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Abstract.

We evaluate the information capacities of a lossy bosorémohl with correlated noise.
The model generalizes the one recently discussed in [Pleys A7, 052324 (2008)], where
memory effects come from the interaction with correlategimmments. Environmental
correlations are quantified by a multimode squeezing paemnmwhich vanishes in the
memoryless limit. We show that a global encoding/decodaigme, which involves input
entangled states among different channel uses, is alwaferpble with respect to a local
one in the presence of memory. Moreover, in a certain rangkeoparameters, we provide
an analytical expression for the classical capacity of thanael showing that a global
encoding/decoding scheme allows to attain it. All the risstéin be applied to a broad class of
bosonic Gaussian channels.

PACS numbers: 03.67.Hk, 03.65.Yz, 89.70.-a

1. Introduction

One of the main tasks of quantum information theory is thduaten of the capacities
of quantum channels for the transmission of classical onguma information. Recently,
a growing attention has been devoted to the study of quantuamrels with memory.
Coding theorems were provided for a subset of memory chaijfiglthe so-called ‘forgetful
channels’. One can distinguishes the cases in which thaibatghekth use of the channel
is influenced by the input at th€th use, witht’ < k, as the models studied ihl[2]; and
those in which memory effects come from correlations amarggsquent channel uses, as
the ones considered inl[3],/4,5, 6]. Here we consider the secase, which is also referred
to as ‘channel with correlated noise’. A correlation-fréecnel can be considered as an
ideal limit since correlations are unavoidable in physiedlizations. Another motivation
for studying channels with correlated noise is the posghbif enhancing the information
capacities. There are indeed evidences of the possibfléynplifying the classical capacity
in both the cases of discreté [3] and continuaus [4] varegleantum channels.

Here we consider a model of bosonic Gaussian channel in whehory effects come
from the interaction with a bosonic Gaussian environmehte hodel is a generalization of
the one discussed inl[5] and it belongs to a family of chanpedsented in [6]. Even though
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each channel belonging to this family is unitary equivaterda memoryless one (in the sense
specified in[[6]), the presence of energy constraints caakifee unitary symmetry, leaving
the problem of capacities evaluation open. An instance b&acel belonging to that family is
obtained by specifying the state of the environment. Hereavisider a multimode squeezed
thermal state, determined by two parameters. The first peteanexpresses the degree of
squeezing, which in turn determines the amount of coramatin the channel; the second
one is a temperature parameter expressing the mixedndss sfate. It is clear that at zero
temperature the correlations in the multimode squeezéel ata quantum, on the other hand
above a certain temperature the states becomes separdhleamrrelations are classical.

The choice of a Gaussian state for the environment makesria the channel Gaussian.
In this way, using[[7/8[19/ 10], we are able to evaluate, dilty or numerically,
the classical and quantum capacities of the memory chanmhelemphasize the role of
correlations, we compare two different scenarios for emgpand decoding classical and
guantum information: in the first one, which we refer to as ghabal scenario we allow
preparation of states at the input field which are entanghedng different channel uses;
in the second one, called thacal scenarig we only allow preparation of simply separable
states (i.e. uncorrelated) at the input field, moreover weal@llow the receiver to access the
correlations among the output modes.

The paper develops along the following lines. In secfibn 2 psesent the model
and define the global and the local encoding/decoding simsnatn sectiorl B we present
analytical and numerical results for the classical, erlf@ngnt-assisted, and quantum
capacity. Conclusions and comments are drawn in section 4.

2. A model of lossy bosonic Gaussian channel with correlated noise

We consider an instance of the general model for a bosonianghawith correlated
noise presented ir_[[6]. For any integer its action is defined over a set of input
bosonic oscillators, with canonical variablgg., p }x—1..... A collection of ancillary modes
{Qk, Pr}r=1,.n, Which play the role of the environment, is also needed. énfetlowing we
refer to this set of oscillators as the input and environnhesdl modes All the frequencies
are assumed to be degenerate and equal to one, togethédr with The integelk labels the
sequential uses of the channel. At ttth use, theth input mode is linearly mixed with the
kth mode of the environment at a beam splitter with given massivity ) (see figurél). In
the Heisenberg picture the channel transforms the inpuatVegliables as

G = VN +V1I-1Qk,

Pe = NPk +V1-1P;.
A constraint on the energy is required to avoid infinite cépes: We constraint the average
number of photons at the input field; for a givAnwe require:

1 1

2 2
%;<Qk +pi)in < N + b% (2)

(1)

n



Capacities of lossy bosonic channel with correlated noise 3

ENVIRONMENT

% _

il
E =)
B » | &
Z 2
= o

Figure 1. A schematic picture of the model of lossy bosonic channethiaput mode (left-
right line), representing one use of the channel, intenaittsthe corresponding environment
mode (top-bottom line) through a beam-splitter. To introeloorrelations effects, environment
modes are considered in a correlated state.

Memory effects appear in the presence of correlations antedocal modes of the
environment. For a given integer a channelt™ over then input modes is defined. In the
Schroedinger picture its action is

g(n) (pin) - trenv (u pin® Penv UT) (3)

wherep;, indicates the state of the input field,is the unitary transformation at thebeam
splitters, p.,., indicates the state of the environment field ang, the partial trace over the
environment variables. The channel is correlation-fréledfstate of the environmentis simply
separable (i.e. uncorrelated) in the basis of the local mode

We assume the environment to be in a Gaussian state, whiamis ithakes the channel
Gaussian. Here we consider an environment covariance xmattrine following block-
diagonalform:

([ @Qn) (e 1\ (e O
V‘(<—Q‘”;PQT> (PPT) )'_ (”5)( 0 ) ?

whereQ = (Q1,Qs,...Q,)" andP := (P, P,...P,)". This is abona fidecovariance
matrix as long as the matri® is symmetric and” > 0. To fix the ideas we choserax n
matrix §2 of the following form:

01 0 ... 00
10 1 00
N ®)
00 0 " 01
00 0 ... 120

In this way, forT' = 0, we recover the model analyzed in [5]. The physical intagiren is
that of a multimode squeezed thermal state, that can benelokdy applying the multimode
squeezing operator (seée [11])

n—1
.S
U(s) = exp —ig E (QrPry1 + PeQri1) (6)
k=1
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to a thermal state witl" average excitations per mode. Since the memory of the channe
comes from squeezing in the environment we refer to the peteam (or |s|) as thememory
parameteyfor s = 0 the environment is a correlation-free thermal state. Thegigrn can be
interpreted as the characteristic length of correlatidiosevaluate lower bounds we need the
eigenvalues and eigenvectors of the maftiwhich were presented inl[5]. The eigenvalues
are

mj ,
A =2 for j=1,... 7
j=2cos () for j=1.om @
where the corresponding eigenvectors have components
2 Jkm
k= i for k=1,...n. 8
Vj n+lsm<n+1) ) (8)

Let us introduce the global variablé§);, P;},—, ..., defined from the eigenvectors Gf
as:
Qj = Zk Uj,k Q (9)
By o= vk B
It follows that the environment covariance matrix is diaglin this basis; it can be written as
a direct sum

V@, (10)

of single-mode covariance matrices of the form:

@y @Ry 1y (e 0
V”'_<<—@f’5ffﬂ‘@j> (7 (re3) (5 L)

with s; := s\;. Hence, moving to the global variables, the state of therenment is the
direct product of» modes, each being in a squeezed thermal state, with squgeiameter
s; and7’ thermal photons.

2.1. Global versus local scenario

In the following sections we estimate the quantum and ataksiapacities for a given value
of the correlation length. To emphasize the role of correlations we compare two differ
encoding/decoding scenarios.

The first scenario is a global one, in the sense that it inggbveparation of the input field
in states which are (in general) entangled among differses of the channel (i.e. among the
local modes). The second scenario is a local one, involviegaration of the input field in
states which are simply separable among the channel usespweo we do not allow the
receiver to access the correlations among different locales at the output field.

As to the global scenario, we introduce the following glokeiables at the input field

Qi = 2 Vik e, (12)
by = Zkvj,k:pka
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(notice that this set of variables is ‘parallel’ to the enviment global variables defined i (9))
and consider states of the input field which are factorizetienbasis of these global modes.
These states are in general entangled among channel @sesr(ang local modes). In terms
of the global variables, the channel factorizes as

o) — ® le) 7 (13)

J

where the channélg.l) acts on theth global mode of the input field. In the Heisenberg picture
Eg.l) transforms theth global input variables as:

G = VNG +vI-nQ;, (14)
B o= ik +vI—nb;.
Furthermore, due to the form of the transformatign] (12) (@edr passive one, see
[Appendix A), the energy constraint is preserved in the baisigobal variables:

1 - 2 -2 1
- . Y. << —.
o 2 (@G +Dj)in <N+ 5 (15)

J=1

It is worth noticing that the channélg.l) is alossy bosonic channel in which one (global) mode
is mixed with an environment mode which is squeezed (it iidesd by the covariance
matrix (I1)). Hence thei-use channel is unitary equivalent to a correlation-freanciel,
which is the product of, single-mode channels.

Concerning the local scenario let us say that, as long asotinelations among the local
modes at the output field are neglected, the environment eaeffbctively described by a
state which is factorized in the local modes. For e&clby integrating the environment
Wigner function over the local variablds),, P,} for h # k, we obtain the Wigner function
of thekth local mode of the environment. The corresponding stdtesisnal-like, the average
number of photon can be computed frdm (9), yielding:

T (k) = (T+ %) > |vj7k|2e%'] - % (16)
j=1

By the symmetries of; ;, ands;, this can be rewritten as follows:

(2T + 1) E;ﬁ |v; x]? cosh sj) -3 if n is even,

(T +1) (X5 [vgl? cosh s; ) + Sloguan 2f* = 5 if nis odd.

Teg (k) = a7
Hence in the local scenario the state of the environment easubstituted with a thermal state
with k-dependent temperature. Notice that, as one can expedtddileemperaturel g (k)
monotonically increases wits|.

3. Evaluating capacities

This section is devoted to the evaluation of classical arahtium capacities of the channel
£ This requires the constrained optimization of severalogit quantities, as the Holevo
information, the quantum mutual information, the coherefdrmation.
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Let us recall that the von Neumann entropfp) of an mode Gaussian stagecan be
computed as follows:

S(p) = gva—1/2) (18)
a=1
where
g(x) == (x+1)logy (z+ 1) — xlog, = (19)

andy, are then symplectic invariants, i.e. the symplectic eigenvaluabefcovariance matrix
(see e.g.[[12]). In the case of a single mode with covariana&ix the only symplectic
invariant isdet(o ), and the symplectic eigenvaluesis= /det(o). It is worth remarking that
both in the global and local scenarios introduced above thkiation of the entropy of the
n-mode fields reduces to the single-mode case.

As to the evaluation of the classical capacity of a quantuamokI £, one is led to the
Holevo information, defined as

M&@M%D:ﬂam—/@ww%» (20)

wherep,, denotes the quantum state encoding the classical variaklgh probability density
dp., andp is the ensemble state,= [ dp,pa.

The evaluation of quantum capacity and entanglement adsikissical capacity involves
the coherent information, defined as

The quantity denoted (£, p) is the entropy exchange, defined as
S(&,p) =5(£®7(p)), (22)

wherep is a purification of the state involving an ancillary system, an@ is the identical
channel acting on the ancilla.

It is worth remarking that Gaussian encoding it is known toptmal for classical[g,19]
and quantum capaciti€s [10] in the memoryless case. MetiMay these results we are going
to estimate the capacities of the memory channel using @ausscoding.

Concerning the global scenario, the maximization of theogmt functions is performed
over a set of Gaussian states which are simply separabler@ggiect to the global modes.
Notice that these states are in general entangled in thé basss, i.e. entangled among
channel uses. In particular, we consider covariance negto€the form

o= @ aj, (23)
j=1

whereo; is the covariance matrix of thgh global input mode. For real andt; > 0, the jth
covariance matrix is chosen as follows:

(@ (e o
%‘<@¥ﬂ> ) )’G”G)(oem>' (24)
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Under the action of the channéj.l) this matrix is mapped into the covariance matrix

o; =noj+ (1 =n)Vj. (25)
The energy constraint can be written in terms of the inpuadance matrix as
1 & 1
- t < Z
5 r(o;) <N+ 5 (26)
j=1
that is
1 & 1 1
E;(tj%—ﬁ) coshrj§N+§. 27)
It can be useful to write the energy constraints in two stepmely
1 1
<tj + 5) coshr; = N; + 5 (28)
1 n
- > N, <N (29)
j=1

Concerning the local scenario, as noticed above, the cheetheces to a correlation-free
channel with thermal environment, withkadependent effective temperature. For this kind
of channel, expressions for the (one-shot) classical amttgm capacities are available in
literature [7] 10] and will be used as a term of comparison.

3.1. Holevo information

First, let us compute an upper bound for the classical capatithe memory channel. This
can be obtained by the maximal output entropy. For givewe have

C < —supS (£™(p ZsupS () pi)) =:C~, (30)

where the superior is over all input staue$pj) satisfying the energy constraints, which is
reached by Gaussian input states. The maximum output gnisapached by input states as
in 24). The contribution of thgth global mode to the output entropy reads

S (p3)) = g (1/det (o) = 1/2) (31)
where
det (0}) = (n(t; +1/2)e” + (1 —n)(T +1/2)e™)
X (n(tj +1/2)e7 + (1 —n)(T+ 1/2)€_Sj) )

For sufficiently small values o, it is possible to write an explicit solution. The maximum
output entropy is reached in correspondence of the optiaiakg satisfying

1 opt 1 1 - 1
(t;?pt + 5) e:l:?"j — N;pt + 5 F— ) (T —+ 2) sinh Sj, (32)

with
1— 1 1— 1
Noet — v 2" T+ = coshsj—i-—77 M(s, T)+ =), (33)
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and

M(s,T) := % (T + %) (Z COSh(Sk)> - % (34)

k=1
The range in which these values are optimal is determinetiéayeﬂationst;’-pt > 0, namely:
o I\ /1=n)\? 0N ., 1
(ij + 5) - (T T"— 5 sinh Sj Z Z (35)
In this range the upper bound can be computed analyticadiging
C” =g [N + (1 —n)M(s,T)]. (36)

Let us now compute a lower bound for the classical capacitgtidted by the fact that
it is optimal for the memoryless channkel [8] we consider elirg in displaced states:

0o = D(a)oD'(a). (37)

Here o denotes a Gaussian seed state, not necessarily the vadutln@nanode input field.
As to the global scenario, its covariance matrix is assurodiketas in equations (23], (24).
The displacement operator can be decomposed in the badsbal ghodes as

D(a) = @Dj(aj), (38)

wherea; = (y,; + iy,,;)/V2 is the displacement amplitude of thth global input mode,
anda := (aq,...q,). The classical noise is assumed to be Gaussian with zero amehn
covariance matrix” of the following form:

Y=Y, (39)
j=1
where, fore, ;, ¢, ; > 0,
Y = (Ya,) <Z/q,j§/p,j> [ Cas 0 . 40)
<yq,jyp,j> <yp7j> 0 Cp7j

At the jth global mode the classical noise induces an ensembled#atgibed by the
covariance matrix

5']' = Uj"‘)/}', (41)
that, under the action of the chamilép, is mapped into
0; =no; + (L—=n)V;. (42)

In our setting, the lower bound for the classical capacigoisiputed by maximizing the
Holevo information

X = ixj - ig ( det(o") — 1/2) _g ( det(o")) — 1/2) (43)

j=1
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over thedn parametergt;, r;, ¢, ;, ¢, ;} under the energy constraints

1 1

5 (Caj +6pg) + (t +1/2) coshry = Nj + 5 (44)

1 n

- > N, <N, (45)
j=1

For given values ofV, n € (0,1), T and for sufficiently small values of we can write
an explicit solution. The maximum Holevo information ischad in correspondence of the
following optimal values of the parameter§™ = 0, ™" = s,

o o 1 e 1-—n 1\ .
ng»t = ijt + TR <T+ 5) sinh s; (46)
and
1 oes  1- 1
CZZF:N;pt+§—€2 +Tn (T_'_i) SiHth, (47)
whereN?" is as in equatior (33).

J
The range ok for which these values are optimal is defined by the concﬁt&@@ﬁ >0,

c;f}t > 0. In that range, we are able to provide the following anagltlower bound for the
classical capacity per channel use:

C==ghN + @ =n)M(s,T)] —g[(1 —n)T7]. (48)

ForT = 0, this improves the lower bound computed|in [5]. From the lobh@und we can
deduce that, besides the trivial casgs — ) = 0, the classical capacity monotonically
increases withs|. Moreover, it is worth noticing that, & = 0, the lower bound[(48)
coincides with the upper bound (36). Hence, in the intersedf their ranges of validity
the analytical upper and lower bounds are strict and theessjon in[(4B) is the capacity
of the memory channel at zero environment temperature. dasy to see that the range of
validity of the upper bound(35) contains the one of the lol@und, thus the lower bound
in (48) is strict in the whole range of its validity & = 0. Notice that the results can be
extended to the limit — oo as in [5]. For higher values 9| one can look for a numerical
solution. FiguréR shows the analytical and numerical Idweeamd as function of the memory
parameter for several valueswpandT'.

It is interesting to consider the limit| — oo corresponding to ‘infinite correlations’. Let
us consider the termg; in (43) coming from the contribution of thah global mode. Without
loss of generality, we can assumg> 0. In the limits; > 1 we can write the following
asymptotic expressions:

det () ~ n(1 —n) (T + %) (tj + %) e 7" 4+ O(e™%), (49)

1 1
det(57) ~n(1 —n) (T + 5) l(tj + 5) e i 4 cp,]} e’ +0(e™*).  (50)
By noticing that
lim [g(z) — (logy # — log, €)] = 0, (51)

r—00
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Figure 2. The plots show the lower bounds for the classical capadity; f= 10, as function
of the memory parametés|. In (a) at7 = 0, where the lower bound is strict, for different
values ofp, from bottom to topy varies from0.1 to 0.9 by steps 010.2. In (b) atn = 0.9
for different values off’, from top to bottonil” varies from0 to 5 by steps ofl. The solid
lines refer to the global scenario, the tick ones refer tcathaytical solution in the region in
which it is available. The lower bounds for the local scemarie plotted in dashed lines. The
maximum average number of excitations per mode in the inplati§ N = 8.

we obtain the following asymptotic expression for ittle term in the Holevo information:
1 Cp €'
o = i =1 14+ 2|, 52
For given value ofV;, from the last expression one obtains that the maximum oifrthial
information is reached fof’™ = 0, ri* = In(2N; + 1), ¢ = 0, andc)’’ = sinhr{™,
yielding the following value for thgth contribution to the classical capacity:
C3; = max x5 =log, (2N; +1). (53)
t5:751Cq,5:Cp,j

Summing overj we obtain the following expression for the capacity per clenise:

o< = { log, (2N +1) if nis even, (54)

2=Llog, 2N + 1)+ L {g[nN + (1 —=n)T| — g[(1 = n)T]} if nis odd.

The presence of an extra term for oddomes from the contribution of the = 0 term and it
leads to the oscillations of the Holevo information with thember of uses already observed
in [5]. However, the relative amplitude of these oscillasdecomes negligible as the number
of uses increases. Interestingly enough, in the limit ofgeémMmemory the maximal Holevo
information is determined solely by the value df, i.e. by the energy constraints. The
asymptotic lower bound can be reached by homodyne detgsi@i13]).

To conclude this section, let us mention that a lower boumteming the local scenario
can be obtained by the following expression (see [6]):

1

c< = - %123}({ gInNe + (1 = n)Tea (k)] — g[(1 — n)Tea (k)] | %ZNk = N} - (55)
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This lower bound saturates the channel capacitylfer= 0, see [[8], which is obtained for
s = 0, T = 0. This bound is plotted in figurld 2 together with the lower bdewomputed in
the global scenario.

3.2. Coherent information, quantum mutual information

The problem of evaluating the quantum capacity is greatyp$ified by the fact that the
channel™ is degradable fory € [1/2,1] and anti-degradable foy € [0,1/2). It follows
that the coherent information is additive fpre [1/2, 1] and the quantum capacity vanishes
forn € [0,1/2[ (seel[14/ 15, 10]). It is easy to recognize that this propsrghared by all the
Gaussian memory channels of the kind presentedlin [6]. Fosdéime reason, in the global
scenario, thes-mode channel reduces to the single-mode case as

sup J(£ = sup Z J(L J ,pJ (56)

P {pj} i

with the proper energy constraint.

For the quantum capacity, and for the entanglement-adsitdssical capacity, we need
to evaluate the entropy exchange of the chaliiﬁél It follows from [10], and from[[7|, 9] that
it is sufficient to consider Gaussian input states. Numeaoalysis shows that the choice of
input state with covariance matrix of the form124) is optinfne input state at thgth global
mode, with covariance matrix as in_{24), can be purified inte@mode Gaussian state with
covariance matrix:

aj 0 x; O
0 b

_ ' 57
TJ l’j 0 bj 0 ( )
0 —ZIZ'j 0 a]
where
= (t; +1/2)e", b; = (t; +1/2)e” "7, x;:=/a;b; —1/4. (58)
The action of the channé]g-l) ® J leads to the output covariance matrix:
na; + (1 —n)c; 0 NGET 0
7= Aj CJT — 0 nbj + (1 - n)dj 0 _\/ﬁxj (59)
J Cj Bj \/ﬁflfj 0 bj 0
0 —/Nx; 0 a;
where
=(T+1/2)e%, dj=(T+1/2)e . (60)

The symplectic eigenvalues of the covariance matrikinh €58)
1 [ .
Vj,i:ﬁ\/ljj: Ij2—4det(7'j’) (61)

I; == det (A;) + det (B;) + 2det (C}). (62)

where
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(@) (b)

Figure3. The plots show the numerically evaluated quantum capdoity, = 10, as function

of the memory parametés|. In (a) at7" = 0 for different values of), from bottom to top;
varies from0.6 to 0.9 by steps of.1. In (b) atn = 0.9 for different values off", from top to
bottom7" varies from0 to 1.5 by steps of).5. The solid lines refer to the global scenario, the
dashed lines to the local one. The maximum average numbeidégons per mode in the
input field isN = 8.

Hence, the contribution of thgh global mode to the coherent information reads

Ji = g (\Jdet(0}) = 1/2) = gv;e = 1/2) = g0~ = 1/2). (63)
The constrained maximization of the total coherent infdramagives the quantum capacity
of the memory channel per channel use:

Q:%max{zn:Jj}, (64)
j=1

where the maximum is over the parametérs, ¢;} under the energy constrainfs{27). The
results of numerical optimization are plotted in fighte 3.

A simple expression can be written in the limit of infinite eeations|s| > 1. For
s; > 0, we can write the following asymptotic expressions for theglectic eigenvalues:

Vi + ~ \/7](1 — 7]) <tj -+ %) (T —+ %) esi—ri 4 O(e—Sj/2> (65)

1
Vj’_ ~ 5 + O(e_sj/2>. (66)

and

Analogous expressions can be obtained §or< 0. Taking in account the asymptotic
expression in[(49), it follows that the coherent informati@nishes in the limits;| — oo:

Jooj = lim J; = 0. (67)
Hence, we can write the following expression in the limitrfinite correlations:
0 if niseven,
Qo = { S if nis odd. (68)
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The finite term

5:g(N,)_g<D+N’2—N—1)_g(D—N’;N—l)) (69)
where

N :=yN+(1-nT (70)
and

D:=\/(N+N+1)2—4nN(N + 1), (71)

comes from the contribution of the global mode with = 0 (see [[T]); however, this
contribution becomes negligiblesif > 1.

The entanglement-assisted classical capacity is obtamaadnizing the quantum mutual
information:

1 n
CezgmaX{Z[j} (72)
7j=1
where

The results of numerical maximization are plotted in figurén4he limit of infinite memory,
and fors; # 0, the contribution of the channéj§1) to the quantum mutual information is

j
|sj|—oc

Notice that this asymptotic expression is independent ef tlansmissivityn and the
temperature parametér Summing ovelj we obtain:

g(N) if niseven,
= . 7
Ceoo { g(N)+ 2 if nis odd. (75)
As for the quantum capacity the telrcomes from the contribution of the global mode with
s; = 0, this contribution becomes negligiblerif>> 1.
Concerning the local scenario, figuré§13, 4 show in dashed time quantum and assisted
capacity computed applying the formulaslin [7].

4. Conclusion and comments

We have presented analytical and numerical results for #padaties of a lossy bosonic
Gaussian channel with correlated noise. To emphasize teeofocorrelations, we have
compared two different scenarios. The global one allowgamation of states at the input
field which are entangled among different channel uses.

For our channel model we have shown that the global scersaoiptimal in the presence
of memory. In particular, we have shown that, in a certaimgeaof the parameters, it allows
to enhance the classical capacity over the memoryless(ation-free) channel. The optimal
seed state of equatioh (37) turns out to be entangled as shyMigure[% where the von
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(@) (b)

Figure 4. The plots show the numerically evaluated entanglemenstagsclassical capacity,
for n = 10, as function of the memory paramete}. In (a) at7 = 0 for different values of
7, from bottom to top; varies from0.1 to 0.9 by steps 0f).2. In (b) atn = 0.9 for different
values of?’, from top to bottoni” varies from0 to 6 by steps ofi. The solid lines refer to the
global scenario, the dashed lines to the local one. The mariaverage number of excitations
per mode in the input field &/ = 8.

<S>
N

Figure5. The plot shows the von Neumann entropy of the single-modecextistate, obtained
from the optimal seed state (s€€l(37)), averaged over all tHe — 1) partitions. This is for
n = 10, at7 = 0 andn = 0.9. The tick line refers to the analytical solution. The maximu
average number of excitations per mode in the input field is: 8.

Neumann entropy of the reduced state, averaged over all tlie — 1) partitions, is plotted.
The global scenario also allows to enhance the entangleassigted classical capacity, at
least forn < 0.5. Moreover, it slows down the decrement of the quantum capdsing the
latter a decreasing function of the memory parameter. Iltaglwnoticing that all the results
can be generalized to a broad class of bosonic Gaussianealkamith correlated noise. This
channels are those defined by an environment covariancéret can be diagonalized by
a transformation which is symplectic and orthogonal [sepéekglix 4).

Finally, we comment on the role of the environment tempeeatdrrom the analytical
and numerical results we can deduce that increasing theetatope of the environment is
qualitatively equivalent to decreasing the beam split@ngmissivity. Hence, by increasing
the environment temperature more noise is injected in tleamdl without any qualitative
change in the behavior of its capacities. It is also worthamag that, for fixed nonvanishing
value of the squeezing parameteby increasing the temperature the environment state makes
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Figure 6. Forn = 2, the contour plots show: (a) the lower bound for the classica
capacity, (b) the von Neumann entropy of the reduced statbeobptimal seed state, (c)
the quantum capacity and (d) the entanglement-assistssicdh capacity, as function of the
parameters determining the state of the two-mode enviratintke memory parameter and
the temperature parameter. The value of the transmissvity= 0.9, the maximum average
number of excitations per mode in the input fieldNs = 8. The black line indicates the
boundary between the region in which the state of the enmient is separable (on the left)
and entangled (on the right).

a transition from entangled to separable. However, frompibiat of view of the channel
capacities we do not find any evidence of this transition. drtipular, all the (analytical
and numerical) results are smooth functions of the enviemtnparameters, moreover no
qualitative difference is found in the pattern of the capesiat the transition form classical
to quantum correlations. As an illustrative example we @nés figurd 6 some plots for the
case of two channel uses.
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Appendix A. Capacities of a broad class of bosonic Gaussian channels with correlated
noise

In the global scenario the chann@{™ is unitary equivalent to a correlation-free channel
which is the product of. single-mode channels. This equivalence was already disdus
in [6], however here the unitary equivalence preserves o fof the energy constraints.
This property belongs to a large class of Gaussian memomgneha All the qualitative
features regarding capacities are shared by all the chaubleédnging to this class. These
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channels are those defined by an environment covariancexnwtich is diagonalized
by an orthogonal transformation which is also symplecticqptics this is called passive
transformation). Let us recall that the action of such adf@amation on the phase space
coordinate$Qy, Qs, ... Q,, P, P, ... P,)" is by a matrix of the form (see e..]12])

OZ(—XY i)) (A1)
with

XXT +YYT =1, (A.2)

XYT - YX' = 0. (A.3)

It follows that the global scenario discussed here for thel@hdefined by the environment
covariance matrix in[{4) can be equally introduced for a#t tovariance matrices of the
following form

v XDoXT + YDpY?T YDpXT — XDgYT (A4)
\ XDpYT - YDoXT XDpXT +YDoYT |’ '
where the diagonal matricds,, Dp satisfy the Heisenberg principle, namely
I
DoDp > —. (A.5)

4
The class of covariance matrices of the fofm {A.4) contaihsha pure state covariance
matrices and all the mixed states which are obtained by agplysqueezing transformation
to a thermal state. For these states the global scenarioecdefimed as in sectidn 2.1; all
the results concerning the global scenario can be straigtdfdly extended, including its
optimality to achieve the classical and quantum capacity.
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