DOI:10.3969/j.issn.1000-1298.2010.03.014

微尺度内流流场数值模拟方法及实验*

金 文^{1,2} 张鸿雁¹

(1. 西安建筑科技大学环境与市政工程学院, 西安 710055; 2. 西安航空技术高等专科学校动力工程系, 西安 710077)

【摘要】 以 Micro-PIV 实验测量的微尺度流场为基础,利用 Fluent 数值计算软件设计最佳微尺度流动数值模 拟方案。针对微尺度特性,采用设定壁面粗糙度和多孔介质模拟粗糙元的微尺度效应处理方法,利用 Fluent 软件 提供的 realizable $k - \varepsilon$ 模型和标准 $k - \omega$ 模型,分别在 Reynolds 数为 100 和 300 情况下对边长 600 µm 的矩形断面的 微通道内流场水流流动进行数值模拟,通过各种数值模拟方案下计算出的速度场与 Micro-PIV 实验结果的对比,得 出以多孔介质模拟壁面粗糙元、配合 realizable $k - \varepsilon$ 模型进行数值计算的方案是微尺度流场 CFD 的最佳方案。

关键词:微通道 流场 数值模拟 粗糙度 多孔介质 微尺度粒子图像测速

中图分类号: S275.6; 0357.5 文献标识码: A 文章编号: 1000-1298(2010)03-0067-05

Numerical Simulating Approaches and Experiment on Micro-scales Flow Field

Jin Wen^{1,2} Zhang Hongyan¹

(1. School of Environment and Municipal Engineering, Xi' an Architectural and Technological University, Xi' an 710055, China
 2. Department of Power Engineering, Xi' an Aeronautical College, Xi' an 710077, China)

Abstract

On the basis of micro-scales flow field detected by Micro-PIV experiment, Fluent numerical analytic computing software was utilized to design the optimum micro-scales flow simulating plan. In accordance with features of micro-scales, the micro-scales effect manipulating approaches setting wall roughness element and the porous medium simulating wall roughness element was adopted during the design. In the experiment, using realizable $k - \varepsilon$ model and standard $k - \omega$ model provided by Fluent software, the relative numerical simulations on the rectangle cross section micro-scales water flowing with side length of 600 µm in the case of Re = 100 and Re = 300 was done. With the comparison of velocity field computed from various numerical analyses and the fitting degree of Micro-PIV experimental outcome, the optimum plan that designing case via the porous medium simulating wall roughness element under the solution of realizable $k - \varepsilon$ was acquired.

Key words Micro-channel, Flow field, Numerical simulating, Roughness, Porous medium, Micro-PIV

引言

近年来许多学者致力于微尺度流动的研究, Mala G M、Qu W L 等研究发现微尺度流动在机理上 迥异于常规尺度流动^[1-2],王玮等通过管壁人为设 置粗糙元研究粗糙表面的微尺度流动规律^[3],陈强 等将微管道换热器抽象成多孔介质模型,利用修正 Darcy 方程得到了微管道换热器多孔介质模型双方 程模型和单方程模型的解析解^[4]。在这些微尺度 研究文献中多为理论解析和由理论分析指导下的数 值模拟,对微尺度效应下数值模型适用性研究较少, 主要原因是由于实验条件的限制,使数值研究缺乏 实验结果的验证。作者在前期研究基础上^[5-8],利 用 Micro-PIV 实验测量技术获取实验数据,并且进

收稿日期: 2009-07-23 修回日期: 2009-12-09

^{*}国家自然科学基金资助项目(10972176)和新疆维吾尔自治区科技攻关重点资助项目(200833121)

作者简介:金文,博士生,西安航空技术高等专科学校教授,主要从事微尺度流体动力学研究,E-mail: jinwen@ xihangzh. com

一步展开数值研究,寻找微尺度流场数值模拟中模型选择和相应微尺度效应处理方案,为微尺度流场应用性数值研究提供依据。

1 微尺度通道数值模拟方案

1.1 直微管内流数值模拟方案

直微管内流场流动模拟采用 Fluent 软件计算, 流动介质为水。矩形断面直管微通道内部流体流动 可以视为不可压缩流体的运动,因此直微管内流基 本控制方程由连续性方程和动量方程构成。

数值计算软件 Fluent 针对不同流动特性提供了 多种湍流模型,最简单完整的湍流模型是两方程模 型,目前应用广泛的是 $k - \varepsilon$ 模型和 $k - \omega$ 模型。考 虑到 realizable $k - \varepsilon$ 模型对于有强旋流或带有弯曲 壁面的流动具有良好的修正,标准 $k - \omega$ 模型可以应 用于墙壁束缚流动和自由剪切流动,在近壁自由流 中具有较高精度,因此,本文拟采用 realizable $k - \varepsilon$ 模型和标准 $k - \omega$ 模型分别结合微尺度效应处理方 案进行模拟计算,对比两种湍流模型模拟效果。

直微管入口条件设为速度入口,速度大小按照 对应流动的雷诺数计算取值;出口条件设为压力出 口,出口压力设为大气压;其他为壁面条件,壁面边 界使用无滑移条件,在近壁区采用标准壁面函数法 计算。

1.2 微尺度效应处理方案及对应网格划分

研究对象为矩形断面的直微管,断面边长为 600 μm。在前期的实验研究中,通过利用 Micro-PIV 实验测量已得到对应直微管内流场实验值,数值模 拟的直微管几何结构与实验试件结构完全一致,模 拟结果采用 Micro-PIV 实验值验证。

1.2.1 设置壁面粗糙度的几何模型

微尺度流动不同于常规尺度流动主要由于管道 狭窄、壁面粗糙所致,因此微尺度效应处理方案首先 考虑设置适当的壁面粗糙度,这种方法建模简单,网 格数少,模拟计算过程可节约计算机资源和计算时 间。在这种处理方案下建立的直微管几何模型包括 壁面和主流2个部分,采用 Gambit 软件建立模型并 划分网格,由于直微管断面形状为方管,因此采用 3-D 网格模型,因关注的微尺度效应由壁面粗糙度 造成,所以在壁面附近加密网格。直微管模型建立 的网格数约为45 万,网格模型如图1所示。

1.2.2 设置多孔介质模拟粗糙元的几何模型

对直微管表面粗糙度的模拟,采用 Fluent 软件 中的多孔介质作为壁面粗糙元具有良好的模拟效 果。具体做法是在直微管壁面粗糙元位置设置多孔 介质层,利用多孔介质的附加动量源项(粘性阻力

项和惯性阻力项)作用模拟直微管壁面附近的流动,其流动状态不同于主流,可实现微尺度化流动的 模拟。多孔介质层厚度的设定与管壁粗糙度直接相 关,大量计算证明多孔介质层厚度近似等于粗糙元 平均高度。实验中加工精度决定直微管试件壁面相 对粗糙度约为0.15,在数值模拟中设定多孔介质厚 度为0.15D(D 为直微管断面边长)。这一结论在边 长为400、600 和 800 μm 的 3 种直微管模拟计算中 均得到良好的模拟效果。设多孔介质方案下直微管 几何模型仍采用 Gambit 软件建立 3-D 模型并划分 网格,网格模型包括壁面、多孔介质和主流 3 个部 分,对于多孔介质区域加密网格,网格密度由壁面向 中心逐步变疏,模型网格总数约 80 万,网格结构如 图 2 所示。

2 微尺度通道 Micro-PIV 实验测量

2.1 实验装置

在微尺度效应的实验中,实验基础条件对研究 结果有很大影响,如试件加工精度、壁面粗糙度、测 量仪器精度等,而且它们造成实验结果的差异没有 明显的规律可循。因此,要想准确评价 CFD 的计算 质量,首先需要提高测试手段的精度水平。

实验装置由 Micro-PIV 测量系统、微流动驱动 系统以及微通道试件测量段 3 部分组成(图 3)。

Micro-PIV测量系统由激光器、CCD相机、同步器、显微镜头及相应光学元件组成。为了满足 Micro-PIV测量技术要求,其中激光光源采用美国

图 3 Micro-PIV 实验装置 Fig. 3 Micro-PIV experimental devices 1. 激光器 2. CCD 相机 3. 中继镜 4. 显微物镜 5. 溶液 容器 6. 压力表

NewWave 公司的 Mini: YAG 双脉冲激光器,工作频 率 15 Hz,最大脉冲能量 150 mJ;CCD 相机使用德国 Cooke 公司的 PCO. 1600 型,具有 1 600 × 1 200 像素 和14位灰阶动态范围,这是获取微通道流场细节的 关键:示踪粒子选择美国 Duke 公司的荧光微球,经 反复实验确定选用的荧光微球粒径为3 µm,其吸收 波长峰值在 532 nm 附近,激发波长为 610 nm;镜头 选用日本 Mitutoyo 公司的 Apo × 10 显微物镜,并加 装只允许波长 610 nm 红光透过的滤光装置和中继 镜。

0.8 0.8 Velmag 0.8 0.7 $\underset{\boldsymbol{\lambda}}{\operatorname{mm}}$ 0.6 y/mm 0.6 0.5 0.4 0.3 0.40.4 0.1 1.0 1.2 14 r/mm(a)

图 4

专门设计的微流动驱动系统由压缩空气源、压 力调节阀、压力表、贮液容器以及压缩空气管路和溶 液管路组成,通过调节压缩空气的进气压力来控制 微通道的流量。

直微管试件采用微机械雕刻工艺在透光度高的 耐高温有机玻璃上制作,过流断面为等边矩形,边长 为600 µm。实验中将微通道试件固定在一台二维 微型坐标架上,成像系统、座标架以及调节装置固定 于由特殊型材制作的实验台面上,以保证光路系统 精度。

2.2 实验测量结果

在 Re = 100 和 Re = 300 条件下,利用 Micro-PIV 分别测量直微管内流流场流动状况。首先使用显微 物镜和中继镜,调节 CCD 相机聚焦成像在微通道流 向中心面($Z = 300 \mu m$)处,获取微通道测量面流场 的粒子图,再采用 Insight 6.0 软件进行图像数据处 理,得到微尺度流场速度矢量图及速度云图(图4)。 图中显示微通道流场在流向方向上(X)速度均匀平 稳,在断面方向上(Y)速度变化层次清晰,呈管流速 度廓线态势,从流场速度矢量分布上看与理论分析 流动状况一致,该数据将作为验证直微管数值模拟 方案优劣的依据。

结果与分析 3

3.1 设置壁面粗糙度

在利用 Fluent 数值计算软件进行流场 CFD 模 拟时,设置壁面粗糙度参数是较为简单的方法,首先 采用该方法对直微管进行微尺度效应处理,参数取 值时考虑实验中直微管试件的加工精度,模拟计算 取壁面相对粗糙度为0.15。

在 Re = 100 时,采用设置壁面粗糙度的直微管 模型对其内通道流场利用 realizable $k - \varepsilon$ 模型和标 准 k-ω模型分别进行模拟计算,得到微通道流向

中心面流场分布,并与 Re = 100 的 Micro-PIV 实验 测量结果进行比较。为了精确量化对比2种数值 模拟结果与实验测量结果的吻合程度,分别取两 种数值模拟结果某一断面上的速度廓线与实验结 果断面上的平均速度廓线进行比较,比较结果见 图 5a,图中实线表示 realizable $k - \varepsilon$ 模型计算的速 度廓线,虚线表示标准 k-ω模型计算的速度廓 线,点表示实验值。由图 5a 分析可知,2 种模拟计 算结果存在差异, realizable $k - \varepsilon$ 模型计算值较接 近实验值,但在近壁面处,尤其在 y = 0.15D 和 0.85D 附近,实验值明显介于2种模型计算结果之

间,说明设置壁面粗糙度的微尺度效应处理方案 存在缺憾,由于微尺度管道壁面粗糙元高度对于

管径占有较大的比例,单纯采用设置壁面粗糙度 模拟微尺度管流是不够的。

图 5 设置壁面粗糙度方案

Fig. 5 Program of setting wall roughness

(a) Re = 100 (b) Re = 300

同方案下采用 realizable $k - \varepsilon$ 和标准 $k - \omega$ 的 2 个模型分别模拟计算 Re = 300 时的直微管流场,并 与Re = 300 条件下的 Micro-PIV 实验测量结果进行 比较。取直微管内流断面上的速度廓线的数值模拟 结果与实验结果同时显示在图 5b 上作比较,发现在 高雷诺数下采用标准 $k - \omega$ 模型模拟计算结果与实 验值十分接近,虽然在近壁面 0.15D 和 0.85D 处, 标准 $k - \omega$ 模型的数值解略微偏小,但整体趋势表明 它具有良好的模拟效果;而 realizable $k - \varepsilon$ 模型的数 值解与实验值相差较大,模拟效果不可靠。

综合来看,采用设置壁面粗糙度模拟微尺度管 流流动状态,在雷诺数较高条件下使用标准 $k - \omega$ 模 型计算具有较好的模拟效果,但随着雷诺数降低,标 准 $k - \omega$ 模型的模拟效果越来越差;与之相比,采用 realizable $k - \varepsilon$ 模型的模拟结果与实验值的偏差较 明显。在过去的数值模拟研究中也有人认为采用标 准 $k - \omega$ 模型模拟效果更好^[9],但该模型对计算机 资源需求较大,对于几何模型复杂、计算网格数多的 情况计算很难收敛,从微尺度进一步研究考虑,应寻 找应用范围广的微尺度效应处理方法。而微尺度效

应处理关键在于微通道壁面粗糙度的模拟,在大量 计算中发现,采用多孔介质模型模拟微通道的壁面 粗糙元十分有效。

3.2 设置多孔介质模拟粗糙元

多孔介质模型计算参数设定主要是介质中流动 阻力系数的确定,它包括粘性阻力系数和惯性阻力 系数。由于模拟的微尺度流动属于湍流,在湍流中 流体的惯性阻力远大于粘性阻力,因此只考虑惯性 阻力系数。对于简单均匀的多孔介质它可由多孔介 质动量方程中附加的动量源项确定,直通道惯性阻 力系数为

$$C_2 = -\frac{2\Delta p}{\rho u^2}$$

式中:ρ和 u 为直微管内流体的密度和流速;Δp 为直微管单位长度上的阻力,文献[10]证明粗糙微 通道阻力与光滑微通道阻力之比为 1.0~1.65,利 用此结论,对同结构光滑微通道阻力进行折算,得出 模拟微通道的阻力。

首先在 Re = 100 时,对多孔介质模型直微管采用 realizable $k - \varepsilon$ 模型和标准 $k - \omega$ 模型分别进行模

图 6 设置多孔介质模拟粗糙元方案 Fig. 6 Program of simulating wall roughness element by the porous medium (a) Re = 100 (b) Re = 300

拟计算,获取微通道流向中心面流场分布,与 Re = 100条件下 Micro-PIV 实验测量得出的流场分布共同示于图 6a。通过图 6a分析可知, realizable $k - \varepsilon$ 模型计算结果优于标准 $k - \omega$ 模型的计算结果,且前者与实验结果十分吻合。从速度廓线上,清晰可见每一个实验值均良好地落在 realizable $k - \varepsilon$ 模型计算的速度廓线上,尤其在呈现微尺度效应的特殊部位 y = 0.15D和 0.85D 附近,采用设置壁面粗糙度方案尚不能良好模拟,而采用多孔介质模型方案则解决了这个问题。为了进一步验证该方案对微尺度效应处理的可靠性,提高雷诺数再次采用该方案对直微管进行模拟计算,与对应实验值作比较。

Re = 300 时,采用两种湍流模型对基于多孔介 质作为壁面粗糙元的直微管进行数值计算,并与同 工况下 Micr-PIV 实验测量结果作比较,分析比较如 图 6b 所示。图 6b 再次表明 realizable $k - \varepsilon$ 模型的 模拟结果与实验值具有良好的吻合度,而标准 $k - \omega$ 模型的模拟效果相对较差,尤其在直微管近壁面附 近,realizable $k - \varepsilon$ 模型模拟的速度变化特征与实验 结果完全一致,再次证明多孔介质加 realizable $k - \varepsilon$ 模型适用于微尺度流场流动模拟。

但是在设置多孔介质模型下的微尺度数值计

算,不论雷诺数高或低,采用标准 k-ω 模型的模拟 结果均与实验值偏差较大,关键在壁面微尺度效应 处理上,与标准 k-ω 模型进行壁面函数计算不能匹 配,导致整个断面的速度廓线偏离实验值,模拟结果 失真。

4 结束语

对矩形断面的微尺度通道流场设计了 4 种方案 进行微尺度化数值模拟,并与同条件下 Micro-PIV 实验测量结果作比较,甄别模拟效果的有效性。采 用设置壁面粗糙度的微尺度化处理方案,在雷诺数 较高的情况下,使用标准 $k - \omega$ 模型数值模拟效果较 佳,但 $k - \omega$ 模型对计算机配置要求高,计算耗时,且 这种方案的适用范围窄,所以不是最佳选择。以多 孔介质抽象为壁面粗糙元的微尺度化处理方案,使 用 realizable $k - \varepsilon$ 模型进行数值计算,不论在高、低 雷诺数下均有良好的微尺度管流流场模拟效果,尤 其在壁面附近由于较高的粗糙元和剪应力作用造成 的速度变化,该方案均得到符合实际的模拟结果。 可见,在微尺度通道壁面合理设置多孔介质,再配合 realizable $k - \varepsilon$ 模型进行数值模拟是一种有效的微 尺度化计算方法。

- 参考文献
- 1 Mala G M, Li D Q. Flow characteristic of water in microtubes [J]. International Journal of Heat and Fluid Flow, 1999, 20(2):142~148.
- 2 Qu W L, Mala G M, Li D Q. Pressure-driven water flows in trapezoidal silicon microchannels [J]. Int. J. Heat and Mass Transfer, 2000, 43(3):353 ~ 364.
- 3 王玮,李志信,过增元.粗糙表面对微尺度流动影响的数值分析[J].工程热物理学报,2003,24(1):85~87. Wang Wei, Li Zhixin, Guo Zengyuan. Numerical simulation on of rough surface effects on microscale fluid flow[J]. Journal of Engineering Thermophysics, 2003, 24 (1):85~87. (in Chinese)
- 4 陈强,杨静宇,董涛,等.微管道换热器多孔介质模型分析及应用[J].机械工程学报,2004,40(4):108~113.
 Chen Qiang, Yang Jingyu, Dong Tao, et al. Analysis of porous medium model for microchannel heat sinks and its application [J]. Chinese Journal of Mechanical Engineering, 2004, 40(4):108~113. (in Chinese)
- 5 Wang H L, Wang Y. Influence of ribbon structure rough wall on the microscale Poiseuille flow [J]. Journal of Fluid Engineering, ASME, 2005, 127(6): 1 140 ~ 1 145.
- 6 Wang Haoli, Wang Yuan. Flow in the microchannel with rough wall: flow pattern and pressure drop [J]. Journal of Micromechanics and Microengineering, 2007, 17 (3): 586 ~ 596.
- 7 Wang Haoli, Wang Yuan. Influence of three-dimensional wall roughness on the laminar flow in microtube [J]. Heat and Fluid Flow, 2007, 28 (2): 220 ~ 228.
- 8 王元,金文,何文博. 锯齿型微通道内流流场的微尺度粒子图像测量[J]. 西安交通大学学报,2009,43(9):21~25.

Wang Yuan, Jin Wen, He Wenbo. Research on inflow velocity field in jagged micro-channel based on Micro-PIV[J]. Journal of Xi' an Jiaotong University, 2009, 43(9): 21 ~ 25. (in Chinese)

- 9 聂磊, 史玉升, 魏青松, 等. 基于灌水器流量的湍流模型适应性研究[J]. 节水灌溉, 2008(1): 13~17.
- Nie Lei, Shi Yusheng, Wei Qingsong, et al. Research on adaptability of different turbulent models based on flow discharge of the drip emitters [J]. Journal of Water Saving Irrigation, 2008(1): 13 ~ 17. (in Chinese)
- 10 Tso C P, Mahulikar S P. Experimental verification of the role of Brinkman number in microchannels using local parameters [J]. International Journal of Heat and Mass Transfer, 2000, 43(10):1837 ~1849.