18)

{Dx +
∂g

∂t−1
} ∂F

∗

∂t−1
= 0. (19)

Let us differentiate (18) with respect to t−1, we have,

Dx

∂2F ∗

∂tm∂t−1
+

∂g

∂t−1

∂2F ∗

∂tm∂t−1
+

∂

∂tm
(Dm−1f)

∂2F ∗

∂tm∂t−1
= 0 . (20)

It follows from (18) and (19) that ∂
∂tm

(Dm−1f) = −DxF
∗

tm

F ∗

tm

, ∂g

∂t−1
= −DxF

∗

t
−1

F ∗

t
−1

. Equation (20) becomes

Dx

{

ln
F ∗
tmt−1

F ∗
tmF

∗
t−1

}

= 0.

By Lemma 2.2 we have,
F ∗

tmt
−1

F ∗

tm
F ∗

t
−1

= ξ(n, F ∗), or

F ∗
tmt−1

F ∗
tm

= F ∗
t−1

ξ(n, F ∗) = H ′(F ∗)F ∗
t−1

=
∂

∂t−1
H(F ∗), where ξ(n, F ∗) = H ′(n, F ∗) .

Thus, ∂
∂t−1

{lnF ∗
tm

−H(n, F ∗)} = 0, or e−H(n,F ∗)F ∗
tm

= C(x, n, t, t1, . . . , tm) for some function

C(x, n, t, t1, . . . , tm). Denote by H̃∗(n, F ) such a function that H̃ ′(n, F ∗) = e−H(n,F ∗). Then ∂H̃(n,F ∗)
∂tm

=

C(x, n, t, t1, . . . , tm). Hence, H̃(n, F ∗) = B(x, n, t, t1, . . . , tm)+A(x, n, t−1, t, . . . , tm−1). SinceDxH̃(F ∗) =

H̃ ′(n, F ∗)Dx(F
∗) = 0, then H̃(n, F ∗) is an x-integral in the desired form (16).

Corollary 2.5 Among all nontrivial x-integrals F (x, n, t, . . . , tm) of the smallest order with m ≥ 2,

there is x-integral F 0(x, n, t, . . . , tm) such that

F 0(x, n, t, . . . , tm) = A(x, n, t, . . . , tm−1) +B(x, n, t1, . . . , tm) .

3 Algebraic criterion of Darboux integrability

In this section we give complete proof of the Theorems 1.1 and 1.2.

Let us prove Theorem 1.1. Assume equation (1) admits a nontrivial x-integral. Take one such

integral F = F (x, n, t, t1, . . . , tm) with
∂F
∂tm

6= 0 identically. Introduce

L(m)
x = {T (m) = Pm(T ) : T ∈ Lx},

where Pm is the projection operator defined as follows

Pi

(

a
∂

∂x
+ b

∂

∂t
+

∞
∑

k=1

ak
∂

∂tk

)

= a
∂

∂x
+ b

∂

∂t
+

i
∑

k=1

ak
∂

∂tk
, i = 1, 2, 3, . . . . (21)
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Denote by N1 the dimension of L(m)
x . Clearly, N1 ≤ m + 2. Let the set {T01, T02, . . . , T0N1} form a

basis in L(m)
x . For any j = 1, 2, . . . , N1, denote by Tj =

∞
∑

k=1
αk(Tj)

∂
∂tk

a vector field from Lx such that

Pm(Tj) = T0j . Let us show that the set {T1, T2, . . . , TN1} forms a basis in Lx. Take arbitrary vector

field T = a(T ) ∂
∂x

+ b(T ) ∂
∂t

+
∑∞

j=1 aj(T )
∂
∂tj

from Lx. Since Pm(T ) ∈ L(m)
x , then Pm(T ) =

N1
∑

j=1
βjT0j .

Let us show that T =
N1
∑

j=1
βjTj , or the same, Z ≡ 0, where Z = T −

N1
∑

j=1
βjTj . We have, Pm(Z) ≡ 0.

Since F is an x-integral depending on x, n, t, t1, . . ., tm , then DF is an x-integral depending on

variables x, n + 1, t1, t2, . . ., tm, tm+1. Therefore,

0 = Z(DF ) = Pm(Z)DF +



αm+1(T )−
N1
∑

j=1

βjαm+1(Tj)





∂

∂tm+1
DF =



αm+1(T )−
N1
∑

j=1

βjαm+1(Tj)





∂

∂tm+1
DF.

Since ∂
∂tm+1

DF = D ∂
∂tm

F 6= 0, then αm+1(T ) =
N1
∑

j=1
βjαm+1(Tj), that is Pm+1(Z) ≡ 0. Applying

successively the operator Z to x-integrals D2F , D3F , . . ., one can see that αm+i(T ) =
N1
∑

j=1
βjαm+i(Tj)

for any i = 1, 2, 3, . . ., that is Pm+i(Z) ≡ 0 for any natural number i. Therefore, Z ≡ 0. Hence, any

vector field T from Lx can be represented as a linear combination of T1, T2, . . ., TN1 . Thus, Lx is of

finite dimension.

Assume that the dimension of the characteristic algebra Lie Lx is finite, denote it by N . Let

T1, T2, . . ., TN form a basis in Lx. Denote by T0j = PN(Tj), j = 1, 2, . . . , N . Then we have N

equations T0jF = 0 for a function F depending on N + 4 variables: x, n, tx, t, t1, . . ., tN . By

Jacobi Theorem, such nonconstant function F = F (x, n, tx, t, t1, . . . , tN) exists. Moreover, it does

not depend on variable tx and satisfies the equation TF = 0 for any T ∈ Lx. This function F is a

nontrivial x-integral of equation (24). This completes the proof of Theorem 1.1.

Let us prove Theorem 1.1. Assume equation (1) admits a nontrivial n-integral. Take one such

integral I = I(x, n, t, tx, t[2], . . . , t[m]) with
∂I

∂t[m]
6= 0 identically. Introduce Lie algebra M generated

by vector fields {Yj}∞1 ∪ {Xj}N2
1 , where number N2 will be specified later. Define

M (m) = {T (m) = P ∗
m(T ) : T ∈ M},

where P ∗
m is the projection operator defined as follows

P ∗
i





−1
∑

k=−N2

ak
∂

∂tk
+

∞
∑

k=0

ak
∂

∂t[k]



 =
−1
∑

k=−N2

ak
∂

∂tk
+

i
∑

k=0

ak
∂

∂t[k]
, i = 1, 2, 3, . . . . (22)
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Denote by N1 the dimension of M (m). Clearly, N1 ≤ m + N2 + 1. Let the set {T01, T02, . . . , T0N1}
form a basis in M (m). Denote by Tj =

−1
∑

k=−N2

αk(Tj)
∂
∂tk

+
∞
∑

k=0
αk(Tj)

∂
∂t[k]

a vector field from M such

that P ∗
m(Tj) = T0j , j = 1, 2, . . . , N1. Let us show that the set {T1, T2, . . . , TN1} forms a basis in M .

Take arbitrary vector field T =
∑−1

j=−N2
aj(T )

∂
∂tj

+
∑∞

j=0 aj(T )
∂

∂t[j]
from M . Since P ∗

m(T ) ∈ M (m),

then P ∗
m(T ) =

N1
∑

j=1
βjT0j . Let us show that T =

N1
∑

j=1
βjTj, or the same, Z ≡ 0, where Z = T −

N1
∑

j=1
βjTj .

We have, P ∗
m(Z) ≡ 0. Since I is an n-integral depending on x, n, t, tx, t[2], . . ., t[m] , then DxI is an

n-integral depending on variables x, n, t, tx, t[2], . . ., t[m], t[m+1]. Therefore,

0 = Z(DxI) = P ∗
m(Z)DxI +



αm+1(T )−
N1
∑

j=1

βjαm+1(Tj)





∂

∂t[m+1]

DxI =



αm+1(T )−
N1
∑

j=1

βjαm+1(Tj)





∂

∂t[m+1]

DxI.

Since ∂
∂t[m+1]

DxI = ∂
∂t[m]

I 6= 0, then αm+1(T ) =
N1
∑

j=1
βjαm+1(Tj), that is P ∗

m+1(Z) ≡ 0. Applying

successively the operator Z to n-integrals D2
xI, D

3
xI, . . ., one can see that αm+i(T ) =

N1
∑

j=1
βjαm+i(Tj)

for any i = 1, 2, 3, . . ., that is P ∗
m+i(Z) ≡ 0 for any natural number i. Therefore, Z ≡ 0. Thus,

Lie algebra M is of finite dimension. Then linear envelope of the vector fields {Yj}∞1 is of finite

dimension, say N. Let N2 be any number satisfying N2 ≥ N . We have, algebra Ln generated by

{Yj}N1 ∪ {Xj}N1 is a subalgebra of M , and therefore Ln of finite dimension.

Assume that the dimension of the characteristic algebra Lie Ln is finite, denote it by N1. Let N

be the dimension of linear envelope of the vector fields {Yj}∞1 . Set N2 = N1 −N . Introduce

L(N2)
x = {T (m) = P

(N)
N2

(T ) : T ∈ Lx},

where

P
(N)
N2





−1
∑

k=−N

ak
∂

∂tk
+

∞
∑

k=0

ak
∂

∂t[k]



 =
−1
∑

k=−N

ak
∂

∂tk
+

N2
∑

k=0

ak
∂

∂t[k]
. (23)

Let {T0j}N1
j=1 form a basis in L(N2)

x . Then we have N1 equations T0jG = 0 for a function G depending

on N1 + 3 variables: x, n, t, tx, . . ., t[N2], t−1, . . ., t−N . By Jacobi Theorem, such nonconstant

function G exists. Moreover, it does not depend on variables t−j , j = 1, 2, . . .N , and satisfies the

equation TG = 0 for any T ∈ Ln. Such function G = G(x, n, t, tx, . . . , t[N2]) is not unique, but any

other solution of these equations, depending on the same set of the variables, can be represented as

h(x,G) for some function h.

Since D−1YjD = Yj+1, j = 0, 2, 3, . . ., D−1Y1D = Y2 +X1, D
−1XjD = Xj+1, then for any vector

field Z from Ln, we have D
−1ZD = Z∗+λXN+1 for some vector field Z∗ from Ln and some function
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λ. So,

ZDG = D(D−1ZDG) = D(Z∗ + λXN+1)G = 0

for any Z ∈ Ln. Therefore, DG is also a solution of the aforementioned system of partial differential

equations. That is why DG = h(x,G).

By solving ordinary difference equation DG = h(x,G) of the first order we have G = H(x, n, c),

where c is an arbitrary constant. By solving the equation G = H(x, n, c) with respect to c one

gets c = I(G, x, n). This function I(G, x, n) is a nontrivial n-integral of equation (24). Indeed,

DI(G, x, n) = Dc = c = I(G, x, n). So DI=I. This completes the proof of Theorem 1.2.

4 Particular case: t1x = tx + d(t, t1)

Finiteness of Lie algebras Lx and Ln was used in [8] and [9] to classify Darboux integrable semi-

discrete chains of special form

t1x = tx + d(t, t1) . (24)

The statement of this classification result is given by the next theorem from [9].

Theorem 4.1 Chain (24) admits nontrivial x- and n-integrals if and only if d(t, t1) is one of the

kind:

(1) d(t, t1) = A(t1− t), where A(t1− t) is given in implicit form A(t1− t) = d
dθ
P (θ), t1− t = P (θ),

with P (θ) being an arbitrary quasipolynomial, i.e. a function satisfying an ordinary differential

equation

P (N+1) = µNP
(N) + . . .+ µ1P

′ + µ0P (25)

with constant coefficients µk, 0 ≤ k ≤ N ,

(2) d(t, t1) = C1(t
2
1 − t2) + C2(t1 − t),

(3) d(t, t1) =
√

C3e2αt1 + C4eα(t1+t) + C3e2αt,

(4) d(t, t1) = C5(e
αt1 − eαt) + C6(e

−αt1 − e−αt),

where α 6= 0, Ci, 1 ≤ i ≤ 6, are arbitrary constants. Moreover, some nontrivial x-integrals F and

n-integrals I in each of the cases are

i) F = x − ∫ t1−t ds
A(s)

, I = L(Dx)tx, where L(Dx) is a differential operator which annihilates

d
dθ
P (θ) where Dxθ = 1.

11



ii) F = (t3−t1)(t2−t)
(t3−t2)(t1−t)

, I = tx − C1t
2 − C2t,

iii) F =
∫ t1−t e−αsds√

C3e2αs+C4eαs+C3

− ∫ t2−t1 ds√
C3e2αs+C4eαs+C3

, I = 2txx − αt2x − αC3e
2αt,

iv) F = (eαt−eαt2)(eαt1−eαt3 )
(eαt−eαt3)(eαt1−eαt2 )

, I = tx − C5e
αt − C6e

−αt.

Equation of the form τx = A(τ), where τ = t1 − t, is integrated in quadratures. But to get the final

answer one should evaluate the integral and then find the inverse function. The general solution is

given in an explicit form

t(n, x) = t(0, x) +
n−1
∑

j=0

P (x+ cj), (26)

where t(0, x) and cj are arbitrary functions of x and j respectively, and A(τ) = P ′(θ), t1 − t = P (θ).

Actually we have τx = Pθ(θ)θx = Pθ(θ), which implies θx = 1, so that τ(n, x) = P (x + cn). By

solving the equation t(n + 1, x) − t(n, x) = P (x + cn) one gets the answer above. Requirement for

τx = A(τ) to be Darboux integrable induces condition on function P to satisfy a linear ordinary

differential equation with constant coefficients.

The classication Theorem 4.1 contains all Darboux integrable equations of special form (24)

together with the corresponding nontrivial x- and n- integrals. However, the characteristic algebras

Lx and Ln for Darboux integrable equations (24) were not specified in [9]. In the next two subsections

we present characteristic Lie algebras Lx and Ln in each of the four classes given by Theorem 4.1.

4.1 Lie algebras Lx for Darboux integrable equations t1x = tx + d(t, t1)

It was proved (see [8]) that if equation t1x = tx+d(t, t1) admits a nontrivial x-integral, then it admits

a nontrivial x-integral not depending on x. Introduce new vector fields

X̃ = [X,K] =
∞
∑

k=−∞,

∂

∂tk
t0 := t,

J := [X̃,K] .

4.1.1 Case 1: t1x = tx + A(t1 − t)

Direct calculations show that the multiplication table for Lie algebra Lx is the following

Lx X K X̃

X 0 X̃ 0

K −X̃ 0 0

X̃ 0 0 0

12



4.1.2 Case 2: t1x = tx + C1(t
2
1 − t2) + C2(t1 − t)

Direct calculations show that

J = 2C1

∞
∑

k=−∞,k 6=0

(tk − t)
∂

∂tk

and

[J,K] = 2C2
1

∞
∑

k=−∞,k 6=0

(tk − t)2
∂

∂tk
= 2C1(K − txX̃)− (2C1t+ C2)J

and the multiplication table for Lie algebra Lx is the following

Lx X K X̃ J

X 0 X̃ 0 0

K −X̃ 0 −J −2C1(K − txX̃) + (2C1t + C2)J

X̃ 0 J 0 0

J 0 2C1(K − txX̃)− (2C1t+ C2)J 0 0

4.1.3 Case 3: t1x = tx +
√

C3e2αt1 + C4eα(t1+t) + C3e2αt

Direct calculations show that [X̃,K] = αK − αtxX̃ , and the multiplication table for Lie algebra Lx

is the following

Lx X K X̃

X 0 X̃ 0

K −X̃ 0 −αK + αtxX̃

X̃ 0 αK − αtxX̃ 0

4.1.4 Case 4: t1x = tx + C5(e
αt1 − eαt) + C6(e

−αt1 − e−αt)

Direct calculations show that

J = α
∞
∑

k=−∞,k 6=0

{C5(e
αtk − eαt)− C6(e

−αtk − e−αt)} ∂

∂tk

and

[J,K] = 2C5C6α
2

∞
∑

k=−∞,k 6=0

{eα(t−tk) + eα(tk−t) − 2} ∂

∂tk

= α2(C5e
αt + C6e

−αt)(K − txX̃) + α(C6e
−αt − C5e

αt)J.

Denote by

β1 = α2(C5e
αt + C6e

−αt), β2 = α(C6e
−αt − C5e

αt) .

The multiplication table for Lie algebra Lx is
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Lx X K X̃ J

X 0 X̃ 0 0

K −X̃ 0 −J −β1(K − txX̃)− β2J

X̃ 0 J 0 α2K − α2X̃

J 0 β1(K − txX̃) + β2J α2X̃ − α2K 0

4.2 Lie algebras Ln for Darboux integrable equation t1x = tx + d(t, t1)

4.2.1 Case 1: t1x = tx + A(t1 − t)

Lie algebra Ln is generated only by two vector fields X1 and Y1, and can be of any finite dimension.

If A(t1− t) = t1− t+ c, where c is some constant, then Lie algebra Ln is trivial, consisting of X1 and

Y1 only, with commutativity relation [X1, Y1] = 0. If A(t1 − t) 6= t1 − t+ c, one can choose a basis in

Ln consisting of W = ∂
∂θ
, Z =

∑k=∞
k=0 Dk

xp(θ)∂/∂t[k], with θ = x + αn, C1 = [W,Z], Ck+1 = [W,Ck],

1 ≤ k ≤ N − 1. Its multiplication table for Ln is the following

Ln W Z C1 C2 . . . Ck . . . CN−1 CN

W 0 C1 C2 C3 . . . Ck+1 . . . CN K

Z −C1 0 0 0 . . . 0 . . . 0 0

C1 −C2 0 0 0 . . . 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

CN −K 0 0 0 . . . 0 . . . 0 0

where K = µ0Z + µ1C1 + . . .+ µNCN .

4.2.2 Cases 2 and 4: t1x = tx+C1(t
2
1−t2)+C2(t1−t) and t1x = tx+C5(e

αt1−eαt)+C6(e
−αt1−e−αt)

In both cases Lie algebra Ln is trivial, consisting of X1 and Y1 only, with commutativity relation

[X1, Y1] = 0.

4.2.3 Case 3: t1x = tx +
√

C3e2αt1 + C4eα(t1+t) + C3e2αt

Denote by X̃1 = A(τ−1)e
−ατ−1 ∂

∂τ−1
and Ỹ1 = A(τ−1)Y1, C2 = [X̃1, Ỹ1]. Direct calculations show that

the multiplication table for algebra Ln is the following
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Ln X̃1 Ỹ1 C2

X̃1 0 C2 α2C3Ỹ1 + C4/(2C3)X̃1

Ỹ1 −C2 0 K

C2 −α2C3Ỹ1 − C4/(2C3)X̃1 −K 0

where K = −(α2C4/2)Ỹ1 + (2α2C4e
ατ−1 − α2C3)X̃1.
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