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Charged Particle–Image Interaction Near a

Conducting Surface

Ersen METE and Metin DURGUT
Dept. of Physics, Middle East Technical University,

06531, Ankara-TURKEY

Received 23.10.2003

Abstract

The interaction of a bulk electron with conducting surfaces is studied by means of the Bohm-Pines
transformation in the second quantization formalism. The effective interaction potentials are obtained
for the case of one plane and two plane configurations in the form of electron-image electron scattering.

Key Words: Bohm-Pines Transformation, Image Charge, Plasmons

1. Introduction

The electron interactions in an electron gas yield collective plasmon modes. Bohm and Pines [1] developed
a collective description of electrons for a three-dimensional degenerate electron gas placed in a uniform
background of positive charge. In order to obtain a plasmon description of electron interactions, a set of
supplementary field coordinates are introduced, N ′ in number, which describe the collective motion of the
system. Hence, the model possesses a total of 3N + N ′ degrees of freedom corresponding to electrons and
plasma oscillations, respectively. This extended system of electrons and plasma waves have the same physical
properties as the original system after imposing a set of N ′ subsidiary conditions [2]. Grecu [3] calculated
the plasma frequency of the electron gas by treating it as a layered structure proposed by Visscher and
Falicov [4] by the method of equation of motion in the RPA. Apostol [5] pointed out that the plasmons
propagating in different layers of a solid are significantly coupled together via the electric field created by
in-plane charge for finite values of wave vector ~k. In other words, when we deal with a system of two
dimensional electron gas, the electron-plasmon coupling may not be negligible. Therefore, the quantum
system consists of electrons plus the plasmon field width the additional plasmon-plasmon coupling. These
requirements are already implemented by the canonical transformation method of Bohm and Pines. An
attempt employing self-energy approach to obtain the image potential near a surface is given in [6, 7].

In this paper the problem of a single bulk electron in interaction with an infinite conducting plane has
been solved for the cases of one and two planes, respectively, where the bulk electron is placed between the
planes for the latter case. A two dimensional quantum version of Bohm-Pines canonical transformation is
used in second quantization formalism (natural units are used).

The bulk electron-plane interaction effectively becomes electron-electron scattering mediated via plasmon
exchanges, where the second electron is in fact the image of the first one with respect to the conducting
plane. The effective potential evaluated for this interaction has both static and dynamic components. In
the static limit the effective potential reduces as expected to the classical potential obtained by the image
method of classical electrodynamics. Similarly, the image method result for two planes with an electron in
between is also obtained.
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2. 2D Quantum Version of Bohm-Pines Transformation

The basic Hamiltonian for a two dimensional electron gas in the second quantized form is

H =
∫

d2ρψ†(~ρ)
p2

2m
ψ(~ρ) +

1
2

∫
d2ρ d2ρ′ ψ†(~ρ)ψ†(~ρ ′)V (~ρ− ~ρ ′)ψ(~ρ ′)ψ(~ρ), (1)

where ψ is the electron field computed as

ψ(~ρ) =
∫

d2k

(2π)2
ei
~k·~ρ a~k (2)

and V is the interparticle interaction potential. In the second quantized form H becomes

H =
∫

d2ρ d2k1 d2k2

(2π)4

h̄2k2
2

2m
ei(
~k2−~k1)·~ρa†~k1

a~k2
+

1
2

∫
d2ρ d2ρ′

(2π)8
d2k1 d2k2 d2k3 d2k4

× e−i
~k1·~ρe−i

~k2·~ρ ′V (~ρ− ~ρ ′)ei~k3·~ρ ′ei
~k4·~ρ a†~k1

a†~k2
a~k3

a~k4
. (3)

After making the transformation ~r1 = ~ρ ′, ~r2 = ~ρ− ~ρ ′, we have

H =
∫

d2k1 d2k2

(2π)4

h̄2k2
2

2m
a†~k1

a~k2
δ(~k2 − ~k1) +

1
2

∫
d2r1 d2r2

(2π)8
d2k1 d2k2 d2k3 d2k4

× a†~k1
a†~k2

e−i
~k1·(~r2+~r1)e−i

~k2·~r1V (r2)ei
~k3·~r1ei

~k4·(~r2+~r1) a~k3
a~k4

=
∫

d2k1

(2π)4

h̄2k2
1

2m
a†~k1

a~k1
+

1
2

∫
d2k1 d2k2 d2k3 d2k4

(2π)6
δ[(~k1 + ~k2)− (~k3 + ~k4)]

× Ṽ (k1 − k4) a†~k1
a†~k2

a~k3
a~k4

. (4)

The substitutions ~k1 = ~k + ~q, ~k2 = ~p − ~q, ~k3 = ~p and ~k4 = ~k in the second term give

H =
∫

d2k

(2π)2

h̄2k2

2m
a†~k

a~k +
∫

d2k

(2π)2

d2p

(2π)2

d2q

(2π)2
Ṽ (~q) a†~k+~q

a†~p−~q a
~p
a~k (5)

in terms of single-particle operators. In order to obtain the collective motion of the planar electrons, charge
density operators are introduced as

A~q =
∫

d2k

(2π)2
a†~k+~q

a~k, (6)

with the properties[
A~q, A~q′

]
=
[
A†~q , A

†
~q′

]
=
[
A~q, A

†
~q′

]
= 0 ,

[
a~k, A~q

]
= a~k−~q ,

[
a†~k

, A~q

]
= −a~k+~q .

In terms of the density operators A, the second term of the Hamiltonian (5) becomes,

H =
∫

d2k

(2π)2
ε0(~k) a†~ka~k

+
∫

d2k

(2π)2

d2p

(2π)2

d2q

(2π)2
Ṽ (q) (−δ~p,~k+~q a†~p−~q a~k + a†~p−~q a

~p
a†~k+~q

a~k)

=
∫

d2k

(2π)2
ε0(~k) a†~k

a~k −
∫

d2k

(2π)2
V (0) a†~k

a~k +
∫

d2k

(2π)2
Ṽ (k)A†~kA~k, (7)

where

ε0(~k) =
~k2

2m
. (8)
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The potential part of the Hamiltonian (5) appears to be a purely kinetic term in terms of charge densities:

H =
∫

d2k

(2π)2

[
ε(~k)a†~ka~k +

1
2
Ṽ (~k)A†~kA~k

]
, (9)

where

ε(~k) = ε0(~k) + V (0). (10)

The Hamiltonian in (9) possesses two kinds of purely kinetic terms, one for single electrons and one for
electron densities. In order to reach the plasmon modes, Bohm and Pines [2] proposed to complete this
Hamiltonian by introducing the conjugate momenta P~k such that

H = H0 + Hc, (11)

where

H0 =
∫

d2k

(2π)2
ε(k)a†~ka~k (12)

Hc =
1
2

∫
d2k

(2π)2

[
M2
kA†~k

A~k + P †~k
P~k + Mk

(
A†~k

P~k + P †~k
A~k

)]
(13)

Mk =
√

Ṽ (~k) (14)

and P~k satisfies

P~k|Ψ〉 = 0 . (15)

The additional terms clearly do not affect the space of physical states and the subsidiary conditions (15)
are restrictions which turn out to be consistent with the physical properties of the system. The definition of
Mk is signaling the onset of the medium-coupling region represented by plasmons. The plasmon modes are
represented by the electron density Hamiltonian Hc whereas the single electron term H0 is decoupled from
it.

The k-integration in the expression for Hc is usually divided into two parts: the long range interaction
defined by the integration domain k < kc, where kc is a cut-off for the collective behavior; and the shorter
range screened electron interaction for k > kc. However, we shall keep kc as a cut-off parameter throughout
the calculations to explicitly demonstrate plasmon contributions; but when evaluating the effective potential,
shall let kc →∞ to include both types of interactions.

In two dimensions the Bohm-Pines transformation reads

U = eiS , (16)

where

S =
∫
k<kc

d2k

(2π)2
MkQ~kA~k, (17)

kc is a physically set cut-off value for momentum and Q~k
are the conjugate collective coordinates defined

through [
Q~k, P~k′

]
= i(2π)2δ(~k − ~k′). (18)

The transformation of H by U up to second order terms in S, expressed as

H ′ = U †HU = H − i[S, H ]− 1
2
[S, [S, H ]], (19)
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involves the following commutators:

[S, P~k] =
∫

d2k′

(2π)2
Mk′A~k′[Q~k′, P~k] = iMkA~k

[S, [S, P~k]] = [S, A~k] = 0

[S, H0] =
∫

d2k

(2π)2

d2q

(2π)2
ε(~k)MqQ~q [A~q, a

†
~k
a~k]

=
∫

d2q

(2π)2
MqQ~q

∫
d2k

(2π)2

(
~q 2

2m
+

~k · ~q
m

)
a†~k+~q

a~k

[S, [S, H0]] =
∫

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q~q1Q~q2

×
∫

d2k

(2π)2
[ε(~k + ~q1)− ε(~k)]

[
A~q2 , a

†
~k+~q1

a~k
]

=
∫

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q~q1Q~q2

~q1 · ~q2

m
A~q1+~q2 .

In terms of the transformed conjugate momenta,

P ′~k = U †P~kU = P~k + MkA~k (20)

and the transformed Hamiltonian Hc becomes

H ′c =
1
2

∫
d2k

(2π)2
P ′
†
~k
P ′~k (21)

H ′0 =
∫

d2k

(2π)2
ε(~k)a†~ka~k + i

∫
d2q

(2π)2
MqQ~q

∫
d2k

(2π)2

~q ·
(
~k + ~q

2

)
m

a†~k+~q
a~k

−
∫

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q~q1Q~q2

~q1 · ~q2

m
A~q1+~q2 . (22)

If the term with ~q1 = −~q2 in the third integral is singled out and Q−~q = −Q†~q is used, the Hamiltonian
for the system turns out to be

H ′ =
∫

d2k

(2π)2
ε(~k)a†~ka~k + i

∫
d2q

(2π)2

d2k

(2π)2
MqQ~q

~q ·
(
~k + ~q

2

)
m

a†~k+~q
a~k

+
1
2

∫
~q1 6=~q2

d2k

(2π)2

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q

†
~q1

Q~q2

~q1 · ~q2

m
a†~k−~q1+~q2

a~k

+
∫

d2k

(2π)2
M2
kQ†~k

Q~k

k2

m

∫
d2k′

(2π)2
a†~k′

a~k′ +
1
2

∫
d2k

(2π)2
P †~k

P~k . (23)

Finally, the total Hamiltonian can be represented as

H ′ = H0 + Hpl + Hel−pl, (24)
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where

H0 =
∫

d2k

(2π)2
ε(~k)a†~ka~k ; ε(~k) =

~k 2

2m
− 1

2
V (0), (25)

Hpl =
1
2

∫
d2k

(2π)2

[
P †~kP~k +

k2M2
k

m
Q†~kQ~kn̂

]
; n̂ = a†~ka~k, (26)

Hel−pl = i

∫
d2k

(2π)2

d2q

(2π)2
MqQ~q

~q ·
(
~k + ~q

2

)
m

a†~k
a~k

+
1
2

∫
~q+1 6=~q2

d2k

(2π)2

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q

†
~q1

Q~q2

~q1 · ~q2

m
a†~k−~q1+~q2

a~k.

(27)

H0 is the free energy of single electrons, Hpl represents the quantization of planar charge density oscilla-
tions (plasmons) with momenta P and positions Q. The electron-plasmon interaction, Hel−pl expresses the
interaction of single electrons with plasmons.

A comment on the subsidiary conditions introduced in (15) is in order here. After the transformation,
constraint (15) becomes (

P ′~k −MkA~k

)
|Ψ〉 = 0, (28)

where A~k corresponds to the surface charge density σ and Mk is given in Eq. 14. Equation 28 is actually
Gauss’ Law, namely

kP ′~k = 4πA~k ⇒ ∇ · ~E = 4πρ, (29)

where ~E is the electric field due to planar charge and ρ is the charge density. Therefore, Bohm and Pines
procedure incorporates new degrees of freedom without disturbing the known physics.

3. Effective Electron-Plane Interaction

The effective potential for an infinite conducting plane-single bulk charged particle interaction can be
evaluated by using the two dimensional Bohm-Pines transformation given in the previous section. A single
electron is located a distance |~z| = d away from an infinite electrically neutral metallic sheet. In-plane
electron gas is in a uniform background of positive charge; therefore, the electrons can be assumed to be
quasi-free particles.

e−

plane

~z

~ρ

~x

Figure 1. Bulk electron-plane configuration.

The interaction Hamiltonian for the system is

HI =
∫

dz d2ρ d2ρ′ V (~ρ− ~ρ ′, z)φ†(~x)ψ†(~ρ ′)ψ(~ρ ′)φ(~x), (30)
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where ψ(~ρ) corresponds to the electron field as given in Eq. 2 extending over the plane, and φ(~x) is the
electron field defined in the bulk defined as

φ(~x) =
∫

d3p

(2π)3
ei~p·~xb~p . (31)

We let momentum vector ~k be conjugate to the position vector ~ρ in two dimensions. Hence, in three
dimensional space, momentum vector ~p = ~k + `k̂ will be conjugate to position vector ~x = ~ρ + zk̂.

Since Coulomb interaction depends on interparticle distances, it can be expressed in terms of momentum
flows in momentum space:

HI =
∫

d2ρ d2ρ′
d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3
ei(
~k2−~k1)·~ρei(

~k′2−~k
′
1)·~ρ ′

×
∫

dz ei(`2−`1)z V (~ρ− ~ρ ′, z)b†~p1
a†~k′1

a~k′2
b~p2

=
∫

d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3

×
∫

d2ρ d2ρ′ ei(
~k2−~k1)·~ρei(

~k′2−~k
′
1)·~ρ ′ Ṽ (~ρ− ~ρ ′, `2 − `1)b

†
~p1

a†~k′1
a~k′2

b~p2 .

Substitution ~r1 = ~ρ ′ and ~r2 = ~ρ− ~ρ ′ yields

=
∫

d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3

∫
d2r2 Ṽ (r2, `2 − `1)ei(

~k2−~k1)·~r2

×
∫

d2r1 ei[(
~k2−~k1)+(~k′2−~k

′
1)]·~r1b†~p1

a†~k′1
a~k′2

b~p2

=
∫

d3p1

(2π)3

d3p2

(2π)3

d2k′1
(2π)2

d2k′2 U(~p2 − ~p1)δ(~k2 − ~k1 + ~k ′2 − ~k ′1) b†~p1
b~p2a

†
~k′1

a~k′2

=
∫

d3p1

(2π)3

d3p2

(2π)3

d2k′1
(2π)2

U(~p2 − ~p1) b†~p1
b~p2a

†
~k′1

a~k1+~k′1−~k2
.

Another substitution ~p ′ = ~p2 and ~p = ~p2 − ~p1 gives the interaction term

=
∫

d2k

(2π)2

d3p

(2π)3

d3p′

(2π)3
U(~p) b†~p ′−~p b~p ′ a

†
~k+~k2−~k1

a~k, (32)

where

U(~p) = U(~k2 − ~k1, `2 − `1) = (2π)2

∫
d2ρ Ṽ (~ρ, `2 − `1) ei(

~k2−~k1)·~ρ (33)

and

Ṽ (~ρ, `2 − `1) =
∫

dz ei(k2z−k1z )z V (~ρ, z) . (34)

Momentum space vector ~k2 − ~k1 conjugate to the position vector ~ρ, which lies over the surface, can
be considered as the parallel component of the vector ~p: ~k2 − ~k1 = ~p‖. This interpretation is immediately
apparent from Eq. 32, that there is no conservation for the perpendicular component of incoming momentum
~p. This is because the metallic sheet is assumed to be rigid.

In terms of charge densities, the interaction Hamiltonian HI can be written as

HI =
∫

d3p

(2π)3
U(~p)B†~pA~p‖

, (35)
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where

B†~p =
∫

d3p′

(2π)3
b†~p−~p ′b~p ′ (36)

A~p‖ =
∫

d2k

(2π)2
a†~k+~p‖

a~k . (37)

This interaction term can be rewritten by separating the momentum vector ~p to its parallel and perpen-
dicular components:

HI =
∫

d2k

(2π)2
m†~k

A~k, (38)

where

m†~k =
∫

dp⊥
2π

U(~k, ~p⊥)B†~k,~p⊥ . (39)

The new Hamiltonian for the system consists of H ′, the Hamiltonian in the absence of bulk electrons
given in Eq. 9, the free energy of the bulk electrons, H0,bulk, and its interaction with the plane:

Hnew = H ′ + H0,bulk + HI

= H0 + H0,bulk +
1
2

∫
d2k

(2π)2

[
M2
kA†~k

A~k + 2m†~k
A~k
]

= H0 + H0,bulk +
1
2

∫
d2k

(2π)2

[
M2
kA′
†
~k
A′~k −

m†~km~k

M2
k

]
, (40)

where

Ã~k = A~k +
m~k

M2
k

. (41)

In order to employ the Bohm-Pines transformation we complete the Hamiltonian H by adding the plasmon-
bulk coupling terms:

Hc,new =
1
2

∫
d2k

(2π)2

[
M2
k Ã†~k

Ã~k −
m†~k

m~k

M2
k

+ P †~k
P~k + Mk

(
Ã†~k

P~k + P †~k
Ã~k

)]
. (42)

The Bohm-Pines transformation for Hc,new yields the familiar results,

P ′~k = P~k + MkÃ~k (43)

H ′c,new =
1
2

∫
d2k

(2π)2

(
P ′
†
~k
P ′~k −

m†~k
m~k

M2
k

)
. (44)

The second term in the transformed Hamiltonian H ′c,new is the effective interaction Hamiltonian for the bulk
electron-plane system. With definitions (36) and (39), the effective Hamiltonian Heff can be written as,

Heff = −1
2

∫
d2k

(2π)2

m†~k
m~k

M2
k

(45a)

= −1
2

∫
d2k

(2π)2

d`

2π

d`′

2π

U(~k, `)U(~k, `′)

Ṽ (~k)
B†~k,`

B~k,`′ (45b)

= −1
2

∫
k<kc

d3p1

(2π)3

d3p2

(2π)3

d2k

(2π)2

d`

2π

d`′

2π

U(~k, `)U(~k, `′)

Ṽ (~k)
b†~p1−~p ′b~p1

b†~p2+~p b~p2
,

(45c)
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~p2 ~p2 + (~k, `)

~p1 ~p1 − (~k, `′)

~k

Figure 2. Electron scattering by the surface

where ~p = (~k, `), ~p ′ = (~k, `′). This is nothing but the scattering of two electrons, effectively replacing the
original electron-plane interaction. In terms of three dimensional particle momenta ~p1 and ~p2, the scattering
diagram is shown in Figure 2.

In terms of field operators this term can be written as

Heff =
−1
2

∫
d3~x d3~x′ φ†(~x)φ†(~x′)

×
[∫

k<kc

d2k

(2π)2

d`

2π

d`′

2π

U(~k, `)U(~k, `′)

Ṽ (~k)
ei
~k·(~ρ−~ρ ′)+i`′z+i`z′

]
φ(~x′)φ(~x).

(46)

The characterization of Heff as an effective interaction in three dimensions by the three dimensional fields
φ(~x) is analogous to the replacement of classical “charge-conducting plane” problem to an equivalent “charge-
image charge” problem.

The integral inside the curly brackets in Eq. (46) is an effective two-particle interaction potential. By
introducing the Coulomb potential, U(~k, `) = 4πe2/(k2 + `2) and Ṽ (~k) = 2πe2/k, one can calculate the
effective potential as

Veff(~x, ~x′, kc) = −
∫

d2k

(2π)2

ei
~k·(~ρ−~ρ ′)

Ṽ (~k)

∫
d`

(2π)
d`′

(2π)
U(~k, `)ei`z

′
U(~k, `′)e−i`

′z

(47a)

= −
∫

d2k

(2π)2

ei
~k·(~ρ−~ρ ′)

Ṽ (~k)

(
16π2e4

∫
d`′

2π

d`

2π

ei`
′z

k2 + `′2
e−i`z

′

k2 + `2

)

= −
∫

d2k

(2π)2
ei
~k·(~ρ−~ρ ′)e−k(z+z′)Ṽ (~k)

= −e2

∫ 2π

0

dθ

2π

∫ kc

0

dk ek(i|~ρ−~ρ ′| cos θ−z−z′)

= − ie2

πb

∫ π

0

dθ

cos θ + iab

[
1− ekc(ib cos θ−a)

]
, (47b)

where a = z + z′ and b = |~ρ− ~ρ ′| for simplicity.

The first term of the integral in Eq. 47b is the dominant contribution to Veff . The second term becomes
negligible for large a or large b when kc is fixed, or for large kc with a, b fixed. In the kc → ∞ limit, the
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result becomes

Veff(~x, ~x′) = − i

π

e2

b

∫ π

0

dθ

cos θ + iab

= − i

π

e2

b

 −iπ√
1 + a2

b2


=

−e2√
|~ρ− ~ρ ′|2 + (z + z′)2

. (48)

Contact with the classical image method result is made for ~x = ~x ′, in which case Veff = −e2/2z.

4. Two Planes

In this case, a single bulk electron placed in between two infinite neutral conducting planes which have
a separation d between them. The configuration of the problem is shown in Fig. 3. The planes act as 2
dimensional electron gas structures which interact with a bulk electron. ~x = ~r1 + ~zk̂ = ~r2 − ~z + dk̂ denotes
the position of the bulk electron and is conjugate to ~p = ~p‖ + ~p⊥ = ~k + `k̂.

~r1 =~ρ1

~z~x

~r2

~ρ2

e−

-~z+dk̂

plane 1

plane 2

Figure 3. Plane-bulk electron-plane configuration.

The Hamiltonian for this system involves plane-plane and plane-bulk electron interactions as well as the
free energies of surface charges and the bulk electron:

H = H
(1)
0 + H

(2)
0 + H

(v)
0 + H(1)

ee + H(2)
ee + H(1)

pv + H(2)
pv + Hpp, (49)

where H
(1)
0 , H

(2)
0 represents free energies of the plane electrons; H

(v)
0 is the free energy of the bulk electron;

Hee is the interaction of electrons within the planes, or it comes out as a kinetic term of electron densities;
Hpv and Hpp are plane-volume and plane-plane interactions and the superscripts (1),(2) and (v) stand for
the first plane, the second plane and volume, respectively. H0 and Hee are as given in Eq. 9 in the first
section. Remaining two interactions, Hpv and Hpp, must be calculated as follows:

Hpv =
∫

dz

∫
d2ρ d2ρ′ V (~ρ− ~ρ ′, z)φ†(~x)φ(~x)ψ†(~ρ ′)ψ(~ρ ′)

+
∫

dz

∫
d2ρ d2ρ′′ V (~ρ− ~ρ ′′, z− d)φ†(~x)φ(~x)ξ†(~ρ ′′)ξ(~ρ ′′), (50)

where ψ and ξ are the 2D electron field operators for the first and the second planes, respectively; and φ is
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the field operator for the bulk electron. Using the 2D electron field operators,

ψ(~ρ) =
∫

d2k

(2π)2
ei
~k·~ρ a~k (51a)

ξ(~ρ) =
∫

d2k

(2π)2
ei
~k·~ρ c~k . (51b)

One gets the plane-volume interaction term Hpv in terms of the single particle operators

Hpv =
∫

d2k

(2π)2

d3p

(2π)3

d3p′

(2π)3

[
U(~p)b†~p ′−~pb~p ′a

†
~k+~p⊥

a~k + U(~p)eip⊥db†~p ′−~pb~p ′c
†
~k+~p⊥

c~k

]
. (52)

Derivation of Eq. 52 is given in Appendix A. Using the definitions Eq. 36 and Eq. 37, one obtains for Hpv

Hpv =
∫

d3p

(2π)3

[
U(~p)B†~pAp⊥ + U(~p) eip⊥dB†~pCp⊥

]
. (53)

The expression in Eq. 53 is further reduced by integrating over the normal component p⊥,

Hpv =
∫

d2k

(2π)2

[
m†

1~k
A~k + m†

2~k
C~k

]
, (54)

where

mi~k =
∫

dp⊥
2π

(δi1 + δi2e
ip⊥d)U(~k, p⊥)B~k,p⊥ . (55)

The plane-plane interaction term Hpp, given by

Hpp =
∫

d2ρ1 d2ρ2 Vpp(~ρ1 − ~ρ2 , d)ψ†(~ρ1)ψ(~ρ1)ξ†(~ρ2)ξ(~ρ2) , (56)

similarly becomes

Hpp =
∫

d2k1

(2π)2

d2k2

(2π)2

d2q

(2π)2
Vpp(~q, d) a†~k1+~q

a~k1
c†~k2−~q

c~k2

=
∫

d2q Vpp(~q, d)A~qC
†
~q , (57)

where the plane-plane interaction Vpp

Vpp(~q, z) = e2

∫ kc

0

dρ
ρ√

ρ2 + d2

∫ 2pi

0

dθ eiqρ cos θ

= 2πe2

∫ kc

0

dρ
ρ√

ρ2 + d2
J0(qρ). (58)

in the limit kc →∞ turns out to be

Vpp(q, d) =
2πe2

q
e−qd = T 2

q = M2
q e−qd . (59)

Now, the total Hamiltonian is

H =
∫

d2k

(2π)2

[
ε(~k)

(
a†~ka~k + c†~kc~k

)
+

1
2
M2
k

(
A†~kA~k + C†~kC~k

)
+

1
2

(
m1~kA~k + A†~k

m1~k + m2~kC~k + C†~k
m2~k

)
+

1
2
T 2
k

(
A†~kC~k + C†~kA~k

)]
+
∫

d3p

(2π)3
ε(~p) b†~pb~p

= H0 +
1
2

∫
d2k

(2π)2

(
M2

1 A†1A1 + M2
2 A†2A2 −

1
M2

1

W †
1 W1 −

1
M2

2

W †
2 W2

)
,

(60)
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where H0 represents the single electron free energy terms in the two planes and in the bulk,

H0 =
∫

d2k

(2π)2
ε(~k)

(
a†~ka~k + c†~kc~k

)
+
∫

d3p

(2π)3
ε(~p) b†~pb~p

and

W1 =
1√
2
(m1 + m2) W2 =

1√
2
(m1 −m2)

A1 =
1√
2
(A + C) +

1
M2

1

W1 A2 =
1√
2
(A −C) +

1
M2

2

W2.

The above Hamiltonian is extended as before by introducing the conjugate momenta P1 and P2 for the
two planes,

H = H0 + Hc (61)

where

Hc =
1
2

∫
d2k

(2π)2

[
M2

1 A†1A1 + M2
2 A†2A2 −

1
M2

1

W †
1 W1 −

1
M2

2

W †
2 W2

+P †1 P1 + P †2P2 + M1

(
A†1P1 + P †1A1

)
+ M2

(
A†2P2 + P †2 A2

)]
. (62)

After employing the Bohm-Pines transformation,

S =
∫
k<kc

d2k

(2π)2
(M1kQ1kA1 + M2kQ2kA2) , (63)

the transformed free Hamiltonian terms are obtained as

H
(i)′

0 =
∫

d2k

(2π)2
ε(~k)(δi,1a

†
~k
a~k + δi,2c

†
~k
c~k)

+i

∫
d2q

(2π)2
MqQ~q

∫
d2k

(2π)2

~q ·
(
~k + ~q

2

)
m

(δi,1a
†
~k+~q

a~k + δi,2c
†
~k
c~k)

−
∫

d2q1

(2π)2

d2q2

(2π)2
Mq1Mq2Q~q1Q~q2

~q1 · ~q2

m
(δi,1A~q1+~q2 + δi,2C~q1+~q2)

(i = 1, 2) (64)

H
(v)′

0
∼= H

(v)
0 + i

∫
d3p

(2π)3

∫
d3t

(2π)3

~t ·
(
~p + ~t

2

)
√

2m

×U(~t)
[
1 + e−it⊥d

M1t⊥

Q1t⊥ +
1− e−it⊥d

M2t⊥

Q2t⊥

]
b†
~p+~t

b~p . (65)

(For the derivation of H
(v)′

0 , see Appendix B.) However, we are interested in the transformed interaction
Hamiltonian H ′c:

H ′c =
1
2

∫
d2k

(2π)2

[
P †

1,~k
P

1,~k
+ P †

2,~k
P

2,~k
− 1

M2
1

W †
1,~k

W
1,~k
− 1

M2
2

W †
2,~k

W
2,~k

]
. (66)

Since it provides the interaction Hamiltonian for the bulk electron-plane system,

Heff = −1
2

∫
d2k

(2π)2

[
1

M2
1k

W †
1kW1k +

1
M2

2k

W †
2kW2k

]

= −1
4

∫
d2k

(2π)2

[(
m†1km1k + m†2km2k

)( 1
M1k

+
1

M2k

)
+
(
m†1km2k + m†2km1k

)( 1
M1k

− 1
M2k

)]
, (67)
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and becomes

Heff = −
∫

d2k

2(2π)2

{
1

Ṽ (k) (1−e−2kd)

∫
d`

2π

d`′

2π
U(~k, `)U(~k, `′)

[
1 + ei(`

′−`)d
]

− e−kd

Ṽ (k) (1−e−2kd)

∫
d`

2π

d`′

2π
U(~k, `)U(~k, `′)

[
ei`
′d + e−i`

′d
]}

B†~k,`′
B~k,`.

(68)

The effective potential energy Veff for this system is read out as done in Eq. 45b:

Veff (~x, ~x′, kc) = −
∫

d2k

(2π)2

ei
~k·(~ρ−~ρ ′)

Ṽ (k)(1 − e−2kd)

∫
d`

2π

d`′

2π
U(~k, `)U(~k, `′)

×
{[

1 + ei(`
′−`)d

]
− e−kd

[
ei`
′d + e−i`

′d
]}

ei(`z−`
′z′) .

(69)

Evaluation of Veff involves integrals of the form
∫
d`
2πU(~k, `)eiα` where U(~k, `) = 4πe2/(k2 + `2). The

result of `-integration is Ṽ (k)e−|α|k, where Ṽ (k) = 2πe2/k. The remaining 2D integrals give:

Veff(~x, ~x′, kc) = −
∫

d2k

(2π)2

V (k)ei~k·(~ρ−~ρ
′)

1− e−2kd

{ [
e−k(|z|+|z′|) + e−k(|z−d|+|z′−d|)

]
−e−kd

[
e−k(|z|+|z′−d|) + e−k(|z−d|+|z′|)

]}
. (70)

The terms in Eq. 70 are evaluated by using the result

−
∫

d2k

(2π)2
ei
~k·∆ Ṽ (k)

1− e−2kd
e−sk = −e2

∫ π

0

dθ

2π

∫ kc

0

ek(−s+i∆ cos θ)

1− e−2kd

= −e2

∫ kc

0

dk
e−ks

1− e−2kd
J0(k∆) .

The kc →∞ limit gives,

=
∞∑
n=0

∫ ∞
0

dke−k(s+2nd)J0(k∆)

=
∞∑
0

[
∆2 + (s + 2nd)2

]−1/2
,

and one finally obtains the effective potential to be a sum of interactions between infinite number of images:

Veff(~x, ~x ′) = −e2
∞∑
n=0

{[
|~ρ− ~ρ ′|2 + (|z|+ |z′|+ 2nd)2

]−1/2

+
[
|~ρ− ~ρ ′|2 + (|z − d|+ |z′ − d|+ 2nd)2

]−1/2

−
[
|~ρ− ~ρ ′|2 + (|z|+ |z′ − d|+ (2n + 1)d)2

]−1/2

+
[
|~ρ− ~ρ ′|2 + (|z − d|+ |z′|+ (2n + 1)d)2

]−1/2
}

.

(71)
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For the case of a single bulk charge at ~x = ~x ′ one obtains the result for the bulk point charge between
two parallel planes in terms of infinite number of images:

Veff(z) = −e2

2

∑
n

[
1

nd + z
+

1
nd + (d− z)

− 2
(n + 1)d

]
= − e2

2d

∑
n

1
(n + z

d
)(n + 1− z

d
)

−e2z

d2

[z
d
− 1
]∑

n

1
(n + 1)(n + z

d)(n + 1− z
d )

.

Setting the position to z = d/2, the result is simplified as:

Veff = − e2

2d

∑
n

1
(n + 1)(n + 1

2
)

= − e2

2d

[
2 + 2

∫ 1

0

x1/2 − x

1− x
dx

]
= −e2

d
ln 2 .

5. Conclusion

The application of Bohm-Pines transformation to the electron-conducting surface problem has resulted
in an effective two-particle interaction potential for the system. The transformed Hamiltonian contains the
screened interaction (k > kc) as well as the long range part of the Coulomb interaction (k < kc). The
two-point interaction term explicitly demonstrates the quantum dynamics of the electron with an image
electron, which reduces to the well known classical image method results. The transformation appears to be
a powerful method to study more complicated surface geometries.
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A. Appendix A

Hpv =
∫

d2ρd2ρ′
d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3
ei(
~k2−~k1)·~ρei(

~k′2−~k
′
1)·~ρ ′b†~p1

a†~k′1
a~k′2

b~p2

×
∫

dzei(`2−`1)zV (~ρ− ~ρ ′, z)

+
∫

d2ρd2ρ′′
d3p1

(2π)3

d2k′′1
(2π)2

d2k′′2
(2π)2

d3p2

(2π)3
ei(
~k2−~k1)·~ρei(

~k′′2−~k
′′
1 )·~ρ ′′b†~p1

a†~k′′1
a~k′′2

b~p2

×
∫

dzei(`2−`1)zV (~ρ− ~ρ ′′, z − d)

=
∫

d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3
b†~p1

a†~k′1
a~k′2

b~p2

×
∫

d2ρd2ρ′ei(
~k2−~k1)·~ρei(

~k′2−~k
′
1)·~ρ ′ Ṽ (~ρ− ~ρ ′, `2 − `1)

+
∫

d3p1

(2π)3

d2k′′1
(2π)2

d2k′′2
(2π)2

d3p2

(2π)3
b†~p1

c†~k′′1
c~k′′2

b~p2

×
∫

d2ρd2ρ′ei(
~k2−~k1)·~ρei(

~k′′2−~k
′′
1 )·~ρ ′′ei(`2−`1)dṼ (~ρ− ~ρ ′′, `2 − `1) . (72)

The substitution ~r1 = ~ρ ′, ~r2 = ~ρ− ~ρ ′ in the first integral and ~r1 = ~ρ ′′, ~r2 = ~ρ − ~ρ ′′ in the second one
gives

Hpv =
∫

d3p1

(2π)3

d2k′1
(2π)2

d2k′2
(2π)2

d3p2

(2π)3
b†~p1

a†~k′1
a~k′2

b~p2

×
∫

d2r2Ṽ (~r2, `2 − `1)ei(
~k2−~k1)·~r2

∫
d2r1e

i[(~k2−~k1)+(~k′2−~k
′
1)]·~r1

+
∫

d3p1

(2π)3

d2k′′1
(2π)2

d2k′′2
(2π)2

d3p2

(2π)3
b†~p1

c†~k′′1
c~k′′2

b~p2e
i(`2−`1)d

×
∫

d2r2Ṽ (~r2, `2 − `1)ei(
~k2−~k1)·~r2

∫
d2r1e

i[(~k2−~k1)+(~k′′2−~k
′′
1 )]·~r1

=
∫

d3p1

(2π)3

d3p2

(2π)3

d2k′1
(2π)2

U(~p2 − ~p1)b
†
~p1

b~p2a
†
~k′1

a~k1+~k′1−~k2

+
∫

d3p1

(2π)3

d3p2

(2π)3

d2k′′1
(2π)2

ei(`2−`1)dU(~p2 − ~p1)b
†
~p1

b~p2c
†
~k′′1

c~k1+~k′′1−~k2
. (73)

We substitute ~p ′ = ~p2 and ~p = ~p2 − ~p1 to get

Hpv =
∫

d2k

(2π)2

d3p

(2π)3

d3p′

(2π)3

[
U(~p)b†~p ′−~pb~p ′a

†
~k+~p⊥

a~k + U(~p)eip⊥db†~p ′−~pb~p ′c
†
~k+~p⊥

c~k

]
. (74)
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B. Appendix B

[S, H
(v)
0 ] =

∫
d2k

(2π)2

∫
d3p

(2π)3
εp

{
M1kQ1,~k

[A
1,~k

, b†~pb~p] + M2kQ2,~k
[A

2,~k
, b†~pb~p]

}
, (75)

where

[Ai,~k, b
†
~pb~p] =

1√
2M2

ik

{
[m1k, b

†
~pb~p]± [m2k, b

†
~pb~p]

}
i = 1, 2 , (76)

and

[mik, b
†
~pb~p] =

∫
dt⊥
2π

U(~t)
(
δi1 + δi2e

−ip⊥d
)[

Bt, b
†
~pb~p
]
t⊥=k

= −
∫

dt⊥
2π

U(~t)
(
δi1 + δi2e

−ip⊥d
) [

b†
~p−~t b~p − b†

~p+~t
b~p

]
t⊥=k

. (77)

Then ∫
d3p

(2π)3
εp[A1,~k, b

†
~pb~p] = − 1√

2M2
1k

∫
d3p

(2π)3

∫
dt⊥
2π

U(~k, t⊥)
(
1 + e−it⊥d

)
× (εp+t − εp)b

†
~p+~t

b~p

∣∣∣
t⊥=k

(78)

∫
d3p

(2π)3
εp[A2,~k, b

†
~pb~p] = − 1√

2M2
2k

∫
d3p

(2π)3

∫
dt⊥
2π

U(~k, t⊥)
(
1− e−it⊥d

)
× (εp+t − εp)b

†
~p+~t

b~p

∣∣∣
t⊥=k

. (79)

Therefore, the transformation of kinetic term for the volume can be written as:

H
(v)′

0
∼= H

(v)
0 + i

∫
d3p

(2π)3

∫
d3t

(2π)3

~t ·
(
~p + ~t

2

)
√

2m
U(~t) (80)

×
[
1 + e−it⊥d

M1t⊥

Q1t⊥ +
1− e−it⊥d

M2t⊥

Q2t⊥

]
b†
~p+~t

b~p .

References

[1] D. Pines, D. Bohm, Phys. Rev., 85, (1952), 338.

[2] D. Bohm, D. Pines, Phys. Rev., 92, (1953), 609.

[3] D. Grecu, Phys. Rev., 8, (1973), 1958.

[4] P.B. Visscher and L.M. Falicov, Phys. Rev. B, 3, (1971), 2541.

[5] M. Apostol, Z. Physik, B 22, (1975), 13.

[6] J. Mahanty, K. N. Pathak, and V. V. Paranjape, Phys. Rev. B, 33 (1986), 2333.

[7] Xiang-Yang Zheng and R. H. Ritchie, Phys. Rev. B, 43, (1991), 4002.

109


