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Abstract.
We evaluate the information capacities of a lossy bosonic channel with correlated noise.

The model generalizes the one recently discussed in [Phys. Rev. A 77, 052324 (2008)], where
memory effects come from the interaction with correlated environments. Environmental
correlations are quantified by a multimode squeezing parameter, which vanishes in the
memoryless limit. We show that a global encoding/decoding scheme, which involves input
entangled states among different channel uses, is always preferable with respect to a local
one in the presence of memory. Moreover, in a certain range ofthe parameters, we provide
an analytical expression for the classical capacity of the channel showing that a global
encoding/decoding scheme allows to attain it. All the results can be applied to a broad class of
bosonic Gaussian channels.

PACS numbers: 03.67.Hk, 03.65.Yz, 89.70.-a

1. Introduction

One of the main tasks of quantum information theory is the evaluation of the capacities
of quantum channels for the transmission of classical or quantum information. Recently,
a growing attention has been devoted to the study of quantum channels with memory.
Coding theorems were provided for a subset of memory channels [1], the so-called ‘forgetful
channels’. One can distinguishes the cases in which the output at thekth use of the channel
is influenced by the input at thek′th use, withk′ < k, as the models studied in [2]; and
those in which memory effects come from correlations among subsequent channel uses, as
the ones considered in [3, 4, 5, 6]. Here we consider the second case, which is also referred
to as ‘channel with correlated noise’. A correlation-free channel can be considered as an
ideal limit since correlations are unavoidable in physicalrealizations. Another motivation
for studying channels with correlated noise is the possibility of enhancing the information
capacities. There are indeed evidences of the possibility of amplifying the classical capacity
in both the cases of discrete [3] and continuous [4] variables quantum channels.

Here we consider a model of bosonic Gaussian channel in whichmemory effects come
from the interaction with a bosonic Gaussian environment. The model is a generalization of
the one discussed in [5] and it belongs to a family of channelspresented in [6]. Even though

http://arxiv.org/abs/0901.4969v2
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each channel belonging to this family is unitary equivalentto a memoryless one (in the sense
specified in [6]), the presence of energy constraints can break the unitary symmetry, leaving
the problem of capacities evaluation open. An instance of a channel belonging to that family is
obtained by specifying the state of the environment. Here weconsider a multimode squeezed
thermal state, determined by two parameters. The first parameter expresses the degree of
squeezing, which in turn determines the amount of correlations in the channel; the second
one is a temperature parameter expressing the mixedness of the state. It is clear that at zero
temperature the correlations in the multimode squeezed state are quantum, on the other hand
above a certain temperature the states becomes separable and the correlations are classical.

The choice of a Gaussian state for the environment makes in turns the channel Gaussian.
In this way, using [7, 8, 9, 10], we are able to evaluate, analytically or numerically,
the classical and quantum capacities of the memory channel.To emphasize the role of
correlations, we compare two different scenarios for encoding and decoding classical and
quantum information: in the first one, which we refer to as theglobal scenario, we allow
preparation of states at the input field which are entangled among different channel uses;
in the second one, called thelocal scenario, we only allow preparation of simply separable
states (i.e. uncorrelated) at the input field, moreover we donot allow the receiver to access the
correlations among the output modes.

The paper develops along the following lines. In section 2 wepresent the model
and define the global and the local encoding/decoding scenarios. In section 3 we present
analytical and numerical results for the classical, entanglement-assisted, and quantum
capacity. Conclusions and comments are drawn in section 4.

2. A model of lossy bosonic Gaussian channel with correlated noise

We consider an instance of the general model for a bosonic channel with correlated
noise presented in [6]. For any integern, its action is defined over a set ofn input
bosonic oscillators, with canonical variables{qk, pk}k=1,...n. A collection of ancillary modes
{Qk, Pk}k=1,...n, which play the role of the environment, is also needed. In the following we
refer to this set of oscillators as the input and environmentlocal modes. All the frequencies
are assumed to be degenerate and equal to one, together with~ = 1. The integerk labels the
sequential uses of the channel. At thekth use, thekth input mode is linearly mixed with the
kth mode of the environment at a beam splitter with given transmissivityη (see figure 1). In
the Heisenberg picture the channel transforms the input field variables as

q′k =
√

η qk +
√

1 − η Qk ,

p′k =
√

η pk +
√

1 − η Pk .
(1)

A constraint on the energy is required to avoid infinite capacities. We constraint the average
number of photons at the input field; for a givenN we require:

1

2n

n
∑

k=1

〈q2
k + p2

k〉in ≤ N +
1

2
. (2)
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Figure 1. A schematic picture of the model of lossy bosonic channel. Each input mode (left-
right line), representing one use of the channel, interactswith the corresponding environment
mode (top-bottom line) through a beam-splitter. To introduce correlations effects, environment
modes are considered in a correlated state.

Memory effects appear in the presence of correlations amongthe local modes of the
environment. For a given integern, a channelL(n) over then input modes is defined. In the
Schroedinger picture its action is

L
(n)(ρin) = trenv

(

U ρin⊗ρenv U †
)

(3)

whereρin indicates the state of the input field,U is the unitary transformation at then beam
splitters,ρenv indicates the state of the environment field andtrenv the partial trace over the
environment variables. The channel is correlation-free ifthe state of the environment is simply
separable (i.e. uncorrelated) in the basis of the local mode.

We assume the environment to be in a Gaussian state, which in turns makes the channel
Gaussian. Here we consider an environment covariance matrix of the following block-
diagonalform:

V =

(

〈QQT〉 〈QPT+PQT

2
〉

〈QPT+PQT

2
〉 〈PPT〉

)

:=

(

T +
1

2

)

(

esΩ
O

O e−sΩ

)

, (4)

whereQ := (Q1, Q2, . . . Qn)T andP := (P1, P2, . . . Pn)
T. This is abona fidecovariance

matrix as long as the matrixΩ is symmetric andT ≥ 0. To fix the ideas we chose an × n

matrixΩ of the following form:

Ω =























0 1 0 . . . 0 0

1 0 1
. . . 0 0

0 1 0
. . . 0 0

...
...

. . . . . .
...

...

0 0 0
. . . 0 1

0 0 0 . . . 1 0























. (5)

In this way, forT = 0, we recover the model analyzed in [5]. The physical interpretation is
that of a multimode squeezed thermal state, that can be obtained by applying the multimode
squeezing operator (see [11])

U(s) = exp

[

−i
s

2

n−1
∑

k=1

(QkPk+1 + PkQk+1)

]

(6)
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to a thermal state withT average excitations per mode. Since the memory of the channel
comes from squeezing in the environment we refer to the parameters (or |s|) as thememory
parameter; for s = 0 the environment is a correlation-free thermal state. The integern can be
interpreted as the characteristic length of correlations.To evaluate lower bounds we need the
eigenvalues and eigenvectors of the matrixΩ which were presented in [5]. The eigenvalues
are

λj = 2 cos

(

πj

n + 1

)

for j = 1, . . . n, (7)

where the corresponding eigenvectors have components

vj,k =

√

2

n + 1
sin

(

jkπ

n + 1

)

for k = 1, . . . n. (8)

Let us introduce the global variables{Q̃j, P̃j}j=1,...n, defined from the eigenvectors ofΩ

as:

Q̃j :=
∑

k vj,k Qk ,

P̃j :=
∑

k vj,k Pk .
(9)

It follows that the environment covariance matrix is diagonal in this basis; it can be written as
a direct sum

Ṽ =

n
⊕

j=1

Ṽj (10)

of single-mode covariance matrices of the form:

Ṽj =

(

〈Q̃2
j〉 〈 Q̃jP̃j+P̃jQ̃j

2
〉

〈 Q̃jP̃j+P̃jQ̃j

2
〉 〈P̃ 2

j 〉

)

=

(

T +
1

2

)

(

esj 0

0 e−sj

)

, (11)

with sj := sλj. Hence, moving to the global variables, the state of the environment is the
direct product ofn modes, each being in a squeezed thermal state, with squeezing parameter
sj andT thermal photons.

2.1. Global versus local scenario

In the following sections we estimate the quantum and classical capacities for a given value
of the correlation lengthn. To emphasize the role of correlations we compare two different
encoding/decoding scenarios.

The first scenario is a global one, in the sense that it involves preparation of the input field
in states which are (in general) entangled among different uses of the channel (i.e. among the
local modes). The second scenario is a local one, involving preparation of the input field in
states which are simply separable among the channel uses; moreover we do not allow the
receiver to access the correlations among different local modes at the output field.

As to the global scenario, we introduce the following globalvariables at the input field

q̃j :=
∑

k vj,k qk ,

p̃j :=
∑

k vj,k pk ,
(12)
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(notice that this set of variables is ‘parallel’ to the environment global variables defined in (9))
and consider states of the input field which are factorized inthe basis of these global modes.
These states are in general entangled among channel uses (i.e. among local modes). In terms
of the global variables, the channel factorizes as

L
(n) =

⊗

j

L̃
(1)
j , (13)

where the channel̃L(1)
j acts on thejth global mode of the input field. In the Heisenberg picture

L̃
(1)
j transforms thejth global input variables as:

q̃′j =
√

η q̃j +
√

1 − η Q̃j ,

p̃′j =
√

η p̃j +
√

1 − η P̃j .
(14)

Furthermore, due to the form of the transformation (12) (a linear passive one, see
Appendix A), the energy constraint is preserved in the basisof global variables:

1

2n

n
∑

j=1

〈q̃2
j + p̃2

j〉in ≤ N +
1

2
. (15)

It is worth noticing that the channelL̃
(1)
j is a lossy bosonic channel in which one (global) mode

is mixed with an environment mode which is squeezed (it is described by the covariance
matrix (11)). Hence then-use channel is unitary equivalent to a correlation-free channel,
which is the product ofn single-mode channels.

Concerning the local scenario let us say that, as long as the correlations among the local
modes at the output field are neglected, the environment can be effectively described by a
state which is factorized in the local modes. For eachk, by integrating the environment
Wigner function over the local variables{Qh, Ph} for h 6= k, we obtain the Wigner function
of thekth local mode of the environment. The corresponding state isthermal-like, the average
number of photon can be computed from (9), yielding:

Teff(k) =

(

T +
1

2

)

[

n
∑

j=1

|vj,k|2esj

]

− 1

2
. (16)

By the symmetries ofvj,k andsj, this can be rewritten as follows:

Teff(k) =







(2T + 1)
(

∑n/2
j=1 |vj,k|2 cosh sj

)

− 1
2

if n is even,

(2T + 1)
(

∑(n−1)/2
j=1 |vj,k|2 cosh sj

)

+ 1
2
|v(n+1)/2,k|2 − 1

2
if n is odd.

(17)

Hence in the local scenario the state of the environment can be substituted with a thermal state
with k-dependent temperature. Notice that, as one can expect, thelocal temperatureTeff(k)

monotonically increases with|s|.

3. Evaluating capacities

This section is devoted to the evaluation of classical and quantum capacities of the channel
L

(n). This requires the constrained optimization of several entropic quantities, as the Holevo
information, the quantum mutual information, the coherentinformation.
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Let us recall that the von Neumann entropyS(ρ) of a n mode Gaussian stateρ can be
computed as follows:

S(ρ) =
n
∑

a=1

g(νa − 1/2) (18)

where

g(x) := (x + 1) log2 (x + 1) − x log2 x (19)

andνa are then symplectic invariants, i.e. the symplectic eigenvalues ofthe covariance matrix
(see e.g. [12]). In the case of a single mode with covariance matrix σ the only symplectic
invariant isdet(σ), and the symplectic eigenvalue isν =

√

det(σ). It is worth remarking that
both in the global and local scenarios introduced above the evaluation of the entropy of the
n-mode fields reduces to the single-mode case.

As to the evaluation of the classical capacity of a quantum channelL, one is led to the
Holevo information, defined as

χ(L, {ρα, dpα}) := S(L(ρ)) −
∫

dpαS(L(ρα)), (20)

whereρα denotes the quantum state encoding the classical variableα, with probability density
dpα, andρ is the ensemble state,ρ =

∫

dpαρα.
The evaluation of quantum capacity and entanglement assisted classical capacity involves

the coherent information, defined as

J(L, ρ) := S(L(ρ)) − S(L, ρ). (21)

The quantity denotedS(L, ρ) is the entropy exchange, defined as

S(L, ρ) := S(L ⊗ I(ρ̃)), (22)

whereρ̃ is a purification of the stateρ involving an ancillary system, andI is the identical
channel acting on the ancilla.

It is worth remarking that Gaussian encoding it is known to beoptimal for classical [8, 9]
and quantum capacities [10] in the memoryless case. Motivated by these results we are going
to estimate the capacities of the memory channel using Gaussian encoding.

Concerning the global scenario, the maximization of the entropic functions is performed
over a set of Gaussian states which are simply separable withrespect to the global modes.
Notice that these states are in general entangled in the local basis, i.e. entangled among
channel uses. In particular, we consider covariance matrices of the form

σ =
n
⊕

j=1

σj , (23)

whereσj is the covariance matrix of thejth global input mode. For realrj andtj ≥ 0, thejth
covariance matrix is chosen as follows:

σj =

(

〈q̃2
j 〉 〈 q̃j p̃j+p̃j q̃j

2
〉

〈 q̃j p̃j+p̃j q̃j

2
〉 〈p̃2

j〉

)

:=

(

tj +
1

2

)

(

erj 0

0 e−rj

)

. (24)
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Under the action of the channelL̃
(1)
j this matrix is mapped into the covariance matrix

σ′
j = ησj + (1 − η)Vj. (25)

The energy constraint can be written in terms of the input covariance matrix as

1

2n

n
∑

j=1

tr (σj) ≤ N +
1

2
(26)

that is

1

n

n
∑

j=1

(

tj +
1

2

)

cosh rj ≤ N +
1

2
. (27)

It can be useful to write the energy constraints in two steps,namely
(

tj +
1

2

)

cosh rj = Nj +
1

2
(28)

1

n

n
∑

j=1

Nj ≤ N. (29)

Concerning the local scenario, as noticed above, the channel reduces to a correlation-free
channel with thermal environment, with ak-dependent effective temperature. For this kind
of channel, expressions for the (one-shot) classical and quantum capacities are available in
literature [7, 10] and will be used as a term of comparison.

3.1. Holevo information

First, let us compute an upper bound for the classical capacity of the memory channel. This
can be obtained by the maximal output entropy. For givenn, we have

C ≤ 1

n
sup S(L(n)(ρ)) ≤ 1

n

n
∑

j=1

sup S(L̃
(1)
j (ρj)) =: C>, (30)

where the superior is over all input statesρ (ρj) satisfying the energy constraints, which is
reached by Gaussian input states. The maximum output entropy is reached by input states as
in (24). The contribution of thejth global mode to the output entropy reads

S(L̃
(1)
j (ρj)) = g

(√

det (σ′
j) − 1/2

)

, (31)

where

det (σ′
j) = (η(tj + 1/2)erj + (1 − η)(T + 1/2)esj)

×
(

η(tj + 1/2)e−rj + (1 − η)(T + 1/2)e−sj
)

.

For sufficiently small values ofs, it is possible to write an explicit solution. The maximum
output entropy is reached in correspondence of the optimal values satisfying

(

topt
j +

1

2

)

e±ropt

j = Nopt
j +

1

2
∓ 1 − η

η

(

T +
1

2

)

sinh sj, (32)

with

Nopt
j = N − 1 − η

η

(

T +
1

2

)

cosh sj +
1 − η

η

(

M(s, T ) +
1

2

)

, (33)
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and

M(s, T ) :=
1

n

(

T +
1

2

)

(

n
∑

k=1

cosh (sk)

)

− 1

2
. (34)

The range in which these values are optimal is determined by the relationstopt
j ≥ 0, namely:

(

Nopt
j +

1

2

)2

−
(

1 − η

η

)2(

T +
1

2

)2

sinh2 sj ≥
1

4
. (35)

In this range the upper bound can be computed analytically, yielding

C> = g [ηN + (1 − η)M(s, T )] . (36)

Let us now compute a lower bound for the classical capacity. Motivated by the fact that
it is optimal for the memoryless channel [8] we consider encoding in displaced states:

̺α = D(α)̺D†(α). (37)

Here̺ denotes a Gaussian seed state, not necessarily the vacuum, of the n mode input field.
As to the global scenario, its covariance matrix is assumed to be as in equations (23), (24).
The displacement operator can be decomposed in the basis of global modes as

D(α) =

n
⊕

j=1

Dj(αj), (38)

whereαj = (yq,j + iyp,j)/
√

2 is the displacement amplitude of thejth global input mode,
andα := (α1, . . . αn). The classical noise is assumed to be Gaussian with zero meanand
covariance matrixY of the following form:

Y =

n
⊕

j=1

Yj , (39)

where, forcq,j, cp,j ≥ 0,

Yj =

(

〈y2
q,j〉 〈yq,jyp,j〉

〈yq,jyp,j〉 〈y2
p,j〉

)

:=

(

cq,j 0

0 cp,j

)

. (40)

At the jth global mode the classical noise induces an ensemble statedescribed by the
covariance matrix

σ̄j := σj + Yj, (41)

that, under the action of the channelL̃
(1)
j , is mapped into

σ̄′
j = ησ̄j + (1 − η)Vj. (42)

In our setting, the lower bound for the classical capacity iscomputed by maximizing the
Holevo information

χ =

n
∑

j=1

χj =

n
∑

j=1

g
(√

det(σ̄′
j) − 1/2

)

− g
(√

det(σ′
j) − 1/2

)

(43)



Capacities of lossy bosonic channel with correlated noise 9

over the4n parameters{tj , rj, cq,j, cp,j} under the energy constraints

1

2
(cq,j + cp,j) + (tj + 1/2) cosh rj = Nj +

1

2
(44)

1

n

n
∑

j=1

Nj ≤ N. (45)

For given values ofN , η ∈ (0, 1), T and for sufficiently small values ofs we can write
an explicit solution. The maximum Holevo information is reached in correspondence of the
following optimal values of the parameters:topt

j = 0, ropt
j = sj ,

copt
q,j = Nopt

j +
1

2
− esj

2
− 1 − η

η

(

T +
1

2

)

sinh sj (46)

and

copt
p,j = Nopt

j +
1

2
− e−sj

2
+

1 − η

η

(

T +
1

2

)

sinh sj, (47)

whereNopt
j is as in equation (33).

The range ofs for which these values are optimal is defined by the conditions copt
q,j ≥ 0,

copt
p,j ≥ 0. In that range, we are able to provide the following analytical lower bound for the

classical capacity per channel use:

C< = g [ηN + (1 − η)M(s, T )] − g [(1 − η)T ] . (48)

For T = 0, this improves the lower bound computed in [5]. From the lower bound we can
deduce that, besides the trivial casesη(1 − η) = 0, the classical capacity monotonically
increases with|s|. Moreover, it is worth noticing that, atT = 0, the lower bound (48)
coincides with the upper bound (36). Hence, in the intersection of their ranges of validity
the analytical upper and lower bounds are strict and the expression in (48) is the capacity
of the memory channel at zero environment temperature. It iseasy to see that the range of
validity of the upper bound (35) contains the one of the lowerbound, thus the lower bound
in (48) is strict in the whole range of its validity atT = 0. Notice that the results can be
extended to the limitn → ∞ as in [5]. For higher values of|s| one can look for a numerical
solution. Figure 2 shows the analytical and numerical lowerbound as function of the memory
parameter for several values ofη andT .

It is interesting to consider the limit|s| → ∞ corresponding to ‘infinite correlations’. Let
us consider the termχj in (43) coming from the contribution of thejth global mode. Without
loss of generality, we can assumesj > 0. In the limit sj ≫ 1 we can write the following
asymptotic expressions:

det(σ′
j) ≃ η(1 − η)

(

T +
1

2

)(

tj +
1

2

)

esj−rj + O(e−sj), (49)

det(σ̄′
j) ≃ η(1 − η)

(

T +
1

2

)[(

tj +
1

2

)

e−rj + cp,j

]

esj + O(e−sj). (50)

By noticing that

lim
x→∞

[g(x) − (log2 x − log2 e)] = 0, (51)
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Figure 2. The plots show the lower bounds for the classical capacity, for n = 10, as function
of the memory parameter|s|. In (a) atT = 0, where the lower bound is strict, for different
values ofη, from bottom to topη varies from0.1 to 0.9 by steps of0.2. In (b) atη = 0.9

for different values ofT , from top to bottomT varies from0 to 5 by steps of1. The solid
lines refer to the global scenario, the tick ones refer to theanalytical solution in the region in
which it is available. The lower bounds for the local scenario are plotted in dashed lines. The
maximum average number of excitations per mode in the input field isN = 8.

we obtain the following asymptotic expression for thejth term in the Holevo information:

χ∞j = lim
s→∞

χj =
1

2
log2

(

1 +
cp,je

rj

tj + 1/2

)

. (52)

For given value ofNj, from the last expression one obtains that the maximum of themutual
information is reached fortopt

j = 0, ropt
j = ln(2Nj + 1), copt

q,j = 0, andcopt
p,j = sinh ropt

j ,
yielding the following value for thejth contribution to the classical capacity:

C<
∞j = max

{tj ,rj ,cq,j ,cp,j}
χ∞

j = log2 (2Nj + 1). (53)

Summing overj we obtain the following expression for the capacity per channel use:

C<
∞ =

{

log2 (2N + 1) if n is even,
n−1

n
log2 (2N + 1) + 1

n
{g [ηN + (1 − η)T ] − g [(1 − η)T ]} if n is odd.

(54)

The presence of an extra term for oddn comes from the contribution of thesj = 0 term and it
leads to the oscillations of the Holevo information with thenumber of uses already observed
in [5]. However, the relative amplitude of these oscillations becomes negligible as the number
of uses increases. Interestingly enough, in the limit of perfect memory the maximal Holevo
information is determined solely by the value ofN , i.e. by the energy constraints. The
asymptotic lower bound can be reached by homodyne detection(see [13]).

To conclude this section, let us mention that a lower bound concerning the local scenario
can be obtained by the following expression (see [6]):

C< =
1

n
max
{Nk}

{

n
∑

k=1

g[ηNk + (1 − η)Teff(k)] − g[(1 − η)Teff(k)] | 1

n

n
∑

k=1

Nk = N

}

. (55)
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This lower bound saturates the channel capacity forTeff = 0, see [8], which is obtained for
s = 0, T = 0. This bound is plotted in figure 2 together with the lower bound computed in
the global scenario.

3.2. Coherent information, quantum mutual information

The problem of evaluating the quantum capacity is greatly simplified by the fact that the
channelL(n) is degradable forη ∈ [1/2, 1] and anti-degradable forη ∈ [0, 1/2). It follows
that the coherent information is additive forη ∈ [1/2, 1] and the quantum capacity vanishes
for η ∈ [0, 1/2[ (see [14, 15, 10]). It is easy to recognize that this propertyis shared by all the
Gaussian memory channels of the kind presented in [6]. For the same reason, in the global
scenario, then-mode channel reduces to the single-mode case as

sup
ρ

J(L(n), ρ) = sup
{ρj}

n
∑

j=1

J(L̃
(1)
j , ρj), (56)

with the proper energy constraint.
For the quantum capacity, and for the entanglement-assisted classical capacity, we need

to evaluate the entropy exchange of the channelL̃
(1)
j . It follows from [10], and from [7, 9] that

it is sufficient to consider Gaussian input states. Numerical analysis shows that the choice of
input state with covariance matrix of the form (24) is optimal. The input state at thejth global
mode, with covariance matrix as in (24), can be purified into atwo mode Gaussian state with
covariance matrix:

τj =











aj 0 xj 0

0 bj 0 −xj

xj 0 bj 0

0 −xj 0 aj











(57)

where

aj := (tj + 1/2)erj , bj := (tj + 1/2)e−rj , xj :=
√

ajbj − 1/4. (58)

The action of the channel̃L(1)
j ⊗ I leads to the output covariance matrix:

τ ′
j =

(

Aj CT

j

Cj Bj

)

:=











ηaj + (1 − η)cj 0
√

ηxj 0

0 ηbj + (1 − η)dj 0 −√
ηxj√

ηxj 0 bj 0

0 −√
ηxj 0 aj











(59)

where

cj := (T + 1/2)esj , dj = (T + 1/2)e−sj . (60)

The symplectic eigenvalues of the covariance matrix in (59)are:

νj,± =
1√
2

√

Ij ±
√

I2
j − 4 det (τ ′

j) (61)

where

Ij := det (Aj) + det (Bj) + 2 det (Cj). (62)
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Figure 3. The plots show the numerically evaluated quantum capacity,for n = 10, as function
of the memory parameter|s|. In (a) atT = 0 for different values ofη, from bottom to topη
varies from0.6 to 0.9 by steps of0.1. In (b) atη = 0.9 for different values ofT , from top to
bottomT varies from0 to 1.5 by steps of0.5. The solid lines refer to the global scenario, the
dashed lines to the local one. The maximum average number of excitations per mode in the
input field isN = 8.

Hence, the contribution of thejth global mode to the coherent information reads

Jj = g
(√

det(σ′
j) − 1/2

)

− g(νj,+ − 1/2) − g(νj,− − 1/2). (63)

The constrained maximization of the total coherent information gives the quantum capacity
of the memory channel per channel use:

Q =
1

n
max

{

n
∑

j=1

Jj

}

, (64)

where the maximum is over the parameters{rj , tj} under the energy constraints (27). The
results of numerical optimization are plotted in figure 3.

A simple expression can be written in the limit of infinite correlations|s| ≫ 1. For
sj > 0, we can write the following asymptotic expressions for the symplectic eigenvalues:

νj,+ ≃
√

η(1 − η)

(

tj +
1

2

)(

T +
1

2

)

esj−rj + O(e−sj/2) (65)

and

νj,− ≃ 1

2
+ O(e−sj/2). (66)

Analogous expressions can be obtained forsj < 0. Taking in account the asymptotic
expression in (49), it follows that the coherent information vanishes in the limit|sj| → ∞:

J∞j = lim
s→∞

Jj = 0. (67)

Hence, we can write the following expression in the limit of infinite correlations:

Q∞ =

{

0 if n is even,
δ
n

if n is odd.
(68)
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The finite term

δ = g(N ′) − g

(

D + N ′ − N − 1

2

)

− g

(

D − N ′ + N − 1

2

)

, (69)

where

N ′ := ηN + (1 − η)T (70)

and

D :=
√

(N + N ′ + 1)2 − 4ηN(N + 1), (71)

comes from the contribution of the global mode withsj = 0 (see [7]); however, this
contribution becomes negligible ifn ≫ 1.

The entanglement-assisted classical capacity is obtainedmaximizing the quantum mutual
information:

Ce =
1

n
max

{

n
∑

j=1

Ij

}

(72)

where

Ij = g(tj) + Jj. (73)

The results of numerical maximization are plotted in figure 4. In the limit of infinite memory,
and forsj 6= 0, the contribution of the channelL̃

(1)
j to the quantum mutual information is

I∞j = lim
|sj |→∞

Ij = g(tj). (74)

Notice that this asymptotic expression is independent of the transmissivityη and the
temperature parameterT . Summing overj we obtain:

Ce∞ =

{

g(N) if n is even,
g(N) + δ

n
if n is odd.

(75)

As for the quantum capacity the termδ comes from the contribution of the global mode with
sj = 0, this contribution becomes negligible ifn ≫ 1.

Concerning the local scenario, figures 3, 4 show in dashed lines the quantum and assisted
capacity computed applying the formulas in [7].

4. Conclusion and comments

We have presented analytical and numerical results for the capacities of a lossy bosonic
Gaussian channel with correlated noise. To emphasize the role of correlations, we have
compared two different scenarios. The global one allows preparation of states at the input
field which are entangled among different channel uses.

For our channel model we have shown that the global scenario is optimal in the presence
of memory. In particular, we have shown that, in a certain range of the parameters, it allows
to enhance the classical capacity over the memoryless (correlation-free) channel. The optimal
seed state of equation (37) turns out to be entangled as shownby figure 5 where the von
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Figure 4. The plots show the numerically evaluated entanglement-assisted classical capacity,
for n = 10, as function of the memory parameter|s|. In (a) atT = 0 for different values of
η, from bottom to topη varies from0.1 to 0.9 by steps of0.2. In (b) atη = 0.9 for different
values ofT , from top to bottomT varies from0 to 6 by steps of1. The solid lines refer to the
global scenario, the dashed lines to the local one. The maximum average number of excitations
per mode in the input field isN = 8.

0 1 2 3 4 5
0

2

4

s

<
S

>

Figure 5. The plot shows the von Neumann entropy of the single-mode reduced state, obtained
from the optimal seed state (see (37)), averaged over all the1 : (n − 1) partitions. This is for
n = 10, atT = 0 andη = 0.9. The tick line refers to the analytical solution. The maximum
average number of excitations per mode in the input field isN = 8.

Neumann entropy of the reduced state, averaged over all the1 : (n − 1) partitions, is plotted.
The global scenario also allows to enhance the entanglement-assisted classical capacity, at
least forη < 0.5. Moreover, it slows down the decrement of the quantum capacity, being the
latter a decreasing function of the memory parameter. It is worth noticing that all the results
can be generalized to a broad class of bosonic Gaussian channels with correlated noise. This
channels are those defined by an environment covariance matrix that can be diagonalized by
a transformation which is symplectic and orthogonal (see Appendix A).

Finally, we comment on the role of the environment temperature. From the analytical
and numerical results we can deduce that increasing the temperature of the environment is
qualitatively equivalent to decreasing the beam splitter transmissivity. Hence, by increasing
the environment temperature more noise is injected in the channel without any qualitative
change in the behavior of its capacities. It is also worth noticing that, for fixed nonvanishing
value of the squeezing parameters, by increasing the temperature the environment state makes
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Figure 6. For n = 2, the contour plots show: (a) the lower bound for the classical
capacity, (b) the von Neumann entropy of the reduced state ofthe optimal seed state, (c)
the quantum capacity and (d) the entanglement-assisted classical capacity, as function of the
parameters determining the state of the two-mode environment: the memory parameter and
the temperature parameter. The value of the transmissivityis η = 0.9, the maximum average
number of excitations per mode in the input field isN = 8. The black line indicates the
boundary between the region in which the state of the environment is separable (on the left)
and entangled (on the right).

a transition from entangled to separable. However, from thepoint of view of the channel
capacities we do not find any evidence of this transition. In particular, all the (analytical
and numerical) results are smooth functions of the environment parameters, moreover no
qualitative difference is found in the pattern of the capacities at the transition form classical
to quantum correlations. As an illustrative example we present in figure 6 some plots for the
case of two channel uses.
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Appendix A. Capacities of a broad class of bosonic Gaussian channels with correlated
noise

In the global scenario the channelL
(n) is unitary equivalent to a correlation-free channel

which is the product ofn single-mode channels. This equivalence was already discussed
in [6], however here the unitary equivalence preserves the form of the energy constraints.
This property belongs to a large class of Gaussian memory channels. All the qualitative
features regarding capacities are shared by all the channels belonging to this class. These
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channels are those defined by an environment covariance matrix which is diagonalized
by an orthogonal transformation which is also symplectic (in optics this is called passive
transformation). Let us recall that the action of such a transformation on the phase space
coordinates(Q1, Q2, . . . Qn, P1, P2, . . . Pn)T is by a matrix of the form (see e.g. [12])

O =

(

X Y

−Y X

)

, (A.1)

with

XX
T + YY

T = I, (A.2)

XY
T − YX

T = O. (A.3)

It follows that the global scenario discussed here for the model defined by the environment
covariance matrix in (4) can be equally introduced for all the covariance matrices of the
following form

V =

(

XDQX
T + YDP Y

T
YDP X

T − XDQY
T

XDP YT − YDQXT XDP XT + YDQYT

)

, (A.4)

where the diagonal matricesDQ, DP satisfy the Heisenberg principle, namely

DQDP ≥ I

4
. (A.5)

The class of covariance matrices of the form (A.4) contains all the pure state covariance
matrices and all the mixed states which are obtained by applying a squeezing transformation
to a thermal state. For these states the global scenario can be defined as in section 2.1; all
the results concerning the global scenario can be straightforwardly extended, including its
optimality to achieve the classical and quantum capacity.
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