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Sub-wavelength position measurements with running wave driving fields
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A scheme for sub-wavelength position measurements of quantum particles is discussed, which
operates with running-wave laser fields as opposed to standing wave fields proposed in previous
setups. The position is encoded in the phase of the applied fields rather than in the spatially
modulated intensity of a standing wave. Therefore, disadvantages of standing wave schemes such
as cases where the atom remains undetected since it is at a node of the standing wave field are
avoided. Reversing the directions of parts of the driving laser fields allows to switch between
different magnification levels, and thus to optimize the localization.
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The localization of quantum particles is an intrigu-
ing area of research that already in the early days of
quantum mechanics led to much discussion and an im-
proved understanding of the underlying theory. Further
research is fueled by the need for effective structuring
and measuring schemes at small length scales in many
modern applications. Approaches involving light, how-
ever, due to diffraction are typically restricted to an ac-
curacy of order of the involved wavelength λ [1]. This
limit could be overcome in techniques operating at the
sub-wavelength scale which are based on near-field tech-
niques [2] or rely on distinguishable quantum objects [3].
Alternatively, sub-wavelength measurements in the op-
tical far field have been suggested. A particular class
of quantum optical localization schemes suitable to de-
termine the position of a quantum particle on a sub-
wavelength scale makes use of standing wave driving
fields [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. These on the
one hand act as a ruler for the position measurement, and
on the other hand encode position information into the
atomic dynamics via their position dependent intensity.

Standing wave based schemes, however, typically do
not work equally well over the whole range of potential
positions throughout one wavelength. In the worst case,
the atom is located at a node of the standing wave field,
such that no direct detection is possible. Another dis-
advantage arises in recent schemes with improved local-
ization that facilitate more than one position-dependent
fields with different frequencies [15, 16]. This frequency
difference leads to a beat, and the relative light field in-
tensities are not periodic in space on a length scale of a
typical wavelength λ. Thus, the localization is not pe-
riodic with λ, which so far has been neglected in the
theoretical analysis. Third, current standing-wave based
schemes usually require an additional classical measure-
ment to determine one out of several potential positions
due to the periodicity of the standing wave.

In this Letter, we discuss sub-wavelength position mea-
surement of quantum particles using running wave fields,
which allows to circumvent the problems associated with

standing wave fields. The position is encoded in the
phases of the applied fields rather than in the spatially
modulated intensity of a standing wave. Therefore, cases
where the atom remains undetected since it is at a node
of the standing wave field are avoided. The phase sensi-
tivity arises since the driving fields are applied such that
they form a closed interaction loop [17, 18, 19, 20]. The
number of applied laser fields determines the maximum
resolution of the measurement schemes, which can be
improved by adding more fields. The higher resolution,
however, comes at the cost of more potential positions per
laser wavelength. But this limitation can be avoided since
we find that for a given number of laser fields, changing
the directions of individual driving laser fields allows to
switch between different magnification levels. Thus, the
position can first be determined on a coarser scale with
few potential positions, and then be refined using a higher
magnification.

We start by considering a four-level system in diamond
configuration as a basic atomic level setup suitable for
our localization scheme, see Fig. 1(a) [18]. In the final
part, we will generalize our analysis to general closed-loop
systems as indicated in Fig. 1(b). The diamond scheme
consists of one ground state |1〉, two intermediate states
|2〉 and |4〉, and one excited state |3〉. All four electric-
dipole allowed transitions |1〉− |2〉, |2〉− |3〉, |4〉− |3〉 and

other states

|1〉 = |2N + 1〉|1〉 = |5〉

|2〉

|2〉

|3〉

|3〉

|4〉 |2N〉

(a) (b)

FIG. 1: (Color online) (a) The diamond scheme with 2N = 4
states that is considered as specific example. (b) Generic
atomic loop system with 2N states. Red arrows indicate driv-
ing laser fields, spontaneous emission is not depicted.
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|1〉−|4〉 are driven by coherent laser fields. Thus, starting
from the state with lowest energy |1〉, the system can
evolve in a non-trivial loop sequence of laser interactions
via |2〉, |3〉 and |4〉 back to the initial state. We denote
the atomic levels with state indices increasing along the
closed loop path from 1 to 2N , and identify state |1〉 with
|2N + 1〉 for the sake of simpler analytical expressions.
The spontaneous decay rates from level |i〉 to the levels
|j〉 are denoted as 2γji. The Hamiltonian in dipole and
rotating wave approximation is given by

H =

4∑

j=1

Ej Ajj + ~(g21 A21e
iα21 + +g32 A32e

iα32

+ g34 A34e
iα34 + g41 A41e

iα41 + H.c.) , (1)

where Aij = |i〉〈j|, the moduli of the Rabi frequencies are
gij , and the energies of the involved states are denoted by

Ej (j ∈ {1, . . . , 4}). The parameters αij = ωijt − ~kij~r +
φij contain ωij as the laser frequencies, the wave vectors
~kij , absolute phases φij arising from both the laser field
and the dipole moment, and ~r as the position of the atom.
We further define the transition frequencies ω̄ij = (Ei −
Ej)/~ and laser field detunings ∆ij = ωij − ω̄ij . In a
suitable interaction picture, the dynamics of the system
density matrix ρ is determined by ∂tρ = −i[V, ρ]/~ +Lρ,
where the Liouvillian L describes spontaneous emission
and the Hamiltonian V is

V = − ~∆21A22 − ~(∆21 + ∆32)A33 − ~∆41A44

+~(g21A21 + g34A34 + g41A41 + g32e
−iΦ A32 + H.c.) .

As it is well known for closed-loop systems, the dynamics
depends on the phase [18, 19]

Φ = ∆t − ~K~r + φ0 , (2)

where ∆ =
∑2N

i=1 ∆i+1,i is known as the multiphoton

detuning, ~K =
∑2N

i=1
~ki+1,i as the wave vector mismatch,

and φ0 =
∑2N

i=1 φi+1,i as the relative phase of the involved

driving fields. Here, Xij = −Xji for X ∈ {∆, ~k, φ}.
In order to proceed with the analysis, we make cer-

tain assumptions on the setup and on the level structure.
First, we adjust all laser fields to be on resonance, i.e.,
∆ = 0. Further, we note that the phase φ0 is a rela-
tive phase which can be controlled independent of the
position of the atom by phase-locking the different laser
fields to each other [20]. Next, to fix a definite setup, we
assume that all transitions couple to circularly polarized
light with polarization vector in the x-y-plane and prop-
agation directions of the laser fields parallel to the z-axis,

~k21 = k21 êz , ~k34 = ǫ34 k34 êz , (3a)

~k32 = k32 êz , ~k41 = ǫ41 k41 êz . (3b)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Φ (units of π)

R

(i)

(ii)

(iii)

FIG. 2: (Color online) Ratio R of the fluorescence intensities
on transitions |3〉 → |2〉 and |2〉 → |1〉. (i) Ω = γ, (ii) Ω = 5γ,
(iii) Ω = 10γ.

Here, ǫij ∈ {−1, 1} and êz is the unit vector in z direc-
tion. Then, the closed-loop phase Φ evaluates to

Φ = (k21 + k32 − ǫ34k34 − ǫ41k41) z + φ0 . (4)

Eq. (4) is the origin of our central results. It demon-
strates that it is possible to choose a laser setup such
that the multiphoton detuning does not contribute to
the closed-loop phase, whereas the dependence on the
wave vectors leads to a position dependence of the phase
Φ controllable by the propagation directions of the laser
fields. In order to analyze this control further, we ap-
proximate kij ≈ k = 2π/λ, and obtain

Φ = 2π
ξ

λ
z + φ0 , (5)

where ξ = (2− ǫ34 − ǫ41). From Eq. (5), we find that the
closed loop phase Φ changes by 2π over a position range
of λ/ξ. It is interesting to note that in closed-loop sys-
tems studied before, typically the phase-matching condi-
tion ~K~r ≈ 0 was assumed in order to avoid a position
dependence on a sub-wavelength scale. In contrast, for
sub-wavelength localization, this dependence is exactly
what is required.

In order to make use of Eq. (4) in a realistic setup, an
easily accessible observable is required which depends on
the closed-loop phase Φ. A number of potential observ-
ables such as state populations, fluorescence spectra, or
light propagation dynamics have been identified in the
literature [17, 18, 19, 20]. In the following, we choose
the fluorescence intensity of light emitted on the differ-
ent transitions as the simplest observable accessible in
the optical far field. The fluorescence intensity on the
different transitions is proportional to the spontaneous
decay rate on the transition times the population in the
upper state of the respective transition.

Since the intensities also depend on experimental con-
ditions such as the distance of the detector to the atom,
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FIG. 3: (Color online) Potential positions z depending on the
measured ratio R. Solid blue lines show ξ = 4, dashed red
lines indicate ξ = 2, and the dash-dotted magenta line shows
ξ = 0.25. The horizontal green line indicates the assumed
particle position z = 0.15λ.

the area of the detector or its efficiency, it is convenient to
consider the ratio of two intensities as the observable in
order to reduce the dependence on these quantities. We
define R as the ratio of the fluorescence intensity on tran-
sition |3〉 → |2〉 to the intensity on transition |2〉 → |1〉.

The measurement then could proceed as follows. After
applying the driving fields, the intensities of the light
emitted on the two transitions is measured. The light
from the different transitions can be distinguished via
the polarizations or the frequencies. From the ratio R of
the two intensities, the phase Φ can be determined. Via
Eqs. (4) or (5), Φ is related to the position z of the atom.
More specific, assuming for the sake of simpler analytical
results all spontaneous decay rates to be equal to γ, and
all Rabi frequencies equal to xγ with x ∈ R, we obtain
R = N(x)/D(x), where

N(x) = 2x2 cos(Φ/2)2[−(3 + 2x2)2 + 4x4 cosΦ] , (6a)

D(x) = −18 − 51x2 − 28x4 − 2x6+

x2(9 + 4x2) cosΦ + 2x6 cos(2Φ) . (6b)

This ratio R is plotted for different driving field strengths
Ω = xγ in Fig. 2. Ideally, the ratio should be chosen such
that there is a high slope |∂R/∂Φ| throughout the whole
range of phases Φ. From Fig. 2, it can be seen that x ≈ 5
offers a good compromise of high maximum slope and
low minimum slope over the whole range of 0 ≤ Φ ≤ 2π.
Then, the relative phase can be determined well from the
measured intensity ratio.

Setting x = 5, we now proceed to extract potential po-
sitions of the atom from the measured fluorescence inten-
sity ratio R. For this, we calculate the positions leading
to the measured rations R using Eqs. (5) and (6).

The results for ξ ∈ {2, 4} are shown in Fig. 3. Like in
standing wave localization schemes, each ratio R corre-
sponds to several potential positions {zi} [15]. As sug-
gested previously, an additional classical measurement
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FIG. 4: (Color online) Particle position z depending on the
measured ratio R, with parameters as in Fig. 3. The shaded
area indicates uncertainties due to an imperfect measurement
of R. The horizontal green line indicates the assumed particle
position z = 0.15λ. (a) Laser configuration ξ = 2, relative
phase φ0 = 0; (b) Laser configuration ξ = 4, relative phase
φ0 = 0; (c) Laser configuration ξ = 2, relative phase φ0 =
π/4. Note the different position axis scale in (a).

could be used to determine the true position out of sev-
eral potential positions [6, 10, 15]. However, the dash-
dotted magenta curve in Fig. 3 suggests how this classical
measurement can be avoided. For this, ξ ≪ 1 is required.
This can be achieved with ǫ34 = ǫ41 = 1 in Eq. (4) if the
magnitudes of the four wave vectors slightly differ due
to unequal transition frequencies. Alternatively, a small
mismatch of the propagation directions from ±êz allows
to tune ξ to small non-zero values. In the latter case,
however, the driving fields acquire polarization compo-
nents that may drive unwanted transitions. Small val-
ues of ξ allow to measure the approximate position of
the particle on a coarse scale, because the phase Φ then
changes on a scale λ/ξ ≫ λ. Using this method, the need
for an additional classical measurement common to the
localization schemes suggested so far is eliminated.

We now turn to a discussion of measurements on a
sub-wavelength scale with higher ξ. In the following, we
assume as a concrete example that a particle is located
at position z = 0.15 λ. This position is indicated as solid
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green line in Figs. 3 and 4. We further assume that for
ξ = 2, a measurement of the ratio R obtained a value of
R = 0.81·(1±0.05) with an overall uncertainty of 5%. Fi-
nally, we assume that the correct branch is identified by a
measurement with small ξ determining the appxoximate
position of the particle. Fig. 4(a) then demonstrates how
the result for R together with its overall error is trans-
lated into position information. It can be seen that the
slope of the curve essentially determines the uncertainty
in the position measurement. In Fig. 4(a), a localization
up to an uncertainty of about 20% is achieved.

This uncertainty can be reduced using two methods.
First, changing the propagation direction the laser beams
and thus ξ leads to an improvement of the measurement.
Fig. 4(b) shows the example for ξ = 4. Again, an overall
error of 5% in the measurement of R is assumed. It can
be seen that due to the smaller slope than in the case
ξ = 2, the position error is reduced by about one order
of magnitude to about 2%. Thus, by reversing the direc-
tion of one of the laser fields, the localization is greatly
improved. Second, the relative phase φ0 in Eq. (2) can
be used to improve the measurement. It turns out that a
change of φ0 shifts all curves in Fig. 3 along the position
axis. Thus the phase φ0 can be optimized such that the
true position of the particle leads to a measured ratio R
in a range where the slope of the curves in Fig. 3 is small.
This is demonstrated in Fig. 4(c) for ξ = 2. In this figure,
a relative phase φ0 = π/4 was used to shift the ratio R
corresponding to the true position from about R = 0.81
in Fig. 4(a) to about R = 0.4 in Fig. 4(c). At this ra-
tio, the slope |∂z/∂R| is much smaller, and this reduces
the position error by almost one order of magnitude to
about 2.5%. In general, the best localization results are
obtained if the optimization via the phase φ0 is combined
with laser configurations with large ξ.

From Eq. (4), it is clear that the slope |∂z/∂R| of the
position against the ratio R is decreased by increasing
ξ, such that errors in R lead to smaller uncertainties in
z. But as in previous standing-wave based schemes, an
improvement of the localization increases the number of
potential positions [6, 10, 15]. Thus it is useful to first
determine the position approximately using a small ξ,
and then switch to higher prefactors with better reso-
lution around the known approximate position. Due to
this analogy to conventional optical microscopy, the di-
rections of the laser fields can be interpreted as determin-
ing the magnification of the localization measurement.

In the final part, we generalize our results to an ex-
tended loop system. For 2N states labeled with increas-
ing state index along the loop path as before, the gener-
alized loop phase for the case of resonant fields becomes

Φ = φ0 + z
2N∑

i=1

ǫi+1,i ki+1,i , (7)

where ǫi+1,i ∈ {−1, 1} determine the propagation direc-

tions of the corresponding laser beams. Approximating
again kij ≈ 2π/λ, one obtains

Φ ≈ 2π
ξ

λ
z + φ0 , (8a)

ξ ∈ {0, 2, . . . , 2N} . (8b)

The value of ξ can be controlled by the choice of the prop-
agation directions ǫi,j . Thus we find that the prefactor ξ
already present in Eq. (5) that enables one to determine
the magnification of the localization scheme can be cho-
sen in a wide range. Since for a given ξ, the relative phase
Φ changes by 2π over a position range of λ/ξ, a more ex-
tended closed loop scheme enables one to achieve a better
resolution for the position determination, and to switch
between more magnification levels. Potential restrictions
arise from the requirement that the individual transitions
should ideally be addressed individually by laser fields.
This, however, is not a strict requirement, as long as the
multiphoton resonance condition is fulfilled, but restricts
the possible settings for ξ. In particular in more extended
systems, other observables than the simple ratio of two
fluorescence intensities can be expected to lead to further
improvement for the position determination.
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