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The use of decoy states in quantum key distribution (QKD) has provided a method for sub-
stantially increasing the secret key rate and distance that can be covered by QKD protocols with
practical signals. The security analysis of these schemes, however, leaves open the possibility that
the development of better proof techniques, or better classical post-processing methods, might fur-
ther improve their performance in realistic scenarios. In this paper, we derive upper bounds on
the secure key rate for decoy state QKD. These bounds are based basically only on the classical
correlations established by the legitimate users during the quantum communication phase of the
protocol. The only assumption about the possible post-processing methods is that double click
events are randomly assigned to single click events. Further we consider only secure key rates based
on the uncalibrated device scenario which assigns imperfections such as detection inefficiency to the
eavesdropper. Our analysis relies on two preconditions for secure two-way and one-way QKD: The
legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or
that there exists no quantum state having a symmetric extension (one-way QKD), that is compati-
ble with the available measurements results. Both criteria have been previously applied to evaluate
single-photon implementations of QKD. Here we use them to investigate a realistic source of weak
coherent pulses. The resulting upper bounds can be formulated as a convex optimization problem
known as a semidefinite program which can be efficiently solved. For the standard four-state QKD
protocol, they are quite close to known lower bounds, thus showing that there are clear limits to
the further improvement of classical post-processing techniques in decoy state QKD.

PACS numbers:

I. INTRODUCTION

Quantum key distribution (QKD) [1, 2] allows two par-
ties (Alice and Bob) to generate a secret key despite
the computational and technological power of an eaves-
dropper (Eve), who interferes with the signals. Together
with the Vernam cipher [3], QKD can be used to provide
information-theoretic secure communications.

Practical QKD systems can differ in many important
aspects from their original theoretical proposal, since
these proposals typically demand technologies that are
beyond our present experimental capability. Especially,
the signals emitted by the source, instead of being single
photons, are usually weak coherent pulses (WCP) with
typical average photon numbers of 0.1 or higher. The
quantum channel introduces errors and considerable at-
tenuation (about 0.2 dB/km) that affect the signals even
when Eve is not present. Besides, for telecom wave-
lengths, standard InGaAs single-photon detectors can
have a detection efficiency below 15% and are noisy due
to dark counts. All these modifications jeopardize the
security of the protocols, and lead to limitations of rate
and distance that can be covered by these techniques [4].

A main security threat of practical QKD schemes based
on WCP arises from the fact that some signals contain

more than one photon prepared in the same polarization
state. Now Eve is no longer limited by the no-cloning
theorem [5] since in these events the signal itself provides
her with perfect copies of the signal photon. She can per-
form, for instance, the so-called photon number splitting

(PNS) attack on the multi-photon pulses [4]. This at-
tack gives Eve full information about the part of the key
generated with the multi-photon signals, without causing
any disturbance in the signal polarization. As a result, it
turns out that the standard BB84 protocol [6] with WCP
can deliver a key generation rate of order O(η2), where η
denotes the transmission efficiency of the quantum chan-
nel [7, 8].

To achieve higher secure key rates over longer dis-
tances, different QKD schemes, that are robust against
the PNS attack, have been proposed in recent years
[9, 10, 11, 12, 13]. One of these schemes is the so-called
decoy state QKD [9, 10, 11] where Alice varies, indepen-
dently and at random, the mean photon number of each
signal state that she sends to Bob by employing differ-
ent intensity settings. Eve does not know a priori the
mean photon number of each signal state sent by Alice.
This means that her eavesdropping strategy can only de-
pend on the photon number of these signals, but not on
the particular intensity setting used to generate them.
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From the measurement results corresponding to differ-
ent intensity settings, the legitimate users can estimate
the classical joint probability distribution describing their
outcomes for each photon number state. This provides
them with a better estimation of the behaviour of the
quantum channel, and it translates into an enhancement
of the achievable secret key rate and distance. This tech-
nique has been successfully implemented in several recent
experiments [14], and it can give a key generation rate of
order O(η) [9, 10, 11].

While the security analysis of decoy state QKD in-
cluded in Refs. [9, 10, 11] is relevant from a practical
point of view, it also leaves open the possibility that the
development of better proof techniques, or better clas-
sical post-processing protocols, might further improve
the performance of these schemes in realistic scenarios.
For instance, it is known that two-way classical post-
processing protocols can tolerate a higher error rate than
one-way communication techniques [15, 16], or that by
modifying the public announcements of the standard
BB84 protocol it is possible to generate a secret key even
from multi-photon signals [12]. Also, the use of local
randomization [17] and degenerate codes [18] can as well
improve the error rate thresholds of the protocols.

In this paper we consider the uncalibrated device sce-
nario [2] and we assume the typical initial post-processing
step where double click events are not discarded by Bob,
but they are randomly assigned to single click events
[19]. In this scenario, we derive simple upper bounds
on the secret key rate and distance that can be covered
by decoy state QKD based exclusively on the classical
correlations established by the legitimate users during
the quantum communication phase of the protocol. Our
analysis relies on two preconditions for secure two-way
and one-way QKD. In particular, Alice and Bob need
to prove that there exists no separable state (in the
case of two-way QKD) [20, 21], or that there exists no
quantum state having a symmetric extension (one-way
QKD) [22], that is compatible with the available mea-
surements results. Both criteria have been already ap-
plied to evaluate single-photon implementations of QKD
[20, 21, 22, 23, 24]. Here we employ them for the first
time to investigate practical realizations of QKD based
on the distribution of WCP.

We show that both preconditions for secure two-way
and one-way QKD can be formulated as a convex op-
timization problem known as a semidefinite program
(SDP) [25]. Such instances of convex optimization prob-
lems appear frequently in quantum information theory
and can be solved with arbitrary accuracy in polynomial
time, for example, by the interior-point methods [25]. As
a result, we obtain ultimate upper bounds on the perfor-
mance of decoy state QKD when this typical initial post-
processing of the double clicks is performed. These up-
per bounds hold for any possible classical communication
technique that the legitimate users can employ in this sce-
nario afterwards like, for example, the SARG04 protocol
[12], adding noise protocols [17], degenerate codes proto-

cols [18] and two-way classical post-processing protocols
[15, 16]. The analysis presented in this manuscript can
as well be straightforwardly adapted to evaluate other
implementations of the BB84 protocol with practical sig-
nals as, for instance, those experimental demonstrations
based on WCP without decoy states or on entangled sig-
nals coming from a parametric down conversion source.

The paper is organized as follows. In Sec. II we de-
scribe in detail a WCP implementation of the BB84 pro-
tocol based on decoy states. Next, in Sec. III we apply
two criteria for secure two-way and one-way QKD to this
scenario. Here we derive upper bounds on the secret key
rate and distance that can be achieved with decoy state
QKD as a function of the observed quantum bit error rate
(QBER) and the losses in the quantum channel. More-
over, we show how to cast both upper bounds as SDPs.
These results are then illustrated in Sec. IV for the case
of a typical behaviour of the quantum channel, i.e., in
the absence of eavesdropping. Finally, Sec. V concludes
the paper with a summary.

II. DECOY STATE QKD

In decoy state QKD with WCP Alice prepares phase-
randomized coherent states with Poissonian photon num-
ber distribution. The mean photon number (intensity) of
this distribution is chosen at random for each signal from
a set of possible values µl. In the case of the BB84 proto-
col, and assuming Alice chooses a decoy intensity setting
l, such states can be described as

ρk
B(µl) = e−µl

∞
∑

n=0

µn
l

n!
|nk〉B〈nk|, (1)

where the signals |nk〉B denote Fock states with n pho-
tons in one of the four possible polarization states of
the BB84 scheme, which are labeled with the index
k ∈ {0, . . . , 3}. On the receiving side, we consider that
Bob employs an active basis choice measurement setup.
This device splits the incoming light by means of a polar-
izing beam-splitter and then sends it to threshold detec-
tors that cannot resolve the number of photons by which
they are triggered. The polarizing beam-splitter can be
oriented along any of the two possible polarization basis
used in the BB84 protocol. This detection setup is char-
acterized by one positive operator value measure (POVM)
that we shall denote as {Bj}.

In an entanglement-based view, the signal preparation
process described above can be modeled as follows: Alice
produces first bipartite states of the form

|Ψsource〉AB =

3
∑

k=0

∞
∑

l=0

√
qkpl|k〉A1

|l〉A2
|φkl〉A3B, (2)

where system A is the composition of systems A1, A2,
and A3, and the orthogonal states |k〉A1

and |l〉A2
record,

respectively, the polarization state and decoy intensity
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setting selected by Alice. The parameters qk and pl rep-
resent the a priori probabilities of these signals. For in-
stance, in the standard BB84 scheme the four possible
polarization states are chosen with equal a priori prob-
abilities and qk = 1/4 for all k. The signal |φkl〉A3B
that appears in Eq. (2) denotes a purification of the state
ρk

B(µl) and can be written as

|φkl〉A3B = e−µl/2
∞
∑

n=0

√
µl

n

√
n!

|n〉A3
|nk〉B, (3)

where system A3 acts as a shield, in the sense of Ref. [26]
and records the photon number information of the sig-
nals prepared by the source. This system is typically
inaccessible to all the parties. One could also select as
|φkl〉A3B any other purification of the state ρk

B(µl). How-
ever, as we will show in Sec. III, the one given by Eq. (3)
is particularly suited for the calculations that we present
in that section.

Afterwards, Alice measures systems A1 and A2 in
the orthogonal basis |k〉A1

and |l〉A2
, corresponding to

the measurement operators Akl = |k〉A1
〈k| ⊗ |l〉A2

〈l|.
This action generates the signal states ρk

B(µl) with a
priori probabilities qkpl. The reduced density matrix
ρA = TrB(ρAB), with ρAB = |Ψsource〉AB〈Ψsource|, is
fixed by the actual preparation scheme and cannot be
modified by Eve. In order to include this information in
the measurement process, one can add to the observables
{Akl⊗Bj}, measured by Alice and Bob, other observables
{Ci ⊗ 11B} such that {Ci} form a complete tomographic
set of Alice’s Hilbert space HA [21]. In order to simplify
our notation, from now on we shall consider that the ob-
served data pklj = Tr(Akl ⊗ Bj ρAB) and the POVM
{Akl ⊗Bj} contain also the observables {Ci ⊗11B}. That
is, every time we refer to {Akl⊗Bj} we assume that these
operators include as well the observables {Ci ⊗ 11B}.

III. UPPER BOUNDS ON DECOY STATE QKD

Our starting point is the observed joint probability
distribution pklj obtained by Alice and Bob after their
measurements {Akl ⊗ Bj}. This probability distribution
defines an equivalence class S of quantum states that are
compatible with it,

S =
{

σAB | Tr(Akl ⊗ Bj σAB) = pklj ∀k, l, j
}

. (4)

A. Two-way classical post-processing

Let us begin by considering two-way classical post-
processing of the data pklj . It was shown in Ref. [21]
that a necessary precondition to distill a secret key in
this scenario is that the equivalence class S does not
contain any separable state. That is, we need to find
quantum-mechanical correlations in pklj , otherwise the
secret key rate, that we shall denote as K, vanishes [27].

As it is, this precondition answers only partially the im-
portant question of how much secret key Alice and Bob
can obtain from their correlated data. It just tells if the
secret key rate is zero or it may be positive. However,
this criterion can be used as a benchmark to evaluate any
upper bound on K. If S contains a separable state then
the upper bound must vanish. One upper bound which
satisfies this condition is that given by the regularized
relative entropy of entanglement [28]. Unfortunately, to
calculate this quantity for a given quantum state is, in
general, a quite difficult task, and analytical expressions
are only available for some particular cases [29]. Besides,
this upper bound depends exclusively on the quantum
states shared by Alice and Bob and, therefore, it does
not include the effect of imperfect devices like, for in-
stance, the low detection efficiency or the noise in the
form of dark counts introduced by current detectors [23].
Another possible approach is that based on the best sepa-
rable approximation (BSA) of a quantum state σAB [30].
This is the decomposition of σAB into a separable state
σsep and an entangled state ρent, while maximizing the
weight of the separable part. That is, any quantum state
σAB can always be written as

σAB = λ(σAB)σsep + [1 − λ(σAB)]ρent, (5)

where the real parameter λ(σAB) ≥ 0 is maximal.
Given an equivalence class S of quantum states, one

can define the maximum weight of separability within
the class, λS

BSA, as

λS
BSA = max{λ(σAB) | σAB ∈ S}. (6)

Note that the correlations pklj can originate from a sep-
arable state if and only if λS

BSA = 1. Let Sent
BSA denote

the equivalence class of quantum states given by

Sent
BSA = {ρent | σAB ∈ S and λ(σAB) = λS

BSA}, (7)

where ρent represents again the entangled part in the
BSA of the state σAB . Then, it was proven in Ref. [23]
that the secret key rate K always satisfies

K ≤ (1 − λS
BSA)Ient(A; B), (8)

where Ient(A; B) represents the Shannon mutual infor-
mation calculated on the joint probability distribution
qklj = Tr(Akl ⊗ Bj ρent). As it is, this upper bound
can be applied to any QKD scheme [23], although the
calculation of the parameters λS

BSA and ρent might be a
challenge. Next, we consider the particular case of decoy
state QKD.

Upper bound on two-way decoy state QKD

The signal states ρk
B(µl) that Alice sends to Bob are

mixtures of Fock states with different Poissonian pho-
ton number distributions of mean µl. This means, in
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particular, that Eve can always perform a quantum non-

demolition (QND) measurement of the total number of
photons contained in each of these signals without in-
troducing any errors. The justification for this is that
the total photon number information via the QND mea-
surement “comes free”, since the execution of this mea-
surement does not change the signals ρk

B(µl). That is,
the realization of this measurement cannot make Eve’s
eavesdropping capabilities weaker [31]. If Eve performs
such a QND measurement, then the signals ρAB =
|Ψsource〉AB〈Ψsource| are transformed as

ρAB 7→ γAB =
∞
∑

n=0

rn|ϕn〉A1B〈ϕn|⊗|µn〉A2
〈µn|⊗|n〉A3

〈n|,

(9)
where the probabilities rn are given by

rn =

∞
∑

l=0

pl
e−µlµn

l

n!
, (10)

the signals |ϕn〉A1B have the form

|ϕn〉A1B =

3
∑

k=0

√
qk|k〉A1

|nk〉B, (11)

and the normalized states |µn〉A2
only depend on the sig-

nals |l〉A2
and the photon number n.

From the tensor product structure of γAB we learn
that the signals γAB can only contain quantum corre-
lations between systems A1 and B. Therefore, without
loss of generality, we can always restrict ourselves to only
search for quantum correlations between these two sys-
tems. Additionally, in decoy state QKD Alice and Bob
have always access to the conditional joint probability
distribution describing their outcomes given that Alice
emitted an n-photon state. This means that the search
for quantum correlations in S can be done independently
for each n-photon signal. That is, the legitimate users
can define an equivalence class of signal states for each
possible Fock state sent by Alice.

A further simplification arises when one considers the
typical initial post-processing step where double click
events are not discarded by Bob, but they are randomly
assigned to single click events [19]. In the case of the
BB84 protocol, this action allows Alice and Bob to al-
ways explain their observed data as coming from a single-
photon signal where Bob performs a single-photon mea-
surement {Tj} [32]. This measurement is characterized
by a set of POVM operators which are projectors onto
the eigenvectors of the two Pauli operators σx and σz,
together with a projection onto the vacuum state |vac〉
which models the losses in the quantum channel,

T0 =
1

2
|0〉B〈0|, T1 =

1

2
|1〉B〈1|,

T± =
1

2
|±〉B〈±|, Tvac = |vac〉B〈vac|, (12)

with |±〉 = (|0〉 ± |1〉)/
√

2 and where
∑

j Tj = 11B [32].
In particular, let pn

kj denote the conditional joint proba-
bility distribution obtained by Alice and Bob after their
measurements {Ak ⊗Tj}, with Ak = |k〉A1

〈k|, given that
Alice emitted an n-photon state. That is, pn

kj includes the
random assignment of double clicks to single click events.
As before, we consider that the observables {Ak ⊗ Tj}
contain as well other observables {Ci ⊗ 11B} that form a
tomographic complete set of Alice’s Hilbert space HA1

.
We define the equivalence class Sn of quantum states
that are compatible with pn

kj as

Sn =
{

σn
A1B | Tr(Ak ⊗ Tj σn

A1B) = pn
kj , ∀k, j}. (13)

Then, the secret key rate K can be upper bounded as

K ≤
∑

n≥1

rn(1 − λSn

BSA)Ient
n (A; B), (14)

where λSn

BSA denotes the maximum weight of separabil-
ity within the equivalence class Sn, and Ient

n (A; B) rep-
resents the Shannon mutual information calculated on
qn
kj = Tr(Ak ⊗ Tj ρn

ent), with ρn
ent being the entangled

part in the BSA of a state σn
A1B ∈ Sn and whose weight

of separability is maximum.

The main difficulty when evaluating the upper bound
given by Eq. (14) still relies on obtaining the parameters
λSn

BSA and ρn
ent. Next, we show how to solve this problem

by means of a semidefinite program (SDP) [25]. For that,
we need to prove first the following observation.

Observation: Within the equivalence classes Sn of
quantum signals given by Eq. (13) Alice and Bob can
only detect the presence of negative partial transposed
(NPT) entangled states [33].

Proof. The signals σn
A1B ∈ Sn can always be decom-

posed as

σn
A1B = pρ̃n

A1B + (1 − p)ρ̃n
A1

⊗ |vac〉B〈vac|, (15)

for some probability p ∈ [0, 1], and where ρ̃n
A1B ∈ HA1

⊗
H2, and ρ̃n

A1
∈ HA1

. That is, the state σn
A1B can only

be entangled if ρ̃n
A1B is also entangled. In order to detect

entanglement in the latter one, Bob projects it onto the
eigenvectors of the two Pauli operators σx and σz. This
means, in particular, that the class of accessible entangle-
ment witness operators W that can be constructed from
the available measurements results satisfy W = WΓ.
Here Γ denotes transposition with respect to Bob’s sys-
tem. We have, therefore, that Tr(Wρ̃n

A1B) = Tr(WΩ),

with Ω = 1
2 [ρ̃n

A1B + ρ̃n Γ
A1B]. For the given dimensionali-

ties, it was proven in Ref. [34] that whenever Ω is non-
negative it represents a separable state, i.e., Tr(WΩ) ≥ 0.
This means that Alice and Bob can only detect entan-
gled states ρ̃n

A1B that satisfy Ω � 0. Since ρ̃n
A1B ≥ 0, the

previous condition is only possible when ρ̃n Γ
A1B � 0. �

Let us now write the search of λSn

BSA and ρn
ent as a SDP.

This is a convex optimisation problem of the following
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form [25]:

minimize cT
x (16)

subject to F (x) = F0 +
∑

i

xiFi ≥ 0,

where the vector x represents the objective variable, the
vector c is fixed by the particular optimisation problem,
and the matrices F0 and Fi are Hermitian matrices. The
goal is to minimize the linear function cT

x subjected to
the linear matrix inequality (LMI) constraint F (x) ≥ 0.
The SDP that we need to solve has the form [35]:

minimize 1 − Tr[σn
sep(x)] (17)

subject to σn
A1B(x) ≥ 0,

Tr[σn
A1B(x)] = 1,

Tr[Ak ⊗ Tj σn
A1B(x)] = pn

kj , ∀k, j,

σn
sep(x) ≥ 0,

σn Γ
sep (x) ≥ 0,

σn
A1B(x) − σn

sep(x) ≥ 0,

where the objective variable x is used to parametrise the
density operators σn

sep and σn
A1B. For that, we employ the

method introduced in Refs. [23, 24]. The state σn
sep which

appears in Eq. (17) is not normalized, i.e., it also includes
the parameter λ(σn

A1B). The first three constraints in
Eq. (17) guarantee that σn

A1B is a valid normalized den-
sity operator that belongs to the equivalence class Sn, the
following two constraints impose σn

sep to be a separable
state, while the last one implies that the entangled part
of σn

A1B is a valid but not normalized density operator.
Its normalization factor is given by 1 − λ(σn

A1B). If xsol

denotes a solution to the SDP given by Eq. (17) then

λSn

BSA = Tr[σn
sep(xsol)], (18)

and the state ρn
ent is given by

ρn
ent =

σn
A1B(xsol) − σn

sep(xsol)

1 − λSn

BSA

. (19)

B. One-way classical post-processing

The classical post-processing of the observed data can
be restricted to one-way communication [36]. Depending
on the allowed direction of communication, two differ-
ent cases can be considered: Direct reconciliation (DR)
refers to communication from Alice to Bob, reverse rec-

onciliation (RR) permits only communication from Bob
to Alice [37]. In this section, we will only consider the
case of DR. Expressions for the opposite scenario, i.e.,
RR, can be obtained in a similar way. In Ref. [22] it was
shown that a necessary precondition for secure QKD by
means of DR (RR) is that the equivalence class S given
by Eq. (4) does not contain any state having a symmetric
extension to two copies of system B (system A).

A BAB

A B

B'

ABAB'

σ
ABB'

≥ 0

AB

σ

σ

σ
σ

≅

FIG. 1: Graphical illustration of a quantum state σAB which
has a symmetric extension to two copies of system B.

A state σAB is said to have a symmetric extension to
two copies of system B if and only if there exists a tri-
partite state σABB′ ≥ 0, with Tr(σABB′) = 1, and where
HB

∼= HB′ , which fulfills the following two properties
[38]:

TrB′(σABB′) = σAB , (20)

PσABB′P = σABB′ , (21)

where the swap operator P satisfies P |ijk〉ABB′ =
|ikj〉ABB′ . A graphical illustration of a state σAB which
has a symmetric extension to two copies of system B is
given in Fig. 1. This definition can be easily extended
to cover also the case of symmetric extensions of σAB to
two copies of system A, and also of extensions of σAB to
more than two copies of system A or of system B.

The best extendible approximation (BEA) of a given
state σAB is the decomposition of σAB into a state with a
symmetric extension, that we denote as σext, and a state
without symmetric extension ρne, while maximizing the
weight of the extendible part, i.e.,

σAB = λ(σAB)σext + [1 − λ(σAB)]ρne, (22)

where the real parameter λ(σAB) ≥ 0 is maximal [22, 39].
Note that this parameter is well defined since the set of
extendible states is compact.

Equation (22) follows the same spirit like the BSA
given by Eq. (5). Now, one can define analogous parame-
ters and equivalence classes as in Sec. III A. In particular,
the maximum weight of extendibility within an equiva-
lence class S is defined as λS

BEA = max{λ(σAB) | σAB ∈
S}. That is, the correlations pklj = Tr(Akl ⊗ Bj σAB)
can originate from an extendible state if and only if
λS

BEA = 1. Finally, one defines Sne
BEA as the equivalence

class of quantum states given by Sne
BEA = {ρne | σAB ∈

S and λ(σAB) = λS
BEA}, where ρne denotes the nonex-

tendible part in the BEA of the state σAB . Then, it was
proven in Ref. [22] that the one-way secret key rate K→
satisfies

K→ ≤ (1 − λS
BEA)Ine(A; B), (23)

where Ine(A; B) represents the Shannon mutual informa-
tion now calculated on the joint probability distribution
qklj = Tr(Akl ⊗ Bj ρne) with ρne ∈ Sne

BEA.
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Upper bound on one-way decoy state QKD

The analysis contained in Sec. III A to derive Eq. (14)
from Eq. (8) also applies to this scenario and we omit it
here for simplicity. We obtain

K→ ≤
∑

n≥1

rn(1 − λSn

BEA)Ine
n (A; B). (24)

where λSn

BEA denotes the maximum weight of extendibil-
ity within the equivalence class Sn given by Eq. (13),
and Ine

n (A; B) represents the Shannon mutual informa-
tion calculated on qn

kj = Tr(Ak ⊗Tj ρn
ne), with ρn

ne being
the nonextendible part in the BEA of a state σn

A1B ∈ Sn

and whose weight of extendibility is maximum.
The parameter λSn

BEA and the nonextendible state ρn
ne

can directly be obtained by solving the following SDP:

minimize 1 − Tr[σn
ext(x)] (25)

subject to σn
A1B(x) ≥ 0,

Tr[σn
A1B(x)] = 1,

Tr[Ak ⊗ Tj σn
A1B(x)] = pn

kj , ∀k, j,

ρn
A1BB′(x) ≥ 0,

Pρn
A1BB′(x)P = ρn

A1BB′(x),

TrB′ [ρn
A1BB′(x)] = σn

ext(x),

σn
A1B(x) − σn

ext(x) ≥ 0,

where the state σn
ext is not normalized, i.e., it also in-

cludes the parameter λ(σn
A1B). The first three constraints

coincide with those of Eq. (17). They just guarantee
that σn

A1B ∈ Sn. The following three constraints im-
pose σn

ext to have a symmetric extension to two copies
of system B, while the last one implies that the nonex-
tendible part of σn

A1B is a valid but not normalized den-
sity operator. Its normalization factor is 1 − λ(σn

A1B).
This SDP does not include the constraint σn

ext ≥ 0 be-
cause non-negativity of the extension ρn

A1BB′ , together
with the condition TrB′(ρn

A1BB′) = σn
ext, already implies

non-negativity of σn
ext. If xsol represents a solution to the

SDP given by Eq. (25) then we have that

λSn

BEA = Tr[σn
ext(xsol)], (26)

and the state ρn
ne is given by

ρn
ne =

σn
A1B(xsol) − σn

ext(xsol)

1 − λSn

BEA

. (27)

IV. EVALUATION

In this section we evaluate the upper bounds on the se-
cret key rate both for two-way and one-way decoy state
QKD given by Eq. (14) and Eq. (24). Moreover, we com-
pare our results with known lower bounds for the same
scenarios. The numerical simulations are performed with
the freely available SDP solver SDPT3-3.02 [40], together
with the parser YALMIP [41].

pn
kj Tj=0 Tj=1 Tj=+ Tj=− Tj=vac

k = 0 Yn(1−en)
8

Ynen

8
Yn

16
Yn

16
1−Yn

4

k = 1 Ynen

8
Yn(1−en)

8
Yn

16
Yn

16
1−Yn

4

k = 2 Yn

16
Yn

16
Yn(1−en)

8
Ynen

8
1−Yn

4

k = 3 Yn

16
Yn

16
Ynen

8
Yn(1−en)

8
1−Yn

4

TABLE I: Conditional joint probability distribution pn
kj =

Tr(Ak ⊗ Tj σn
A1B), where the index k ∈ {0, . . . , 3} la-

bels, respectively, the four possible polarization states of the
BB84 protocol (0, 1, +,−), and the operators Tj are given by
Eq. (12). It satisfies

P

k,j
pn

kj = 1.

A. Channel model

To generate the observed data, we consider the chan-
nel model used in Ref. [10, 42]. This model reproduces
a normal behaviour of the quantum channel, i.e., in the
absence of eavesdropping. Note, however, that our anal-
ysis can as well be straightforwardly applied to other
quantum channels, as it only depends on the probability
distribution pn

kj that characterizes the results of Alice’s
and Bob’s measurements. This probability distribution
is given in Tab. I, where the conditional yields Yn have
the form

Yn = Y0 + [1 − (1 − η)n], (28)

with Y0 being the background detection event rate of
the system, and where η represents the overall transmit-
tance, including the transmission efficiency of the quan-
tum channel and the detection efficiency. The parameter
en denotes the quantum bit error rate of an n-photon
signal. It is given by

en =
edet[1 − (1 − η)n] + 1

2Y0

Yn
, (29)

where edet represents the probability that a photon hits
the wrong detector due to the misalignment in the quan-
tum channel and in the detection apparatus.

The parameter η can be related with a transmission
distance l measured in km for the given QKD scheme as

η = 10−
αl

10 , where α represents the loss coefficient of the
optical fiber measured in dB/km. The total dB loss of
the channel is given by αl.

B. Illustration of the upper bounds

As discussed in Sec. III, the reduced density matrix
of Alice, that we shall denote as ρn

A1
, is fixed and can-

not be modified by Eve. This state has the form ρn
A1

=

TrB(|ϕn〉A1B〈ϕn|) =
∑3

k,k′=0

√
qkqk′〈nk′ |nk〉|k〉A1

〈k′|,
where |ϕn〉A1B is given by Eq. (11). In the standard
BB84 protocol the probabilities qk satisfy qk = 1/4. We
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obtain, therefore, that ρn
A1

can be expressed as

ρn
A1

=
1

4









1 0 2−n/2 2−n/2

0 1 2−n/2 (−1)n2−n/2

2−n/2 2−n/2 1 0
2−n/2 (−1)n2−n/2 0 1









.

(30)
To include this information in the measurement process,
we consider that Alice and Bob have also access to the
results of a set of observables {Ci⊗11B} that form a tomo-
graphic complete set of Alice’s Hilbert space HA1

. In par-
ticular, we use a Hermitian operator basis {C1, . . . , C16}.
These Hermitian operators satisfy Tr(Ci) = 4δi1 and
have a Hilbert-Schmidt scalar product Tr(CiCj) = 4δij .
The probabilities Tr(Ci ⊗ 11B σn

A1B) = Tr(Ci ρn
A1

), with
ρn

A1
given by Eq. (30).

The resulting upper bounds on the two-way and one-
way secret key rate are illustrated, respectively, in Fig. 2
and Fig. 3. They state that no secret key can be distilled
from the correlations established by the legitimate users
above the curves, i.e., the secret key rate in that region
is zero. These figures include as well lower bounds for
the secret key rate obtained in Refs. [8, 10, 16]. Note,
however, the security proofs included in Refs. [8, 10]
implicitly assume that Alice and Bob can make public
announcements using two-way communication, and only
the error correction and privacy amplification steps of
the protocol are assumed to be realized by means of one-
way communication. We consider the uncalibrated de-
vice scenario and we study two different situations in each
case: (1) no errors in the quantum channel, i.e., Y0 = 0,
edet = 0, and (2) Y0 = 1.7× 10−6 and edet = 0.033. This
last scenario corresponds to the experimental parameters
reported by Gobby-Yuan-Shields (GYS) in Ref. [43]. Fig-
ure 2 and Fig. 3 do not include the sifting factor of 1/2
for the BB84 protocol, since this effect can be avoided
by an asymmetric basis choice for Alice and Bob [44].
Moreover, we consider that in the asymptotic limit of a
large number of transmitted signals most of them repre-
sent signal states of mean photon number µ0. That is,
the proportion of decoy states used to test the behaviour
of the quantum channel within the total number of sig-
nals sent by Alice is neglected. This means that p0 in
Eq. (10) satisfies p0 ≈ 1 and

rn =
e−µ0µn

0

n!
. (31)

C. Discussion

In the case of no errors in the quantum channel (Case
(1) above) the lower bounds for two-way and one-way
QKD derived in Refs. [8, 10, 16] coincide. Furthermore,
for low values of the total dB loss, the upper bounds
shown in the figures present a small bump which is spe-
cially visible in this last case. The origin of this bump is
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FIG. 2: Upper bounds on the two-way secret key rate K given
by Eq. (14) in logarithmic scale in comparison to known lower
bounds for the same scenario given in Ref. [16]. The figure
includes two cases. (1) No errors in the quantum channel, i.e.,
Y0 = 0 and edet = 0. In this case, the upper bound (UB) is
represented by a thin solid line, while the lower bound (LB)
is represented by a thin dashed line. (2) Y0 = 1.7 × 10−6

and edet = 0.033, which correspond to the GYS experiment
reported in Ref. [43]. In this case, the upper bound (UB) is
represented by a thick solid line, while the lower bound (LB)
after 3 B steps is represented by a thick dashed line. We
assume asymmetric basis choice to suppress the sifting effect
[44].

the potential contribution of the multi-photon pulses to
the key rate.

Let us now consider the cutoff points for decoy state
QKD in the case of errors in the quantum channel (Case
(2) above). These are the values of the total dB loss for
which the secret key rate drops down to zero in Fig. 2
and Fig. 3. We find that they are given, respectively,
by: ≈ 51.1 dB (lower bound two-way after 3 B steps),
≈ 57.4 dB (upper bound two-way), ≈ 44.9 dB (lower
bound one-way), and ≈ 53.5 dB (upper bound one-way
with RR). These quantities can be related with the fol-
lowing transmission distances: 179.2 km, 209.2 km, 149.6
km and 190.6 km. Here we have used α = 0.21 dB/km
and the efficiency of Bob’s detectors is 4.5% [43]. It is in-
teresting to compare the two-way cutoff point of 209.2 km
with a similar distance upper bound of 208 km provided
in Ref. [16] for the same values of the experimental pa-
rameters. Note, however, that the upper bound derived
in Ref. [16] relies on the assumption that a secure key
can only be extracted from single photon states. That
is, it implicitly assumes the standard BB84 protocol. If
this assumption is removed and one also includes in the
analysis the potential contribution of the multi-photon
signals to the key rate (due, for instance, to the SARG04
protocol [12]), then the cutoff point provided in Ref. [16]
transforms from 208 km to 222 km, which is above the
209.2 km presented here.
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FIG. 3: Upper bounds on the one-way secret key rate K→

given by Eq. (24) in logarithmic scale in comparison to known
lower bounds for the same scenario given in Refs. [8, 10].
The figure includes two cases. (1) No errors in the quantum
channel, i.e., Y0 = 0 and edet = 0. In this case, the upper
bound (UB) RR is represented by a thin solid line, while the
lower bound (LB) is represented by a thin dashed line. (2)
Y0 = 1.7 × 10−6 and edet = 0.033, which correspond to the
GYS experiment reported in Ref. [43]. In this case, the upper
bound (UB) RR is represented by a thick solid line, while the
lower bound (LB) is represented by a thick dashed line. The
two lines on the left hand side of the graphic represent upper
bounds for the case of DR (case (1) short dashed line, case (2)
dash-dotted line). The inset figure shows an enlarged view of
the upper bounds for a total dB loss ranging from 0 to 5 dB.
We assume asymmetric basis choice to suppress the sifting
effect [44].

Figure 3 shows a significant difference between the
behaviour of the upper bounds for one-way classical
post-processing with RR and DR. Most importantly, the
upper bounds on K→ for the case of DR can be be-
low the lower bounds on the secret key rate derived in
Refs. [8, 10]. Note, however, that the scenario considered
here is slightly different from the one assumed in the se-
curity proofs of Refs. [8, 10]. In particular, the analysis
contained in Sec. III B for the case of DR does not allow
any communication from Bob to Alice once the condi-
tional probabilities pn

kj are determined. This means, for
instance, that Bob cannot even declare in which partic-
ular events his detection apparatus produced a “click”.
However, as mentioned previously, Refs. [8, 10] implicitly
assume that only the error correction and privacy ampli-
fication steps of the protocol are performed with one-way
communication. If the analysis performed in Sec. III B
is modified such that Bob is now allowed to inform Alice
which signal states he actually detected, then it turns out
that the resulting upper bounds in this modified scenario
coincide with those derived for the case of RR. To include
this initial communication step from Bob to Alice in the
analysis, one can use the following procedure. Let the

projector ΠA1B be defined as

ΠA1B = 11A1
⊗ (11B − |vac〉B〈vac|). (32)

Then, one can add to Eq. (25) one extra constraint

σn post
A1B (x) =

ΠA1Bσn
A1B(x)ΠA1B

Yn
, (33)

and substitute the condition σn
A1B(x) − σn

ext(x) ≥ 0 by

σn post
A1B (x) − σn

ext(x) ≥ 0. (34)

Equation (33) refers to the normalized state that is posts-
elected by Alice and Bob once Bob declares which signals
he detected. Equation (34) indicates that the BEA has to
be applied to this postselected state. Finally, each term
in the summation given by Eq. (24) has to be multiplied
by the yield Yn, i.e., the probability that Bob obtains
a “click” conditioned on the fact that Alice sent an n-
photon state.

Our numerical results indicate that the upper bounds
given by Eq. (14) and Eq. (24) are close to the known
lower bounds available in the scientific literature for the
same scenarios. However, one might expect that these
upper bounds can be further tightened in different ways.
For instance, by substituting in Eq. (14) and Eq. (24) the
Shannon mutual information with any other tighter up-
per bound on the secret key rate that can be extracted
from a classical tripartite probability distribution mea-
sured on a purification of the state ρn

ent (in the case of
two-way QKD) or of the state ρn

ne (one-way QKD). More-
over, as they are, Eq. (14) and Eq. (24) implicitly assume
that the legitimate users know precisely the number of
photons contained in each signal emitted. However, in
decoy state QKD Alice and Bob have only access to the
conditional joint probability distribution describing their
outcomes given that Alice emitted an n-photon state, but
they do not have single shot photon number resolution
of each signal state sent.

As a side remark, we would like to emphasize that to
calculate the upper bounds given by Eq. (14) and Eq. (24)
it is typically sufficient to consider only a finite number
of terms in the summations. This result arises from the
limit imposed by the unambiguous state discrimination
(USD) attack [31]. This attack does not introduce any
errors in Alice’s and Bob’s signal states. Moreover, it cor-
responds to an entanglement-breaking channel [45] and,
therefore, it cannot lead to a secure key both for the case
of two-way and one-way QKD [20, 22]. The maximum
probability of unambiguously discriminating an n-photon
state sent by Alice is given by [31]

Pn
D =







0 n ≤ 2
1 − 21−n/2 n even
1 − 2(1−n)/2 n odd.

(35)

For typical observations this quantity can be related with
a transmission efficiency ηn of the quantum channel, i.e.,
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an ηn that provides an expected click rate at Bob’s side
equal to Pn

D. This last condition can be written as

ηn = 1 − (1 − Pn
D)1/n. (36)

Whenever the overall transmission probability of each
photon satisfies η ≤ ηn, then any pulse containing n or
more photons is insecure against the USD attack. After
a short calculation, we obtain that the total number of
n-photon signals that need to be considered in the sum-
mations of Eq. (14) and Eq. (24) can be upper bounded
as

n ≤
{ ⌊

1
log

2
[
√

2(1−η)]

⌋

n even
⌊

1
2 log

2
[
√

2(1−η)]

⌋

n odd.
(37)

V. CONCLUSION

In this paper we have derived upper bounds on the
secret key rate and distance that can be covered by two-
way and one-way decoy state quantum key distribution
(QKD). Our analysis considers the uncalibrated device
scenario and we have assumed the typical initial post-
processing step where double click events are randomly
assigned to single click events. We have used two pre-
conditions for secure two-way and one-way QKD. In par-
ticular, the legitimate users need to prove that there ex-
ists no separable state (in the case of two-way QKD), or
that there exists no quantum state having a symmetric
extension (one-way QKD), that is compatible with the
available measurements results. Both criteria have been
previously employed in the scientific literature to evalu-
ate single-photon implementations of QKD. Here we have
applied them to investigate a realistic source of weak co-
herent pulses, and we have shown that they can be for-

mulated as a convex optimization problem known as a
semidefinite program (SDP). Such instances of convex
optimization problems can be solved efficiently, for ex-
ample by means of the interior-point methods.

As a result, we have obtained fundamental limitations
on the performance of decoy state QKD when this initial
post-processing of the double clicks is performed. These
upper bounds cannot be overcome by any classical com-
munication technique (including, for example, SARG04
protocol, adding noise protocols, degenerate codes and
two-way classical post-processing protocols) that the le-
gitimate users may employ to process their correlated
data afterwards. Moreover, our results seem to be al-
ready close to well known lower bounds for the same sce-
narios, thus showing that there are clear limits to the fur-
ther improvement of classical post-processing techniques
in decoy state QKD.

The analysis presented in this paper could as well be
straightforwardly adapted to evaluate other implemen-
tations of the BB84 protocol with practical signals like,
for example, those experimental demonstrations based
on WCP without decoy states or on entangled signals
coming from a parametric down conversion source.
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