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Abstract

Differential-difference equation Lt(n + 1,z) = f(z,t(n,z),t(n + 1,z), Lt(n,z)) with un-
known t(n,z) depending on continuous and discrete variables z and n is studied. We call an
equation of such kind Darboux integrable, if there exist two functions £’ and I of a finite num-
ber of arguments n, z, {t(n + k,z)}3>_, {;i—kkt(n,:n)}zozl, such that D, F = 0 and DI = I,
where D, is the operator of total differentiation with respect to x, and D is the shift oper-
ator: Dp(n) = p(n +1). It is proved that the chain is Darboux integrable if and only if its
characteristic Lie algebras in both directions are of finite dimension. Structure of the integrals
is described. Numerous examples of Darboux integrable chains are given together with their

integrals and characteristic Lie algebras.

Keywords: semi-discrete chain, classification, x-integral, n-integral, characteristic Lie algebra,

integrability conditions.

1 Introduction
In this paper we study Darboux integrable semi-discrete chains of the form

d d
%t(n%—l,x) = f(:v,t(n,a:),t(n+1,1’),%15(71,1')). (1)
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Here uknown functions ¢ = t(n,z) and t; = t(n + 1,x) depend on discrete and continuous variables
n and x respectively; function f = f(z,t,11,t,) is assumed to be locally analytic, and gTJ; is not
identically zero. The last two decades the discrete pfenomena have become very popular due to
various important applications (for more details see [I]-[3] and references therein). The article deals
with a class of the chains ([Il) admitting in a sense a closed formula for the general solution.

Below we use a subindex to indicate the shift of the discrete argument: ¢, = t(n+k, z), k € Z, and
2

(n, @), tim) = S2=t(n,z), m € N.

Dm0, 1 =t /
—t(n,x =ty = —
dg 07 dz?

Introduce the set of dynamical variables containing {t;}3=_.; {tpm)toe—:.- We denote through D and

derivatives with respect to x: t =t, =

D, the shift operator and the operator of the total derivative with respect to x correspondingly. For
instance, Dh(n,z) = h(n+ 1,2) and D,h(n,z) = -Lh(n, z).

Functions I and F', both depending on z, n, and a finite number of dynamical variables, are called
respectively n- and z-integrals of (l), if DI = I and D,F = 0 (see also [4]). Clearly, any function
depending on n only, is an z-integral, and any function, depending on x only, is an n-integral. Such
integrals are called trivial integrals. One can see that any n-integral I does not depend on variables
tm, m € Z\{0}, and any z-integral F' does not depend on variables t[,,;, m € N.

Chain () is called Darbouz integrable if it admits a nontrivial n-integral and a nontrivial z-
integral.

One Darboux integrable chain is t, = t;t,/t with F' = In(¢1/t) and I = t,/t as some of many
nontrivail z- and n-integrals.

The basic ideas on integration of partial differential equations of the hyperbolic type go back
to classical works by Laplace, Darboux, Goursat, Vessio, Monge, Ampere, Legendre, Egorov, etc.
Notice that understanding of integration as finding an explicit formula for a general solution was
later replaced by other, in a sense less obligatory, definitions. For instance, the Darboux method
for integration of hyperbolic type equations consists of searching for integrals in both directions
followed by the reduction of the equation to two ordinary differential equations. In order to find
integrals, provided that they exist, Darboux used the Laplace cascade method. An alternative, more
algebraic approach based on the characteristic vector fields was used by Goursat and Vessio. Namely
this method allowed Goursat to get a list of integrable equations [5]. An important contribution to
the development of the algebraic method investigating Darboux integrable equations was made by

A.B.Shabat who introduced the notion of the characteristic Lie algebra of the hyperbolic equation

um,y = f(xv yv U, umu uy) . (2)

It turned out that the operator of total differentiation, with respect to the variable y, defines a



derivative in the characteristic Lie algebra in the direction of z. Moreover, the operator adp, defined
according to the rule adp, X = [D,, X] acts on the generators of the algebra in a very simple way.
This makes it possible to obtain effective integrability conditions for the equation (2I).

A.V. Zhiber and F.Kh. Mukminov investigated the structures of the characteristic Lie algebras
for the so-called quadratic systems containing the Liouville equation and the sine-Gordon equation
(see [6]). In [6] and [7] the very nontrivial connection between characteristic Lie algebras and Lax
pairs of the hyperbolic S-integrable equations and systems of equations is studied, and perspectives
on the application of the characteristic algebras to classify such kinds of equations are discussed.

Recently the concept of the characteristic Lie algebras has been defined for discrete models. In
our articles [8]-[9] an effective algorithm was worked out to classify Darboux integrable models. By
using this algorithm some new classification results were obtained. It is remarkable that in the
discrete case an automorphism generated by the shift operator plays an important role.

Due to the requirement of % fz,t,t1,t,) # 0, we can rewrite (at least locally) chain (1) in the
inverse form t,(n — 1,x) = g(z,t(n,z),t(n — 1,),t.(n,x)). Since z-integral F' does not depend on

variables tj), k € N, then the equation D,F’ = 0 becomes KF' = 0, where

0 0 0 0
K=— ¥ — .. 3
5 T fatl+gat_l+fla oGt (3)
Also, XF = 0, with X = -—. Therefore, any vector field from Lie algebra generated by K and X

annulates F'. This algebra is called the characteristic Lie algebra L, of chain (1) in the x-direction.
Stress that L, is the Lie algebra over the field of the locally analitic functions, depending on x
and a finite number of dynamical variables, but not over the field of numbers. The relation between

Darboux integrability of chain ([Il) and its Lie algebra L, is given by the following important criterion.

Theorem 1.1 Chain (1) admits a nontrivial z-integral if and only if its Lie algebra L, is of finite

dimension.
The equation DI = I, defining an n-integral I, in an enlarged form becomes
Hx,n+ 1t f, fo, ) = Lz, n,t ty, teg, ... (4)

The left hand side contains the variable t; while the right hand side does not. Hence we have

D‘lﬁDl = 0, i.e. the n-integral is in the kernel of the operator

V) = D™Y,D,



where

0 s poy 2y o
and
d
Yo= (6)

One can show that D=7YyD’] = 0 for any natural j. Direct calculations show that

DY, D) = X, +Y;, j>2

where
1 a —1 a —1 1
Vi = D)5 + DY) g + DY fe) gy e 321 (D)
0
X, = — > 1.
J at7j7 j - (8)

Define by N* the dimension of the linear space spanned by the opreators {Y;}{°. The Lie algebra
over the field of the locally analitic functions generated by the opreators {Y;}" U {X;}1" is called

the characteristic algebra L, of chain () in n-direction.

Theorem 1.2 FEquation () admits a nontrivial n-integral if and only if its Lie algebra L, is of finite

dimension.

The article is organized as follows. In section 2 we give the complete description or all n-integrals
and z-integrals of the Darboux integrable chains. Then we show that one can choose the minimal
order m-integral and the minimal order z-integral of a special canonical form, convenient for the
purpose of classification. In section 3 the Darboux integrebility property of the chain is reformulated
in an algebraic form in terms of the characteristic Lie algebras. Particularly, we prove that the chain is
Darboux integrable if and only if its both characteristic Lie algebras L, and L,, are of finite dimension.
Theorems in sections 2 and 3 are considered as a basis for further investigations of the classification
problem for the chain ([II) by using characterictic Lie algebras. Section 4 studies examples of Darboux
integrable chains. For each such a chain of the form ti, = t, 4+ d(t,t;) the coresponding algebras
L, and L, are given. Remind that for the exponential type Darboux integrable systems of partial
diffirential equations the characteristic Lie algebras are semi-simple [10]. Our examples show, that

for the general situation it is not the case.



2 On the structure of nontrivial z- and n- integrals

We define the order of a nontrivial n-integral I = I(z,n,t,t,,. .. ty) with 8?—[; # 0, as the number

k.

Lemma 2.1 Assume equation (1) admits a nontrivial n-integral. Then for any nontrivial n-integral

I*(x,n,t,ty, ..., tw) of the smallest order and any n-integral I we have
I = ¢(z, I*, DI, D>I*, .. ), (9)
where ¢ is some function.

Proof: Denote by I* = I*(x,n,t,..., ty) an n-integral of the smallest order. Let I be any other
n-integral, I = I(z,n,t,...,t,)). Clearly r > k. Let us introduce new variables z, n, t, t,, ...,
t—1), 1%, D17, ..., Dr=k[* instead of the variables x, n, t, t,, ..., tik—1)> t[k]s tikga]s - - - - Now,
I = I(z,n,t,ty, ... tg_y, I*, D, I*,...,Di7"*). We write the power series for function I in the
neighbourhood of the point ((I*)g, (DzI*)o, ..., (DL7K1*)0):

I= Y Eiiriy (I = (IM)0) (D I* — (DyI*)o)™ ... (DI = (DL7*1%)g) > (10)

§0,i1seeeslir—
Then
DI = Y DEj.,.i (DI* = (I")g)*(DD,I* — (DyI*)o)" ... (DDy*I* — (DL I%)g) "+
20,81 5-+ sl —k
Since DI = I, DD?I* = D) DI* = DJT* and the power series representation for function [ is unique,

then DE; i, i v = Eigir,oiv o 1€ Eigay o (@,n,t, ... tx_1)) are all n-integrals. Due to the fact

k
that minimal n-integral depends on x, n, t, ..., ), we conclude that all B ;, _; ,(x,n,t, ... tg_1])

are trivial n-integrals, i.e. functions depending only on z. Now equation (@) follows immeadiately

from ([I0Q)).

We define the order of a nontrivial z-integral F' = F(x,n,ty, tyy1,...tym) with % # 0, as the

number m — k.

Lemma 2.2 Assume equation (1) admits a nontrivial x-integral. Then for any nontrivial x-integral

F*(x,n,t,t1,... ty,) of the smallest order and any x-integral F' we have
F=¢(n, F*,DF*, D*F*,..)), (11)

where € is some function.



Proof: Denote by F* = F*(z,n,t,tq,...,t,) an x-integral of the smallest order. Let F' be any other
x-integral, ' = F(xz,n,t,ty,...,t;). Clearly, [ > m. Let us introduce new variables x, n, t, ¢,

oy tme1, F*, DF*, ..., D'"™F* instead of variables x, n, t, ti, ....tm-1, tm, ..., ;. Now, F =
Fa,n,t ty, ... tm1, F*,DF*, ... D'"™F*). We write the power series representation of function I
in the neighbourhood of point ((F*)g, (DF*)q, ..., (D"™F*)y):

F= > Kiiip,,(F* = (F*))°(DF* — (DF*)o)" ... (D'"""F* — (D" F*)g)-m . (12)
10581550 —m

Then

D,F= 3 DAKigi,.i}(F* = (F)o)*(DF* — (DF*)o)" ... (D" F* — (D7 F*)g) =

20521558 —m

+ D Kigirewii o D (F* = (F7)o)*(DF* = (DF*)o)" ... (D™ F* — (D" F*)o)" -}

i()yily"'yilf’!n

Since D, D/ F* = D’ D, F* = 0, then Do {(F*—(F*)o) (DF*—(DF*)o)"* ... (D" F*— (D" F*)g)t-m} =
0. Therefore,

0=D,F= > DAKiir i, JE=(F)o)(DF*—(DF*)o)" ... (D"™F*— (D" F*)g)-m.

§0yi1 s il —m

Due to the unique representation of the zero power series we have that D, {K; ;, ;. } =0, ie. all
Kigivoip, (x,n,t, ... t,_1) are z-integrals. Since the minimal nontrivial z-integral is of order m,
then all Ky, i
follows from (I2).

_are trivial z-integrals, i.e. functions depending on n only. Now the equation (1))

The next two lemmas are just discrete versions of Lemma 1.2 from [I1].

Lemma 2.3 Among all nontrivial n-integrals I*(x,n,t, t,, ... tw) of the smallest order, with k > 2,
there is an n-integral I°(x,n,t,t,, ... tw) such that
IP(@,n, bty tg) = alz,n, bty ot + 0(z, bty ) - (13)

Proof: Consider nontrivial minimal n-integral I*(z,n,t,t,, ..., ty) with & > 2. Equality DI* = I*

can be rewritten as
[*(l’,n+ ]-atla.fa fxa .. '>.f[k—1}) = [*(xanatat:ca ce at[k})

We differentiate both sides of the last equality wit respect to t:

oI (x,n+1,t1, f,..., fire—1)) . O fk—1 _ oI (x,n,t, ... ty)
0 fis-1) Ot (k) Ot (k) '

(14)



In virtue of % = f.,, the equation (I4]) can be rewritten as
J
or(x,n+ 1t f, ..., fi or(x,n,t,... t
: whio fumly, O ) (15)
O fii—1) Otk
Let us differentiate once more with respect to t;; both sides of the last equation, we have:
O?I*(x,n + 1,t1,f,...,f[k_1])f2 0PI (mnit, . ty)
0 fie—1] te 3t[2k] 7
or the same,
I oI+
D{at2 }f’i T oo,
(%] (k]
where I* = I*(x,n,t,... ty). It follows from (I3]) that
2 T * ) 2 2 T* *\ 2
0-1 ol 01 ol
D 5 =D 57— ,
or the same, function
ot
J = L
o1+
(8t[k])
is an n-integral, and by Lemma 2] we have that J = ¢(z, I*). Therefore,
Pr+ 9H(x, I) (9" OH
= ! h - J,
of, — or \o) T oI
or
0 or*
—<In — H(x,I"); =0.
Oty { Oty ( )}
Hence, e‘H(xvf*)gt—I[; = ¢9 for some function g(x,n,t,t,,...,tk-1)). Introduce W in such a way that
gTVZ = ¢ H@®I) " Then gt—‘[}z] = e and W = eg(x’”’t"“’t[k*”)t[k] + l(z,n,t,... tp—1)) is an n-integral,
where [(z,n,t,...,t_1) is some function.
Lemma 2.4 Among all nontrivial z-integrals F*(z,n,t_q1,t,t1,...,ty) of the smallest order, with
m > 1, there is x-integral FO(x,n,t_y,t,ty, ... t,,) such that
FOox,n t_y,tty, ... tm) = Az, n,t 1 t, .. to1) + B(o,n ity .. ). (16)
Proof: Consider nontrivial z-integral F*(z,n,t_q,t,t1,...,t,) of minimal order. Since D,F* = 0,
then
oF™* oF™* oF™ oF™ oF™ oF™*
+ + ty + + D + ...+ D! = 0. 17
o o Tl Ty TP g U, (1)



We differentiate both sides of (I7]) with respect to t,, and with respect to ¢_; separately and have

the following two equations:

0 OF*

D, +— (D! =0 18
{D:+ i ( )} il (18)
dg , OF™
D, + — =0. 19
Pt g Yo, 19)
Let us differentiate (I8) with respect to ¢_;, we have,

0P F* dg O*F* 0 Lo OPF*
- D™~ =0. 20
Sty ot ot o P Dana, (20)

_ DuFp 99 _DzF*

It follows from (I8) and (I9) that 5 (Dm 1f)= “1. Equation (20) becomes

* - *
th ) Ot_1 F

D, {m thit} = 0.
thF’tfl

Py
By Lemma 2.2 we have, === = &(n, F™*), or

’ FttnFt 1
Fttnt—l % ! - 0 * *\ / *
=F &n, F*)=H'(F")F =——H(F"), where (n,F*)=H'(n,F").
F{:n ' ' 8t_1
Thus, 52— -{InF; —H(n,F*)} =0, or e HOWFI e = C(z,n,t,ty, ..., t,) for some function
C(x,n,t,t1,... ). Denote by H*(n, F) such a function that H'(n, F*) = e"#F)_ Then aHEgZ;LF*) =

C(x,n,t,ty,... ty). Hence, H(n, F*) = B(x,n,t,ty, ..., tp)+A(x,n,t_1,t, ... tym_1). Since D H(F*) =
H'(n, F*)D,(F*) = 0, then H(n, F*) is an 2-integral in the desired form (I

Corollary 2.5 Among all nontrivial x-integrals F(z,n,t,... t,) of the smallest order with m > 2,

there is x-integral F°(z,n,t,... t,,) such that

Fozm,t, ... ty) = Alz,n,t, ... tymo1) + Blz,n,ty, ... ty).

3 Algebraic criterion of Darboux integrability

In this section we give complete proof of the Theorems [I.1] and
Let us prove Theorem [[LTl Assume equation ({l) admits a nontrivial z-integral. Take one such

integral F' = F(x,n,t,tq,...,1t,) with 8F — # 0 identically. Introduce
Ly ={1T"™ = P, (T): T € L,},

where P, is the projection operator defined as follows

0 0
P |a— — =a— — 1 =1,2,3,.... 21
(aa +b Zak&tk> aa +b Zak&tk 1 ) 73a ( )

8



Denote by N; the dimension of L(m) Clearly, Ny < m + 2. Let the set {11, To2, .., Ton, } form a

basis in LI™. For any j = 1,2,..., Ny, denote by T; = Z ar (T a vector field from L, such that

i) o
P,.(T;) = Ty;. Let us show that the set {11, T5,. .. ,TNI} forms a basis in L,. Take arbitrary vector

Ny
field T = a(T)Z + W(T)Z + 32, a;(T) - from L,. Since P,,(T) € L{™, then P, (T) = 3. B;Ty;.
J 7j=1

N
Let us show that T' = Z BT}, or the same, Z = 0, where Z =T — i B,;T;. We have, P,,(Z) = 0.
j=1

Since F'is an z- mtegral dependlng onx, n,t ty, ..., t, , then DF is an x-integral depending on
variables x, n + 1, t1, to, ..., tm, t;r1. Therefore,
N1 a
0=Z(DF)=P,(Z)DF + | a1 (T) — Z Biotm+1(T5) BT DF =
j=1 m—+1

atm—l—l

(am+1(T)—iﬁjam+1(Tj)) 0 DF.

Since ﬁ“DF = D%F # 0, then a,,1(T) = Z Bictm+1(T}), that is P,1(Z) = 0. Applying

successively the operator Z to x-integrals D*F', D3F, ..., one can see that a,,;(T) = % Bicm+i(T})
for any i = 1,2,3,..., that is P,,;(Z) = 0 for any natural number i. Therefore, Z EJ(Tl Hence, any
vector field 7" from L, can be represented as a linear combination of 77, 15, ..., Ty,. Thus, L, is of
finite dimension.

Assume that the dimension of the characteristic algebra Lie L, is finite, denote it by N. Let
Ty, Ty, ..., Ty form a basis in L,. Denote by To; = Pn(Tj), j = 1,2,...,N. Then we have N
equations Tp;F' = 0 for a function F' depending on N + 4 variables: z, n, t,, t, t1, ..., tn. By
Jacobi Theorem, such nonconstant function F' = F(z,n,t,,t t1,...,tx) exists. Moreover, it does
not depend on variable ¢, and satisfies the equation TF = 0 for any 7' € L,. This function F' is a
nontrivial z-integral of equation (24). This completes the proof of Theorem [Tl

Let us prove Theorem [I.II Assume equation () admits a nontrivial n-integral. Take one such
integral I = I(x,n,t,t,,t), ..., tpm)) With 57— 7& 0 identically. Introduce Lie algebra M generated
by vector fields {Y;}5° U {X;}1?, where number N, will be specified later. Define

M™ = {7 = p*(T): T € M},

where P’ is the projection operator defined as follows

+Zak 0 i=1,2,3.... (22)
k Ot (x)

(Z akatk+zakat[ ) Z “két



Denote by N; the dimension of M (™). Clearly, N; < m + Ny + 1. Let the set {Tp1, Too, ..., Ton, }
form a basis in M. Denote by T; = _i ak(T) Z ax(T. )% a vector field from M such
that Pr (1) = Toj, j = 1,2,..., Ny. Letk;;]\:how that the set {11, T>,...,Tyn,} forms a basis in M.
Take arbitrary vector field T = ;1\, aj(T)a% + 2520 aj(T)ati[j] from M. Since P*(T) € M),

N N N
then P (T) = i B;Ty;. Let us show that 7" = i BT}, or the same, Z = 0, where Z =T — i BT}
j=1 j=1 j=1

We have, Py (Z) = 0. Since I is an n-integral depending on x, n, t, t;, t[a, ..., tpy , then D,I is an
n-integral depending on variables x, n, t, t,, tj], . - ., tm], tpm+1)- Therefore,
N1 8
0=Z(D,I) =P} (Z)DI + | 1 (T) = > Bictms1 (1)) WDII =
i— m—+1

(Oém+1(T)—iﬁj04m+1(Tj)) 0 D,I.

j=1 at[mH]

. Nl . * .

Since ﬁDII = %I # 0, then a,,1(T) = ngﬁjamH(Tj), that is P} ,,(Z) = 0. Applying
N

successively the operator Z to n-integrals D21, D3I, ..., one can see that a,,,;(T) = i Bictm+i(T;)
=1

for any ¢ = 1,2,3,..., that is P’

m+1

(Z) = 0 for any natural number i. Therefore, Z = 0. Thus,
Lie algebra M is of finite dimension. Then linear envelope of the vector fields {Y;}{° is of finite
dimension, say N. Let Ny be any number satisfying N, > N. We have, algebra L, generated by
{Y;}V U{X;} is a subalgebra of M, and therefore L,, of finite dimension.

Assume that the dimension of the characteristic algebra Lie L, is finite, denote it by N;. Let N
be the dimension of linear envelope of the vector fields {Y;}3°. Set Ny = N; — N. Introduce

L) = {1t = p(T) : T € L},

where
Py’ (Z T +Z Dt ) Z a’“&tk+z k&t (23)

Let {T{ 0_7} "1, form a basis in L{*). Then we have N, equations Tp;G = 0 for a function G’ depending
on Ny + 3 variables: z, n, t, t,, ..., |y, t-1, ..., t_y. By Jacobi Theorem, such nonconstant
function G exists. Moreover, it does not depend on variables ¢t_;, 7 = 1,2,... N, and satisfies the
equation TG = 0 for any 17" € L,. Such function G = G(x,n,t,t,,...,tn,]) is not unique, but any
other solution of these equations, depending on the same set of the variables, can be represented as
h(z,G) for some function h.

Since D™YY,;D =Y;41, j=0,2,3,..., D"'ViD =Y, + X;, D™'X;D = X4, then for any vector
field Z from L,,, we have D™'ZD = Z* + AX v, for some vector field Z* from L,, and some function

10



A. So,
ZDG = D(D'ZDG) = D(Z* + AXXn;11)G =0

for any Z € L,,. Therefore, DG is also a solution of the aforementioned system of partial differential
equations. That is why DG = h(z, G).

By solving ordinary difference equation DG = h(x, G) of the first order we have G = H(z,n, ¢),
where ¢ is an arbitrary constant. By solving the equation G = H(x,n,c) with respect to ¢ one
gets ¢ = I(G,z,n). This function I(G,z,n) is a nontrivial n-integral of equation ([24]). Indeed,
DI(G,z,n) = Dc=c=I(G,z,n). So DI=I. This completes the proof of Theorem

4 Particular case: t, =1, + d(t, 1)

Finiteness of Lie algebras L, and L, was used in [8] and [9] to classify Darboux integrable semi-

discrete chains of special form

b =t +d(t, 1) . (24)
The statement of this classification result is given by the next theorem from [9].

Theorem 4.1 Chain (24)) admits nontrivial x- and n-integrals if and only if d(t,t1) is one of the
kind:

(1) d(t,t1) = Aty —t), where Aty —t) is given in implicit form A(t; —t) = L P(0), t, —t = P(0),
with P(0) being an arbitrary quasipolynomial, i.e. a function satisfying an ordinary differential
equation

with constant coefficients py, 0 < k < N,

(2) d(t,t1) = Ci (13 — ) + Co(ty — t),

(3) d(t,t1) = \/Cse2att + Cyealtitd) 4 Cye2at,
(4) d(t,t;) = Cs(et — ) + Cye=t — e=at),

where o # 0, C;, 1 < i < 6, are arbitrary constants. Moreover, some nontrivial x-integrals F and

n-integrals I in each of the cases are

i) F=o— [ Ad(ss), I = L(D,)t,, where L(D,) is a differential operator which annihilates
4 P(0) where D, = 1.

11



i) F="10"00h p g 2 Oyt

(ts—t2)(t1—t)’

... t1—t e ¥ds to—t1 ds 2 2at
1) F = — I =2t,, — atz — aCse
) / /Cse205 +-Che0s+C5 / \/Cse2s+Caes+C5” . * .

jv) F o= (ol metd) f_y— Cge® — Cget,

(Cat_oatg )(eatl —ett2 ) )

Equation of the form 7, = A(7), where 7 = ¢; — t, is integrated in quadratures. But to get the final
answer one should evaluate the integral and then find the inverse function. The general solution is
given in an explicit form

n—1

t(n,z) = t(0,z) + Y_ Pz +¢;), (26)

j=0
where ¢(0, z) and ¢; are arbitrary functions of = and j respectively, and A(7) = P'(9), t; —t = P(6).

Actually we have 7, = Py(0)6, = Py(0), which implies 6, = 1, so that 7(n,z) = P(z + ¢,). By
solving the equation ¢(n + 1,x) — t(n,z) = P(z + ¢,) one gets the answer above. Requirement for
7. = A(7) to be Darboux integrable induces condition on function P to satisfy a linear ordinary
differential equation with constant coefficients.

The classication Theorem [l contains all Darboux integrable equations of special form (24])
together with the corresponding nontrivial z- and n- integrals. However, the characteristic algebras
L, and L,, for Darboux integrable equations (24]) were not specified in [9]. In the next two subsections

we present characteristic Lie algebras L, and L, in each of the four classes given by Theorem [4.1l

4.1 Lie algebras L, for Darboux integrable equations ¢y, = t, + d(¢, ;)

It was proved (see [§]) that if equation t;, = t, +d(t, t1) admits a nontrivial z-integral, then it admits

a nontrivial z-integral not depending on x. Introduce new vector fields

> 0

4.1.1 Case 1: t1, =t, + A(t; — t)

Direct calculations show that the multiplication table for Lie algebra L, is the following

L, || X |K|X
X| o0 [X]|0
K|-X]0]o0
Xl ol]ofo
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4.1.2 Case 2: t1, =t, + C1(t — t*) + Cy(t1 — 1)

Direct calculations show that

> 0
J=2C > (th—t)—
k=—00,k#0 Ot
and
o a ~
(LK) =2C7 > (=t =201(K —t,X) — (2Cit + Co)J
k=—00,k#0 Oty
and the multiplication table for Lie algebra L, is the following
L,| X K X J
X| o X 0 0
K| -X 0 —J | =2C1(K —t,X) 4 (2Cyt + Cy)J
X| o J 0 0
J || 0 |201(K —t,X)— (201t +Cy)J | 0 0

4.1.3 Case 3: t;, =t, + \/Cge2°‘t1 + Cyetitt) 4 Cye2ot

Direct calculations show that [X, K] = oK — at, X, and the multiplication table for Lie algebra L,

is the following

L, || X K X
X | o X 0
K| -X 0 —aK + at, X
X 0 | aK — ozth' 0

4.1.4 Case 4: t, = t, + C5(e — ) + Cg(e M — =)

Direct calculations show that

J=a Y {Cs(e™ —e) = Cole ™ — e_at)}i
fe=—00,k0 Oty
and
K] =205Cea? 3 (et 4 ottt _9) 0
k=—00,k#£0 Oty
= oz2(C5e°‘t + C6e_°‘t)(K — th) + oz(Cﬁe_O‘t — C56at)J.
Denote by

Bl = Oé2<C56at + Cﬁe_at), BQ = OZ(C6€_at — C5€at) .

The multiplication table for Lie algebra L, is

13



L, | X K X J

X| o X 0 0

K| -X 0 —J — B (K —t,X) — B
X 0 J 0 a’K — a?X

J | 0 | B(E —t,X)+ Bod | a*X — a®K 0

4.2 Lie algebras L, for Darboux integrable equation ¢y, = t, + d(t, ;)
4.2.1 Case 1: t1, =t, + A(t; — t)

Lie algebra L, is generated only by two vector fields X; and Y7, and can be of any finite dimension.
If A(t; —t) =t; —t+c, where ¢ is some constant, then Lie algebra L, is trivial, consisting of X; and
Y1 only, with commutativity relation [X;,Y;] = 0. If A(t; —t) # t; —t + ¢, one can choose a basis in
L, consisting of W = 2. Z = Y5=° Dkp(0)0/0ty, with 0 = z + a,, C = [W, Z], Chyq = [W, Gy,
1 <k < N —1. Its multiplication table for L, is the following

L, W | Z|Ci|Coy|...] Cp |...|Cn_q | COn
W 0 Cl Cg Cg Ck—i—l CN K
Z |-Cy1 00 |0]... 0 0 0
Cy || -Cy| O 0| 0]... 0 0 0
Cy|| =K | 0| 0/|O0]... 0 0 0

where K = poZ + p11Cy + ... + unCly.

4.2.2 Cases 2 and 4: t, = t,+C; (£ —t?)+Cy(t; —t) and t1, = t,+C5(e* —e*)+Cg(e™ 1 —e™)

In both cases Lie algebra L, is trivial, consisting of X; and Y] only, with commutativity relation

[Xl,}/i] - 0

4.2.3 Case 3: t1, =t, + \/6'3620‘“ + Chealtitt) 4 Cye2at

Denote by X; = /1(7-_1)6—a771#971 and Y, = A(t_1)Y1, Cy = [X3,Y;]. Direct calculations show that

the multiplication table for algebra L,, is the following

14



L, Xl 371 Cy
X, 0 Cy | a?CsY1 + Cy/(2C5) Xy
Yi —C, 0 K
Cy | —02CsYy — Cy/(205) X, | —K 0

where K = —(a?Cy/2)Y; + (202C,e*™ 1 — a2C3) X;.
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