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Light scattering by an oscillating dipole in a focused beam
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The interaction between a focused beam and a single classical oscillating dipole or a two-level

system located at the focal spot is investigated. In particular, the ratio of the scattered to incident

power is studied in terms of the oscillator’s scattering cross section and the effective focal area. Debye

diffraction integrals are applied to calculate it and results are reported for a directional dipolar wave.

Multipole expansion of the incident beam is then considered and the equivalence between this and

the Debye diffraction approach is discussed. Finally, the phase change of the electric field upon the

interaction with a single oscillator is studied.

PACS numbers: 42.50.Ct,03.65.Nk,32.50.+d,32.80.-t

INTRODUCTION

The realization of quantum networks and repeaters for quantum information science crucially depends on an efficient

interface between photons and single quantum systems [1]. Strong interaction has been achieved by coupling single

emitters to optical resonators [2, 3, 4] and has also been predicted for emitters located in waveguides where the light

is tightly confined in the transverse dimensions [5, 6, 7, 8, 9]. In free space, the question is to what extent photons

may interact with a single oscillating dipole [10, 11, 12]. Recent experiments have demonstrated that light focused on

single ions, molecules, or quantum dots may be attenuated in transmission by a few percents [13, 14, 15, 16, 17]. In

a recent theoretical study we have shown that a focused light beam can be perfectly reflected by a single oscillating

dipole located at the focal spot [18]. In this paper we investigate in more detail the cases where the beam is a focused

plane wave and a directional dipole wave. We discuss the equivalence between the multipole expansion and the Debye

diffraction approaches. Moreover, we compute the phase shift induced on the electric field by the dipole and find that

a few degrees are easily obtainable using realistic focusing parameters and off-resonance excitation.

The strength of the interaction between a beam and an oscillator can be expressed by K, the ratio of the scattered

to incident power. K can also be given as the ratio of two independent quantities, the scattering cross section σ and

the inverse of an effective focal area A [18, 19]

K =
Psca

Pinc
=

σ

A , (1)

σ and A depend exclusively on the oscillator and focusing setup properties, respectively. For a classical oscillator and

a two-level system (TLS) the cross section reads

σ =





σ0
Γ 2

4∆2 + Γ 2
, classical oscillator

σ0
Γ 2

1

4∆2 + Γ 2
1 + 2Ω2

, TLS ,

(2)

where we assumed that there is no damping other than by radiation. σ0 = 3λ2/(2π) depends solely on the wavelength

of the transition [20]. Γ results from radiation reaction for the classical oscillator [20], while Γ1 represents the Einstein

coefficient of spontaneous decay [21]. ∆ denotes the detuning from resonance and Ω is the Rabi frequency of the TLS,

which imposes saturation effects at stronger incident light.

For a point-like oscillator the scattered power depends solely on the field strength at the position of the oscillator.

Accounting for the electric nature of the interaction, the effective focal area can be given as the ratio of the power

transmitted through the focal plane (FP) and the electric energy density at the focal spot [18]

A =

∫
FP Sz d2r

2cWel(O)
=

∫
FP Sz d2r

Sz(O)
, (3)
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FIG. 1: a) The incident light propagating from left to right is focused onto an oscillating dipole located at the focal spot in

vacuo. GRS: Gaussian reference sphere, a: entrance-aperture radius, α: entrance half angle, β: collection half angle, f : focal

length, O: focal spot. b) Transmittance as a function of the laser detuning is displayed for a focused plane wave (FPW) with

α = β = π/3 and for a directional dipole wave (px) with α = β = π/2.

where Sz denotes the z component of the Poynting vector in the FP and Wel(O) is the electric energy density at

the focal spot O [22]. The integration is taken over the FP. The second equality holds for circular symmetry of the

incident field strength with respect of the z axis; a condition which, for instance, is obeyed by a focused plane wave

(FPW) but not by a directional dipole wave. Figure 1a) describes an ideal lens that projects the incident field onto

the Gaussian reference sphere (GRS), which represents the locus of equal phase of the incoming converging and also

for the outgoing diverging mode. Because the lens is assumed to be in the far-field region, the fields are tangential on

the GRS.

DEBYE DIFFRACTION

An established approach of calculating the field in the focal area is provided by the Debye diffraction integrals.

This approach was initiated by Debye using Green’s theorem [23] and was extended by Wolf using the method of

stationary phase [24]. For an incident plane wave the method was extensively applied by Richards and Wolf [22].

These considerations led to the Debye diffraction integral for the electric and magnetic fields in the focal area [22, 25]

E(r) = − ik

2π

∫

Σinc

Aeikr·sdΣ , H(r) = − ik

2πc

∫

Σinc

s× Aeikr·sdΣ , (4)

where A denotes the vectorial angular spectrum of the incident wave. k is related to the wavelength by k = 2π/λ. r

is the position in the focal area and s is the unit vector in the direction of the plane wave. The integration is carried

out over the incident solid angle Σinc bounded by the semiaperture angle α. Calculations are presented in Fig. 2 for

the case of a directional dipole wave indicated by px. Such a wave is constructed by considering the emission pattern

at the left hemisphere of the GRS of an electric dipole located at O and oriented along the x axis and by reversing

the propagation direction [26]. The angular spectra of the FPW [22, 27] and the px wave read

A =





fE0

√
cos θ (cosφ eθ − sin φ eφ) , FPW

fE0 (cos θ cosφ eθ − sin φ eφ) , px

0 , θ > α .

(5)

In Figs. 2a) and 2b), the Poynting vector component Sz and the electric energy density proportional to |Ex|2 are

displayed along the x and y axes in the FP. Note that the field components Ey and Ez are zero on these axes. Figure

2c) shows areas of positive and negative values of Sz in the FP, i.e. areas of forward and backward propagation. The

changes of direction are a signature of field vortices in the focal area, as reported for a FPW [25, 28]. In Fig. 2d)

the phase of the electric field relative to that of a plane wave is plotted for positions along the z axis. One notes a

characteristic phase anomaly in the neighborhood of the focal spot associated with a phase jump of π, which is also

termed Gouy phase [29, 30]. Furthermore there are oscillations, which do not vanish for increasing z displacements.
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FIG. 2: a) The z component of the Poynting vector Sz (full curve) and the electric energy density given as |Ex|
2 (dashed

curve) of a px wave along the x axis in the FP and normalized to their respective values at x = 0. b) Same as a) but along

the y axis. c) Contour plot of Sz in the FP. Bright and black areas refer to the Poynting vector in the positive and negative

z direction, respectively. d) Phase of the focused electric field Ex on the z axis relative to that of a plane wave. Note the

oscillatory behavior that does not vanish for large |z|-values. α = π/2 in all cases.

This behavior is singular for propagation along the z axis, while for directions increasingly tilted away from the z axis

the oscillations progressively die out at larger distances [23].

Using Eq. (3) we calculated A for four different cases, namely for the FPW, the px wave, the dipolar wave with the

generating dipole oriented along z axis, and for combined electric and magnetic generating dipoles directed along the

x and y axis, respectively [18]. Here we present, pars pro toto, the results for the electric field E(O) at the origin, the

effective focal area A, and the scattering ratio K for the px wave

E(O) = −i
2kfE0

3
F(α) ex ,

1

A =
k2

3π
F(α) , K0 = 2F(α) , (6)

where the subscript of K0 indicates that σ = σ0 is assumed. The px wave has the property that the three quantities

depend in the same way on the semiaperture angle α through

F(α) =
1

4

(
4 − 3 cosα − cos3 α

)
. (7)

As pointed out in Ref. [18], K0 reaches for α = π/2 the maximum possible value of 2, which also establishes the

maximum possible scattering ratio for a directional focused beam in free space. K0 > 1 indicates that the scattered

power is larger than the incident power. However, this does not violate the energy conservation law because of

destructive interference in the forward direction. Taking the interference into account the transmittance T , the ratio

of the transmitted and incident power, is given by

T = 1 −R = 1 − 1

2

σ

A , (8)

where R is the reflectance, the ratio of the back scattered to incident power. The factor of 1/2 in the second equality

accounts for the fact that equal amount of scattering takes place in the forward and backward directions. Based on

the procedure outlined in Ref. [18] we also determined the transmittance as a function of the semiaperture angle α
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FIG. 3: Transmittance T0 of a px wave as a function of the angles α and β as defined in Fig. 1a. The dashed curve indicates

the edge along the geometrical shadow boundary α = β.

and semicollection angle β

T0(α, β) = 1 − 1

16

(
4 − 3 cosα − cos3 α

) (
4 + 3 cos (max{α, β}) + cos3 (max{α, β})

)
, (9)

where the subscript to T0 indicates that σ = σ0 is assumed. Examples of T as a function of the detuning are presented

in Fig. 1b) for the FPW and for the px wave. Figure 3 displays a rapid decrease of T0 with increasing α and an edge

along the geometrical shadow boundary α = β, as for the FPW [18]. As shown in Eq. (9), T0 is invariant with respect

to β for β < α, while for β > α, T0 increases with β. Contrary to the FPW, T0(α, β) decreases monotonously with

increasing α and reaches the value of zero at α = π/2.

MULTIPOLE EXPANSION

Another approach convenient for the description of focused fields is given by a multipole expansion [27, 31, 32, 33, 34].

Adopting the notation of Bohren and Huffman [32] we write for the electric field in the most general form

E(r) =
∑

ℓ

ℓ∑

m=0

(Be,m,ℓMe,m,ℓ(r) + Ae,m,ℓNe,m,ℓ(r) + e → o) , (10)

where M e
o ,m,ℓ(r) and N e

o ,m,ℓ(r) are real valued and denote complete sets of magnetic and electric multipoles. B e
o ,m,ℓ

and A e
o ,m,ℓ are the corresponding coefficients. Assuming a linearly polarized field in front of the incident lens and

aligning the x axes to the incident field polarization the expansion in Eq. (10) can be restricted to Mo,1,ℓ(r) and

Ne,1,ℓ(r) multipoles for the electric field and to Me,1,ℓ(r) and No,1,ℓ(r) for the magnetic field, respectively.

The calculation of the coefficients requires some attention [35]. The source-free field mode may be considered as a

sum of the converging incoming and diverging outgoing field. Because the outgoing mode is purely a consequence of

the incoming mode, only the latter is needed for a unique determination of the coefficients. This concept was applied

for instance by Sheppard and Török [27], where the multipoles of the expansion were associated with spherical Hankel

functions. The direct expansion in terms of multipoles for the source-free field is also possible. However, in this case

the converging field at the entrance and the diverging field at the exit of the GRS have to be taken into account.

For this purpose the field symmetry on the GRS has to be considered [36, 37], which can be derived from the Debye

scattering integrals in Eqs. (4) when assuming positions diametral with respect to the origin

E(−r) = − ik

2π

∫

Σinc

Ae−ikr·s dΣ =

[
ik

2π

∫

Σinc

Aeikr·s dΣ

]
∗

= −E
∗(r) , (11)
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FIG. 4: Multipole expansion coefficients for the non-focused plane wave (PW) and the px wave. |Ae,1,ℓ|/E0 = |Bo,1,ℓ|/E0

(dots) are presented for the PW and |Ae,1,ℓ|/(E0fk) (dots) and |Be,1,ℓ|/(E0fk) (circles) for the px wave, respectively. For the

latter a semiaperture angle of α = π/2 was assumed.

which means that the field is antihermitian for diametral positions on the GRS. The corresponding relationship of

the field’s phase ϕ reads

ϕ(x, y, z) = −ϕ(−x,−y,−z)− π, mod 2π . (12)

The phase shift of −π demonstrates the phase anomaly in the neighborhood of the focal spot (see Fig. 2d) and it is

equal to the Gouy phase acquired when the beam traverses the focus.

Here we follow the approach of Borghi [38] and Borghi et al. [39] and expand the angular spectrum A of the

incident field in surface vector harmonics and substitute the expansion into Eqs. (4). This procedure assures that the

Debye-diffraction and multipole-expansion method are literally the same. We write for the expansion

A =
(−i)ℓ

2k

∞∑

ℓ=1

(
Bo,1,ℓM̃e,1,ℓ + iAe,1,ℓÑe,1,ℓ

)
, (13)

where M̃o,m,ℓ(θ, φ) and Ñe,m,ℓ(θ, φ) are real valued and complete sets of vectorial surface harmonics, which are

independent on the radial variable r. They are related to the spherical vector harmonics Y and Z by [20, 40]

Y
1
ℓ = i

(
2ℓ + 1

2πℓ(ℓ + 1)

)1/2 (
M̃e,1,ℓ + i M̃o,1,ℓ

)
,

Z
1
ℓ = i

(
2ℓ + 1

2πℓ(ℓ + 1)

)1/2 (
Ñe,1,ℓ + i Ño,1,ℓ

)
,

(14)

where Z
1
ℓ = s × Y

1
ℓ . Because of the completeness and orthogonality of the basis functions, the coefficients are given

by

B e
o ,1,ℓ = 2kiℓ−1 2ℓ + 1

2πℓ2(ℓ + 1)2

∫

Σinc

A · M̃ e
o ,1,ℓ dΣ ,

A e
o ,1,ℓ = −2kiℓ

2ℓ + 1

2πℓ2(ℓ + 1)2

∫

Σinc

A · Ñ e
o ,1,ℓ dΣ ,

where the prefactors result from normalization of the basis functions and from accounting of the Whittaker type

of transformation, which provides a relationship between surface vector harmonics and multipoles [41, 42]. For the

magnetic multipoles this relationship reads

M e
o ,1,ℓ(r) =

(−i)ℓ

4π

∫

4π

M̃ e
o ,1,ℓ(s)e

iks·rdΣ = jℓ(kr)M̃ e
o ,1,ℓ(θ, φ) , (15)

and analogously for the electric multipoles

N e
o ,1,ℓ(r) =

1

k
∇× M e

o ,1,ℓ(r) =
(−i)ℓ−1

4π

∫

4π

s × M̃ e
o ,1,ℓ(s)e

iks·rdΣ =
(−i)ℓ−1

4π

∫

4π

Ñ e
o ,1,ℓ(s)e

iks·rdΣ . (16)
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FIG. 5: Angular spectra A of the incident field according to Eq. (5) and approximations according to Eq. (13) are given by

dashed and full lines, respectively, for α = π/2. (a) FPW. (b) Dependence along the x and y direction, indicated by φ = 0 and

φ = π/2, respectively, for the px wave. The inset indicates the angle θ as it is considered for this figure. The summation of

terms is truncated to ℓmax = 8 and 16 in (a) and (b), respectively.

We finally write the fields in terms of multipoles

E(r) =

∞∑

ℓ=1

(Bo,1,ℓMo,1,ℓ(r) + Ae,1,ℓNe,1,ℓ(r)) , (17)

H(r) =
−i

c

∞∑

ℓ=1

(Bo,1,ℓNo,1,ℓ(r) + Ae,1,ℓMe,1,ℓ(r)) , (18)

and for completeness we also present expressions for the surface vector harmonics and multipoles

M̃ e
o ,1,ℓ = πℓ

− sinφ

cosφ
eθ − τℓ

cosφ

sin φ
eφ ,

Ñ e
o ,1,ℓ = τℓ

cosφ

sin φ
eθ + πℓ

− sinφ

cosφ
eφ ,

M e
o ,1,ℓ = jℓM̃ e

o ,1,ℓ ,

N e
o ,1,ℓ =

1

kr

(
ℓ(ℓ + 1)jℓπℓ

cosφ

sinφ
er + Sℓ Ñ e

o ,1,ℓ

)
,

where jℓ = jℓ(kr) is the spherical Bessel function. Sℓ is a related to jℓ, and πℓ and τℓ follow from the Legendre

polynomials P 1
ℓ as

Sℓ =
d(krjℓ(kr))

d(kr)
, πℓ =

P 1
ℓ (cos θ)

sin θ
, τℓ =

dP 1
ℓ (cos θ)

dθ
. (19)

In Fig. 4 we depict the coefficients Ae,1,ℓ and Bo,1,ℓ of the px wave for α = π/2, and compare them with the

coefficients of a non-focused plane wave (PW) [32]. We note that Ae,1,ℓ differs from zero for even ℓ except for ℓ = 1

while the Bo,1,ℓ coefficients differ from zero exclusively for odd ℓ. The fact that coefficients with ℓ > 1 do not vanish

for the px wave is somewhat surprising. However, these are required to maintain the propagation characteristics of a

directional wave and to guarantee power conservation throughout the space on the basis of a source-free focused field.

Figure 5 displays the quality of the expansion for the FPW and px wave when the number of terms is truncated. It

is apparent that quite a few terms are required for a decent reproduction of the angular spectra for α = π/2 and even

more terms are required for α < π/2.

Of special interest is the property that all multipoles are zero at the origin except the electric dipole mode N
(1)
e,1,1.

Therefore, in cases where the field at the origin only is relevant, the analysis can be simplified by decomposing the
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FIG. 6: Phase shift Φ of Eq. (26) in units of degrees as a function of the laser detuning. Results are plotted for the FPW and

for two different semiaperture angles α, as indicated.

incident field into dipolar and nondipolar modes. This concept was introduced by van Enk [33] and was considered

in Refs. [11, 18]. Ne,1,1 at the origin and in the far-field region reads [32]

N
(1)
e,1,1 = 2

3 êx, r = O ,

N
(3)
e,1,1 = ei(kr−π/2)

kr (cos θ cosφ êθ − sin φ êφ) , kr ≫ 1, z > 0 ,

(20)

where the superscripts (1) and (3) denote the source-free field with the spherical Bessel function and the outgoing

mode with the spherical Hankel function, respectively. The concept of field decomposition into dipolar and nondipolar

components becomes particularly useful when the scattered field Esca is considered, which in the case of a classical

dipole oriented along the x axis is given by

Esca(r) = −3

2
Einc(O)

Γ

2∆ + iΓ

eikr

kr
(cos θ cosφ êθ − sin φ êφ) , kr ≫ 1 . (21)

Inserting the expression

Einc(O) = Ae,1,1N
(1)
e,1,1(O) · ex , (22)

into Eq. (21), it is fairly easy to see that at resonance the dipole component of the incident field is exactly canceled

by the scattered field in the forward direction. Therefore, the outgoing field is given by

Eout = Einc + Esca = Einc − Ae,1,1
Γ

2∆ + iΓ

eikr

kr
(cos θ cosφ êθ − sinφ êφ) , (23)

where, apart from Einc, the coefficient Ae,1,1 is the only variable that depends on the focusing specifications. For the

FPW and the px wave, Ae,1,1 is given analytically as

Ae,1,1 =





−i
1

10
fkE0

(
8 − cos3/2 α (5 + 3 cosα)

)
, FPW

−i
1

4
fkE0

(
4 − 3 cosα − cos3 α

)
, px .

(24)

For a px wave with α = π/2, Ae,1,1/(fkE0) = 1 as shown in Fig. 4. Furthermore, by inserting Eqs. (20) and (24) into

Eq. (22) one sees that the electric field at the origin is the same as in Eq. (6), confirming that the Debye-diffraction

and the multipole-expansion methods yield identical results.

PHASE SHIFT BY SCATTERING

With the above considerations it is also easy to calculate the phase shift Φ imposed on the beam by a single oscillator

at the focal spot. The phase shift Φ is defined by

Φ = arg (Eout · E∗

inc) , (25)
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where E
∗

inc is introduced as a reference field for the detection of the phase shift. Making use of Eqs. (23) and (24)

and assuming that a detector is positioned on the z axis, we find

Φ = arg


1 − iΓ

2∆ + iΓ
×

1
10

(
8 − cos3/2 α (5 + 3 cosα)

)

1
4

(
4 − 3 cosα − cos3 α

)


 , FPW

, px ,
(26)

where an extra negative sign is introduced to account for the Gouy phase shift of π imposed on the incident field. Φ in

Fig. 6 shows a typical dispersive of behavior. It amounts to 5-15 degrees at the extremal points for semiaperture angles

accessible in experiments. The extremal points are located at approximately ∆/Γ = 1/2 and Φ decays only slowly

with increasing detuning. We expect that integration over a collection solid angle would not change substantially the

picture gained from Eq. (26) because of the coinciding phase fronts of the incident and scattered field.

CONCLUSIONS

We studied the scattering of a FPW and a px wave by a single oscillator, with emphasis on the equivalence between

the Debye diffraction and multipole expansion approaches. We systematically applied the concept of the GRS as

the locus of equal phases in the forward and backward direction and paid special attention to the calculation of the

multipole expansion coefficients on the basis of source-free fields. We thus derived an analytical expression T0(α, β)

for the transmittance of a px wave. We finally demonstrated that a considerable phase shift of a few degrees is

imposed on the light beam by a single oscillator at a detuning significantly larger than the linewidth. This property,

for instance, might be exploited for the non-resonant detection of single emitters.
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