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Effective phase dynamics of noise-induced oscillations in excitable systems
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We develop an effective description of noise-induced oscillations based on deterministic phase
dynamics. The phase equation is constructed to exhibit correct frequency and distribution density
of noise-induced oscillations. In the simplest one-dimensional case the effective phase equation is
obtained analytically, whereas for more complex situations a simple method of data processing
is suggested. As an application an effective coupling function is constructed that quantitatively
describes periodically forced noise-induced oscillations.
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Complex dynamics of self-sustained oscillating systems
lies in the focus of nonlinear science. Prominent physical
examples include lasers, electronic circuits, chemical au-
tokatalitic reactions, but also many biological processes,
like firing neurons, oscillating genetic networks, rhythmic
heartbeats, and circadian rhythms, can be attributed to
this class although one can hardly derive the correspond-
ing mathematical models from the first principles. Many
phenomena characteristic for oscillatory systems, such as
synchronization [1, 2] are common for all these examples.
The theoretical and experimental description of oscilla-
tory dynamics relies heavily on the notion of phase, which
is a starting point for the treatment of deterministic and
noisy dynamics [1–3].
Many oscillating systems (the best example are neu-

rons) are not autonomous, but excitable: they posses a
stable steady state, but being adequately perturbed they
perform a stereotypical large-amplitude oscillation before
they relax back to the stable state. In the presence of an
appropriate periodic or noisy perturbation such a sys-
tem may demonstrate persistent oscillations, as it never
stays long enough close to the stable steady state. If the
perturbation is noisy, the observed dynamics is termed
noise-induced oscillations (see review [4] and [5]). In
some situations noise-induced oscillations can be rather
coherent, this is often called coherence resonance [6]. In
many aspects noise-induced oscillations behave similar to
the self-sustained ones: they can demonstrate synchrony
when coupled in ensembles [7] and can be controlled by
a time-delayed feedback [8]. While a qualitative similar-
ity between noise-induced and self-sustained oscillations
is quite obvious, an extension of theoretical and analyt-
ical tools suitable for self-sustained dynamics on the ex-
citable case is problematic. Indeed, the basic tool in the
study of self-sustained noisy oscillators, the introduction
of the phase, can not even perturbatively be applied to
excitable oscillators, because phase cannot be defined for
a system residing on a stable steady state.
In this Letter we propose to describe noise-induced os-

cillations via an effective phase dynamics, where we de-
fine an invariant phase in a non-perturbative way (as
opposed to typical perturbative approaches to the noisy

dynamics of self-sustained oscillators [3]). Therefore, our
definition of the phase inherently depends on the noise
intensity, and correspondingly all derived characteristics
like coupling functions as well. We present the theoret-
ical framework by the example of noise-induced oscilla-
tions in one dimension, for which we also construct an
effective coupling function describing a periodic forcing.
Finally, we consider periodically driven noise-induced os-
cillations in a prototypic example of excitable dynamics,
the FitzHugh-Nagumo system, and construct its effective
phase description.
Our basic model is a noise-driven oscillator described

by a 2π-periodic variable θ called hereafter proto-

phase [9] governed by the Langevin equation

θ̇ = h(θ) + g(θ)ξ(t) , 〈ξ(t)ξ(t′)〉 = 2δ(t− t′) . (1)

In the excitable case the deterministic system θ̇ = h(θ)
has two steady states, one stable and one unstable, but
in the presence of noise one observes nearly monotonic
growth of θ with a mean frequency ω, and a smooth
probability density P (θ). Therefore, we model the dy-
namics as that of an “effective” autonomous oscillator,
by approximating the equation for the proto-phase as

θ̇ = H(θ) . (2)

We impose following conditions on the effective velocity

H : (i) the oscillation frequency should coincide with ω,
and (ii) the distribution density of the proto-phase should
be equal to P (θ). To meet these requirements we draw
a correspondence between the Fokker-Planck equation to
the oscillator (1) given by

∂tP = −∂θhP + ∂θg∂θgP , (3)

and the Liouville equation to the model (2) given by
∂tP = −∂θHP = −∂θJ . In the stationary case the flux
J is related to the frequency by ω = 2πJ . Thus, the ef-
fective velocity can be expressed in terms of its frequency
and distribution density by

θ̇ = H(θ) =
ω

2πP (θ)
. (4)
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Conditions (i) and (ii) are fulfilled exactly if ω and P (θ)
are given by the corresponding stationary solutions of (3),
which are well-known [2, 10, 11]. Then, using Eq. (3) the
effective velocity can be written as H = h(θ) − h̃(θ) =
h(θ)− gg′ − g2∂θ lnP . Additionally to the deterministic
velocity h there appears a noise-induced velocity h̃ which
can be called osmotic [12].
From the proto-phase of the effective model we define

the phase ϕ by the transformation

ϕ = S(θ) = 2π

∫ θ

0

P (η)dη. (5)

The phase satisfies the properties P (ϕ) = 1/2π and ϕ̇ =
ω. Thus, we have constructed an invariant effective phase
dynamics of noise-induced oscillations.
By a simple modification we may extend the effective

model to account for the random component of noise-
induced oscillations. We introduce an effective fluctuat-

ing force to the dynamics of ϕ:

ϕ̇ = ω +
√
Dη(t) , 〈η(t)η(t′)〉 = 2δ(t− t′) . (6)

For any coefficient D of the noise term, the distribution
of ϕ is uniform and the mean frequency is ω, thus the
conditions (i) and (ii) above remain fulfilled. There-
fore, we are free to choose D, and we choose it from
the condition: (iii) The diffusion constant of the effective
phase (mapped on the real line), which is D, should be
the same as in the original oscillator (1). It is given by

D = limt→∞〈[θ(t) − ωt]
2〉/2t. Fortunately, one can get

an exact expression for D following [13]:

D =

1
2π

∫ 2π

0
dψ
g(ψ)

[

∫ ψ

ψ−2π
dφ
g(φ)r(φ, ψ)

]2
∫ ψ+2π

ψ
dφ
g(φ)r(ψ, φ)

[

1
2π

∫ 2π

0
dψ
g(ψ)

∫ ψ

ψ−2π
2dφ
g(φ)r(φ, ψ)

]3 ,

where r(θ, φ) = exp
[

−
∫ φ

θ

h(η)
g2(η)dη

]

. Inverting the trans-

formation to the phase ϕ, we obtain the effective model
with noise (6) in terms of the proto-phase θ:

θ̇ = H(θ) +

√
D

ω
H(θ)η(t) . (7)

We see that the effective model is fully determined by
the distribution density P (θ) and the mean frequency ω,
and knowing the diffusion constantD also random effects
can be taken into account, effectively. These quantities
can be estimated from synthetic (numerical) or experi-
mental observations θ(n∆t) = θn by a straightforward
analysis. Alternatively, H(θ) can be estimated via aver-
aging of central differences as

H(θ) ≈ 〈θn+1 − θn−1〉
2∆t

∣

∣

∣

∣

θn=θ

, (8)

(while forward differences θn+1 − θn provide the deter-
ministic part h(θ) only, see [14] for details).
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FIG. 1. (color online). Functions h (dashed) together with
effective velocities H (solid) for Model A (left) at a = 0.95,
and Model B (right) at c = −0.05. Noise intensities are as
indicated.

Although model (7) captures many essential proper-
ties of noise-induced oscillations, it fails to describe the
Lyapunov exponent properly. The exponent vanishes in
the effective model with noise (7), while in the original
system (1) it is generally negative, corresponding to syn-
chronization of oscillators by a common external noise
(see [15] and references therein).
We illustrate the above theory in Fig. 1 with two ex-

amples, both with an additive noise g(θ) = σ. Model A
is a simplified theta-model (cf. [16]) used in the descrip-
tion of excitable neurons: h(θ) = a + cos θ. Model B
is constructed to mimic an excitable oscillator demon-
strating a pronounced coherence resonance: h(θ) =
5 tanh2 (5(1− sin θ))+c. The effective velocities H heav-
ily depend on the noise intensity σ, especially at the re-
gion around the stable equilibrium: For large σ the ef-
fective velocity converges to the the constant function
H(θ) = ω.
Next, we extend the effective model (4) to describe pe-

riodically driven noise-induced oscillations described by

θ̇ = h(θ) + g(θ)ξ(t) + f(ψ(t), θ), (9)

with a 2π-periodic driving phase ψ = Ωt. We want to
obtain an effective phase description including an effec-
tive coupling. As above, the principle of correspondence
between the flux of the Liouville equation and the θ-
component of the probability flux

J = [h(θ) + f(ψ, θ)− g∂θg]P (θ, ψ) (10)

is applied, that yields the driven effective dynamics

θ̇ = H(θ, ψ) =
J

P
= h− gg′ − g2∂θ lnP + f . (11)

It is essential to rewrite H as a sum of a ψ-independent
marginal effective velocity Hm(θ) and an effective cou-

pling F (θ, ψ). The former is obtained in terms of the

marginal probability density Pm(θ) =
∫ 2π

0
P (θ, ψ)dψ by

integrating Eq. (10) over ψ:

Hm(θ) =
ω

2πPm(θ)
= h−gg′−g2∂θ lnPm+

∫ 2π

0

f
P

Pm
dψ .
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FIG. 2. A comparison of effective coupling functions for the
proto-phase (left panel) and the phase (right panel) for the
model B with c = −0.05, σ = 0.8 and Ω = 3.4.

Rearranging H = Hm+F , we find the effective coupling

F (ψ, θ) = f −
∫ 2π

0

f
P

Pm
dψ − g2(θ)∂θ ln

P (θ, ψ)

Pm(θ)
. (12)

As for the effective velocity, the first two terms repre-
sent the deterministic part of the coupling, while the last
term, proportional to the noise intensity, represents the
osmotic part. The local effect of the coupling on the
proto-phase is naturally described by the smooth quo-
tient κ(ψ, θ) = F (ψ, θ)/Hm(θ).
For the driven effective model, we introduce a phase

variable ϕ by transformation (5) using the marginal den-
sity. Then we have Pm(ϕ) = 1/2π (this definition of
phase slightly differs from the one presented in [9]).
Transforming Eq. (11) in this way we get

ϕ̇ = ω + 2πPm(S−1(ϕ))F (ψ, S−1(ϕ)) = ω +Q(ψ, ϕ) .
(13)

Equation (13) provides the effective phase dynamics of
the periodically driven noise-induced oscillations in a
standard form, with an effective coupling function Q that
heavily depends on the noise intensity.
In the following examples we use the periodic force

f(ψ(t), θ) = 0.1 sin(Ωt − θ). First, we illustrate the dif-
ference between the coupling in terms of the proto-phase
ωκ and the phase coupling function Q in Fig. 2 for the
model B. The function κ(ψ, θ) is concentrated around a
vicinity of the stable steady state θs ≈ π/2, as this value
is apparently most sensitive to external forces. However,
around θs the evolution of θ is slow, and thus this region
is significantly extended when transformed to the phase
ϕ. Correspondingly, the sensitive region of θ transformed
to the phase ϕ is stretched.
Second, we consider the important case of weak cou-

pling. Here, an averaged (over period of forcing) coupling
function provides an adequate description of the dynam-
ics. By averaging Eq. (13) over the period 2π of the
external phase ψ, the equation for the phase difference
∆ϕ = ϕ− Ωt is obtained in the standard Adler form [2]

d∆ϕ

dt
= ω − Ω+ q(∆ϕ) ,

q(∆ϕ) =
1

2π

∫ 2π

0

Q(∆ϕ+ ψ, ψ)dψ .

(14)
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FIG. 3. (color online). Averaged coupling function q(∆ϕ)
(Eq. 14) for model A at parameters a = 0.95 and σ = 0.5,
drawn for several values of Ω shifted by ω ≈ 0.436.

Again, there is a deterministic and an osmotic contribu-
tion to q, and they are in general of the same order of
magnitude, but typically have opposite signs.
The case where the external frequency Ω is close to

the natural frequency ω of noise-induced oscillations is
of special interest. From equation (14) and the form of
Q as shown in the example it could be expected that the
oscillator would enter a synchronization regime where the
phase is completely locked and ∆ϕ(t) remains bounded.
However, for a stochastic oscillator (9) with g 6= 0, such
a perfect synchronization with the external forcing is in
general impossible. In the effective model (14) the riddle
is resolved by the fact, that as Ω approaches ω, the deter-
ministic and the osmotic parts of the averaged coupling
function cancel so that the oscillator does not “feel” the
coupling on average. We illustrate this phenomenon in
Fig. 3, where the averaged coupling function q(∆ϕ) is
shown for different values of Ω. As ω − Ω approaches
zero, the function flattens.
After a throughout treatment of one-dimensional os-

cillators, we demonstrate how to construct an effective
phase model for a general noise-driven excitable system,
which, contrary to the one-dimensional example above,
does not allow an analytic treatment. To illustrate this
construction, based on the observations of the oscilla-
tions, we take a noise-driven FitzHugh-Nagumo model
as a paradigmatic example of an excitable system:

ǫ
dx

dt
= x− x3

3
− y

dy

dt
= x+ a+ σξ(t) + b cosΩt .

(15)

Together with a noisy force σξ(t), that in the chosen
excitable case a = 1.1, ǫ = 0.05 induces oscillations, we
have incorporated a periodic force for which we determine
the effective phase coupling.
Although we do not have analytical expressions for the

mean frequency and the probability density, these charac-
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FIG. 4. (color online). Coupling functions Q(ψ,ϕ)
for the noise-induced oscillations in the FitzHugh-Nagumo
model (15), for b = 0.1 and two different values of noise:
at σ = 0.08 (left panel, here the mean frequency is ω ≈ 0.62),
and at σ = 0.11 (right panel, ω ≈ 0.95).

teristics can be straightforwardy obtained from the nu-
merical simulations. Adopting the simplest choice for
the protophase θ = arctan(y/x), and calculating ω and
Pm(θ), we perform a transformation to the phase ϕ ac-
cording to (5). With long enough time series φn and
ψn at hand, we determine the effective coupling function
Q(ψ, ϕ). For this we use a least square fit to approxi-
mate the dependence of the central difference (8) on ψ
and ϕ with a double Fourier series (see [9] for details).
Our numerical result Q(ϕ, ψ) is shown in Fig. 4 for two
representative noise intensities. For the chosen driving
frequency the amplitude of coupling decreases with in-
creasing noise intensity, due to more pronounced cancel-
lation of the deterministic and osmotic contributions to
the coupling. This is related to a frequency shift as has
been discussed with Eq. (14) and Fig. 3.
In summary, we have presented an effective phase

dynamics description of autonomous and driven noise-
induced oscillations. For oscillators based on one-
dimensional dynamics many features of the effective dy-
namics can be found analytically. For complex oscillat-
ing processes, where an analytical treatment is not possi-
ble, we propose to determine an effective phase dynamics
from synthetic or experimental observations of the sys-
tem under analysis, this method is exemplified with the
FitzHugh-Nagumo system. The main feature of the effec-
tive phase dynamics is that it intrinsically depends on the
noise intensity and on the regime observed. Thus, the ef-
fective dynamics obtained from one observation generally
cannot be used for a prediction of the dynamics at other
noise intensities, forcing amplitudes, or driving frequen-
cies. In a general context of noisy oscillating systems,
the effective phase approach gives a novel tool of reduc-
tional analysis where noise is not treated perturbatively.

Thereby it can be applied to systems where the noise is
not just an additional small factor but changes the dy-
namics qualitatively, such as excitable systems. In this
article we restricted our attention to single and periodi-
cally driven noise-induced oscillators. The approach can
be extended to the case of several coupled oscillators; this
study will be presented elsewhere.
The authors would like to thank M. Rosenblum and B.
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