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We study the effects of interference on the quenching dynamics of a one-dimensional spin 1/2 XY
model in the presence of a transverse field (h(t)) which varies sinusoidally with time as h = h0 cos ωt,
with |t| ≤ tf = π/ω. We have explicitly shown that the finite values of tf make the dynamics
inherently dependent on the phases of probability amplitudes, which had been hitherto unseen in
all cases of linear quenching with large initial and final times. In contrast, we also consider the
situation where the magnetic field consists of an oscillatory as well as a linearly varying component,
i.e., h(t) = h0 cos ωt+ t/τ , where the interference effects lose importance in the limit of large τ . Our
purpose is to estimate the defect density and the local entropy density in the final state if the system
is initially prepared in its ground state. For a single crossing through the quantum critical point with
h = h0 cos ωt, the density of defects in the final state is calculated by mapping the dynamics to an
equivalent Landau Zener problem by linearizing near the crossing point, and is found to vary as

√
ω

in the limit of small ω. On the other hand, the local entropy density is found to attain a maximum
as a function of ω near a characteristic scale ω0. Extending to the situation of multiple crossings,
we show that the role of finite initial and final times of quenching are manifested non-trivially in the
interference effects of certain resonance modes which solely contribute to the production of defects.
Kink density as well as the diagonal entropy density show oscillatory dependence on the number of
full cycles of oscillation. Finally, the inclusion of a linear term in the transverse field on top of the
oscillatory compo nent, results to a kink density which decreases continuously with τ while increases
monotonically with ω. The entropy density also shows monotonous change with the parameters,
increasing with τ and decreasing with ω, in sharp contrast to the situations studied earlier. We do
also propose appropriate scaling relations for the defect density in above situations and compare the
results with the numerical results obtained by integrating the Schrödinger equations.

PACS numbers:

I. INTRODUCTION

The phenomena of quantum phase transitions occur-
ring at absolute zero temperature have attracted serious
attention of scientists in recent years1,2. A quantum crit-
ical point is associated with a diverging length scale (ξ)
and a diverging time scale (ξτ ) which satisfy the scaling
forms ξ ∼ |d|−ν and ξτ ∼ ξz in the vicinity of the quan-
tum critical point. Here d denotes the deviation from
the critical point, and ν, z are the corresponding criti-
cal exponents. Following the possibility of experimental
studies of quantum systems trapped in optical lattices3,
there is a recent interest in theoretical studies of the re-
lated models4,5. When a parameter of the Hamiltonian
of the system is swept across a quantum critical point.
The diverging relaxation time near the quantum critical
point forces the system to undergo non-adiabatic evo-
lution irrespective of the rate of change of parameters.
If the system is in its ground state at initial time, non-
adiabatic transitions are manifested in the occurrence of
non-zero ’defects’ (called kinks) and non-zero local en-
tropy in the system.

According to the Kibble-Zurek argument, if a param-
eter of the Hamiltonian is varied as t/τ , the density
of defects (n) in the final state is expected to scale as
n ∼ τ−νd/(νz+1), where d is the spatial dimensionality
of the system6,7,8,9.The above scaling form has been ver-
ified for quantum spin systems quenched through criti-

cal points10,11,12,13 and also generalized to the cases of
non-linear quenching14 when a parameter is quenched as
h(t) ∼ |t/τ ||a|sgn(t), for gapless systems15 and also for
quantum systems with disorder16 and systems coupled to
external environment17. Recently, a generalized form of
the Kibble-Zurek scaling has been introduced which in-
cludes a situation where the system is quenched through
the multicritical point18 which shows that the general
expression for kink density can be given as n ∼ τ−d/2z2 ,
where z2 determines the scaling of the off-diagonal term
of the equivalent Landau-Zener problem close to the crit-
ical point.

In parallel to the studies on spin chains in con-
densed matter physics, great progress has also been made
in the realm of quantum optics in exploring the dy-
namics of two level systems undergoing landau Zener
tunneling due to oscillatory temporal variation of the
parameters19,20,21,22. The Landau Zener transition prob-
abilities have been calculated for single crossing as well
as for multiple crossings. Superposition of a linear field
along with the sinusoidally varying energy levels gives
rise to an altogether different situation, which has also
been studied thoroughly in recent years23.

In our present work we exploit the techniques used in
the above papers to explore the dynamics of one dimen-
sional spin 1/2 chain undergoing quantum phase transi-
tions due to the application of an oscillatory or an oscilla-
tory as well as a linearly varying magnetic field and com-
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pare the results with the earlier findings. Investigation
of the dynamics of one dimensional transverse XY model
under repeated quenching of linearly varying transverse
magnetic field has been carried out in a recent work24

and was shown that the defect density decreases in the
reverse path though the entropy density increases mono-
tonically with the number of quenching. However, the
scaling of the defect density and the local entropy den-
sity when the quantum critical point is crossed due to
a sinusoidal variation of the magnetic field has not been
attempted before. Sinusoidal quenching puts an upper
bound to the initial and final times, which makes the
process of coarse graining invalid in the present scenario.
The resultant dynamics of the system becomes depen-
dent on the phases of the probability amplitudes, leading
to the occurance of constructive or destructive interfer-
ences. The spin-1/2 transverse XY chain25 discussed in
this paper is described by the Hamiltonian

H = − 1

2

∑

n

(Jxσ
x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + hσz

n), (1)

where the σ’s are Pauli spin matrices satisfying the
usual commutation relations and the interactions and
the transverse field are denoted by Jx, Jy and h, respec-
tively, with Jx, Jy and h all non-random. The interaction
strength Jx and Jy are always time-independent whereas
we shall use time-dependent transverse field in the sub-
sequent sections.

The Hamiltonian in Eq. (1) can be exactly diago-
nalized using the Jordan-Wigner (JW) transformation
which maps a system of spin-1/2’s to a system of spinless
fermions25,26 given by

cn = exp



iπ

n−1
∑

j=1

σz
j



σ−
n , (2)

where σ±
n = (σx

n ± iσy
n)/2 and the operator σz

n =
2c†ncn−1 and the operators cn satisfy the fermionic anti-
commutation relations. In terms of JW fermions, the
above Hamiltonian can be rewritten in Fourier space with
a periodic boundary condition as

H = −
∑

k〉0

{ [(Jx + Jy) cos k + h] (c†kck + c†−kc−k)

+ i(Jx − Jy) sin k (c†kc
†
−k + ckc−k)}.(3)

Diagonalizing the Hamiltonian in terms of the Bogoli-
ubov fermions, we arrive at an expression for the gap in
the excitation spectrum given by25,26

ǫk = [h2+J2
x+J2

y +2h(Jx+Jy) cos k+2JxJy cos 2k]1/2.(4)

The gap given in Eq. (4) vanishes at h = ∓(Jx + Jy) for
wave vectors k = 0 and π respectively, signaling a quan-
tum phase transition from a ferromagnetically ordered
phase to a quantum paramagnetic phase known as the
“Ising” transition26. On the other hand, the vanishing of
gap at Jx = Jy for |h| < (Jx + Jy) at an ordering wave-
vector k0 = cos−1(−h/2Jx) signifies a quantum phase

transition, belonging to a different universality class from
the Ising transitions, between two ferro-magnetically or-
dered phases.

The advantage of employing the JW transformation
is that when projected to the two-dimensional subspace
spanned by |0〉 and |k,−k〉, the Hamiltonian takes the
formH =

∑

k Hk where the reduced Hamiltonian is writ-
ten in the form

Hk(t) = − [h + (Jx + Jy) cos k] I2

+

[

h+ (Jx + Jy) cos k i(Jx − Jy) sin k
−i(Jx − Jy) sink −h− (Jx + Jy) cos k

]

,

where I2 denotes the 2×2 identity matrix. Therefore, the
many-body problem is effectively reduced to the prob-
lem of a two-level system with two levels denoted by the
states |0〉 and |k,−k〉 which we refer to as diabatic ba-
sis vectors. We shall denote the basis vectors as |0〉 and
|k,−k〉 as |1〉 and |2〉, respectively in this work for nota-
tional convenience and refer the states as diabatic energy
levels.

The paper is organized in the following way: We have
already discussed the model we are going to study. In
section II, we discuss the case of oscillatory magnetic
field but restrict our attention to the situation when the
quantum critical points are crossed only once while in
section III the possibility of multiple crossing is included.
Section IV is used to discuss the dynamics with a mag-
netic field which has both linearly varying and oscillatory
components. In every situation results obtained through
approximate analytical methods are contrasted with the
numerical ones obtained by direct integration. Conclu-
sion and summary of the results are presented in the last
section.

II. OSCILLATORY QUENCHING THROUGH A

QUANTUM CRITICAL POINT: SINGLE

CROSSING

In this section, we shall study the spin chain driven by
an oscillatory transverse field given by h(t) = h0 cosωt
from an initial time −π/ω to a final time 0 so that it
crosses the gapless point only once during the course of
evolution. The system initially prepared in the ground
state |1〉 whereas the final ground state is |2〉. We shall
evaluate the probability of the state |1〉 in the final state
due to non-adiabatic evolution through the gapless point.
As discussed above, the transverse XY chain Hamiltonian
can be written as direct sum of 2 × 2 reduced Hamilto-
nian matrices Hk. For an oscillatory transverse field, the
reduced Hamiltonian gets modified to

Hk(t) =
[

h0 cosωt+ (Jx + Jy) cos k i(Jx − Jy) sin k
−i(Jx − Jy) sin k −h0 cosωt− (Jx + Jy) cos k

]

,

For any given mode k, the instantaneous energy gap of
the Hamiltonian is minimum at a time t0,k such that
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h0 cosωt0,k +(Jx +Jy) cos k = 0 where the diabatic levels
cross each other. On the other hand, the energy gap
vanishes for the wavevectors k = 0 and k = π at a time
cosωt = ∓(Jx + Jy) cos k/h0, respectively, signalling the
quantum phase transition of Ising class.

Denoting the probability amplitudes for the states |1〉
and |2〉 as C1,k(t), C2,k(t), respectively, a general state
vector in the reduced Hilbert space is witten as.

ψk(t) = C1,k(t)|1〉 + C2,k(t)|2〉 (5)

Henceforth, we set (Jx +Jy) = J , and modulus of the off-
diagonal terms = |Jx − Jy| sink is denoted by ∆k. Also
the modulus of rate of change of the diagonal terms at
time t = t0,k (given by h0ω sinωt0,k) is denoted bt αk.
Using the transformations

C1,k(t) = C1,k(t)e−i
R

t dt
′

[h0 cos ωt+J cos k]

C2,k(t) = C2,k(t)e−i
R

t dt
′

[−h0 cos ωt−J cos k] (6)

we can rewrite the Schrödinger equation describing the
time evolution of the probability amplitudes in the form

i
dC1,k(t)

dt
= ∆kC2,k(t)e2i

R

t dt
′

[h0 cos ωt+J cos k]

i
dC2,k(t)

dt
= ∆kC1,k(t)e−2i

R

t dt
′

[h0 cos ωt+cos k]. (7)

It should be noted that for large values of [h0 cosωt +
J cos k], the phase factors on the r.h.s. of eq. (7) oscil-
late rapidly in time. As a result the amplitudes C1,k(t),
C2,k(t), averaged over small intervals of time, remain ba-
sically constant in time. On the other hand, close to
t = t0k, the phase factors assume stationary values, thus
leading to non-adiabatic transition between the energy
levels22,27,28.

In this section, we prepare the system in the ground
state with initial conditions at ωt = −π, i.e., C1,k(−π) =
1 and C2,k(−π) = 0 and the state evolves to t = 0 so
that the spin chain crosses the gapless quantum critical
point only once. Using Eqs. (7), one can arrive at the dif-
ferential equation describing the amplitude C1,k(t) given
by

d2C1,k

d2t
− 2i(h0 cosωt+ J cos k)

dC1,k

dt
+ ∆2

kC1,k = 0 (8)

with the probability of defect in the final state at t = 0
given by pk = |C1,k(0)|2. The maximum contribution to
the non-adiabatic transition probability comes from near
the points where the energy gap between the instanta-
neous levels is minimum. We can therefore linearize the
term h0 cosωt in the neighbourhood of t0,k to get

d2C1,k

d2t
−2i(−h0ω(t−t0,k) sinωt0,k)

dC1,k

dt
+∆2

kC1,k = 0(9)

Eq. (9) resembles the standard Landau Zener transition
problem28 for the linear quenching of the magnetic field
with a variation of the field h = t/τeff where τeff is given
by the the rate of change of the diagonal terms of the

Hamiltonian (1). Therefore, let us define αk = 1/τeff =
d
dt(ǫ1− ǫ2)|t0,k

= 2h0ω sinωt0,k = 2ω
√

h2
0 − J2 cos2k. The

non-adiabatic excitation probability28 is given as pk =
|C1,k(0)|2 = e−2πγk , where γk = ∆2

k/| d
dt (ǫ1 − ǫ2)|t0,k

,
leading to

pk = e
−

π∆2
k

ω

√
h2
0
−J2 cos2 k (10)

At this point, the natural question to ask is that for
what values of the parameter h0 and ω, the above re-
lation of pk is applicable. Of course, we have used the
non-adiabatic transition probability of the standard lin-
ear Landau Zener problem where time t evolves from
−∞ to +∞. The linearization near the crossing point
employed above holds good only for small ω. More pre-
cisely, as discussed below the linearization approximation
is applicable when the the time period of one cycle of the
magnetic field (2π/ω) is much greater than the Landau
Zener transition time (TLZ,k) for a single crossing. The
dimensionless Landau-Zener transition time29,30 is de-
fined as κLZ,k =

√
αkTLZ,k = |C2,k(t)|2/ d

dκ |C2,k(0)|2 ≈
|C2,k(+∞)|2/( d

dκ |C2,k(0)|2), where κ =
√
αkt. Using the

above definition, we find that TLZ,k ∼ ∆k/αk in the adi-
abatic limit (∆2

k/αk >> 1) whereas in the non-adiabatic
limit (∆2

k/αk << 1), TLZ,k is given as TLZ,k ∼ 1/
√
αk.

It should be noted that for the linear quenching of the
magnetic field h(t) = t/τ , αk = 1/τ .

Generalizing to the case of periodic quenching,
TLZ,k ∼ ∆k/(2ω

√

h2
0 − J2 cos2 k), in the adiabatic

limit while in the non-adiabatic limit, TLZ,k ∼
1/(

√

2ω
√

h2
0 − J2 cos2 k). The transitions are localized

around t0,k as compared to the time period for one cycle
of the magnetic field if TLZ,k is less than the time pe-
riod of one oscillation, i.e., TLZ,k << π/ω. This means
that for h2

0 >> J2, in the adiabatic limit, ∆k << h0,
and in the non-adiabatic limit, ω << h0. This leads
to the conclusion that the equation (10) describing the
non-adiabatic transition probability is valid only for large
h0 and small ω. In the defect density for small ω (i.e.

ω < π(Jx−Jy)
2/

√

h2
0 − J2) only the modes close k ∼ 0, π

contribute, resulting to a kink density at t = 0 given by

n ≈

√

ω
√

h2
0 − J2

π|Jx − Jy|
[ω <

π(Jx − Jy)2
√

h2
0 − J2

] (11)

The analytical results for pk and hence the density of
defects (obtained from Eq. 11) match exactly with the
transition probabilities obtained by numerical integration
of the Schrödinger Eqns for h0 >> ∆k, ω as shown in
Figs. 1 and 2. From Eq. 11, we find that in the limit
h0 >> J , the defect density shows a scaling form n ∼
(h0ω)1/2 which can be generalized using the Kibble-Zurek
argument that assumes that the non-adiabatic transition
is only dominant at a time when the characteristic time
scale of the system is of the order of the rate of change of
the Hamiltonian6,7,9. In the limit of large h0 and small
ω, we can generalize the above prescription to derive a
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scaling form for the defect density for a single crossing
the quantum critical point due to the periodic driving of
the transverse field given by n ∼ (h0ω)νd/(νz+1) where
ν and z are the exponents associated with the quantum
critical point and d is the spatial dimension of the system.

2
ππ

4
k

p
k

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0
 0.2

 0.3

FIG. 1: pk vs k as obtained numerically (solid line) and an-
alytically (dashed line) for h0 = 20, ω = 0.0003, |Jx − Jy| =
0.05, and J = 1.

n

ω

 0.1

 1

 1e−05
 0.01

 1e−04

FIG. 2: n vs ω for h0 = 20, |Jx − Jy| = 0.05 and J = 1. Solid
line is found by numerically integrating pk over k, and the
dashed line is the plot of eqn. (11). Analytical and numerical
results match exactly for lower values of ω.

A. Entropy

Following a recent paper by R. Barankov and A.
polkovnikov31, we define the diagonal entropy sd(k) for
each k mode by

sd(k) = −
∑

l

ρll,klnρll,k (12)

where ρll,k = 〈l|ρk|l〉, ρk being the instantaneous density
matrix of the system for the mode k. One advantage of
using the diagonal entropy is that, it follows the thermo-
dynamical relations as expected to be followed by entropy

defined at higher temperatures. The diagonal entropy be-
comes identical to the previously defined Von Neumann
entropy (sV N ), given by sV N = −

∫ π

0 tr(ρklnρk)dk/π,
when the off-diagonal terms in the density matrix, eval-
uated at the final time, go to zero upon coarse grain-
ing over k space11,12,24. We have checked the varia-
tion of the diagonal entropy density, evaluated at the
final time, with ω by numerically integrating sd(k) =
pklnpk + (1 − pk)ln(1 − pk) over all k, with pk obtained
from eqn. (10). It is seen that the entropy attains a
maximum near ω = ω0 = π(Jx − Jy)2/h0ln2 where the
non-adiabatic transition probability (see Eq. 10) for the
mode k = π/2 is half, and falls off on either side of ω0.
It should be noted that ω0 closely resembles the char-
acteristic time scale τ0 appearing in the case of linear
quenching11.

ω

s

 0.1

 0.2

 0.3

 0.4

 0.5

 1e−05  1e−04  0.001  0.01

FIG. 3: Variation of diagonal entropy density with ω for one
half cycle with h0 = 20, |Jx − Jy | = 0.05 and J = 1, as ob-
tained by numerical integration of sd(k) using the analytical
expressions of pk (eq. 10). The entropy for one half cycle
attains maxima near ω ∼ ω0 = π(Jx − Jy)2/h0 ln 2.

III. OSCILLATORY QUENCHING THROUGH A

QUANTUM CRITICAL POINT: MULTIPLE

CROSSINGS

Let us now focus on the repeated quenching case when
the spin chain is periodically driven through the quan-
tum critical point. In the present section, it will be shown
that interference plays a major role in deciding the be-
haviour of the system, and for some choices of param-
eters, the phases will add up destructively to make the
tunneling probability almost zero. In order to be able to
treat the successive Landau Zener transitions , as inde-
pendent events, the time between two successive cross-
ings has to be greater than the Landau Zener transition
time for a single crossing as mentioned in the previous
section. To attain this limit we shall once again restrict
our study to large values of h0 and small ω. The system
is prepared in the state |1〉 at time t = 0. The diago-
nal terms of the Hamiltonian for each modes k vanish,
and consequently the gap becomes minimum, when the
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magnetic field crosses the −J cos k line as shown in Fig.
4.

When the system approaches the crossing points of the
diabatic levels, the energy gap is minimum leading to
large relaxation time and the system fails to evolve adi-
abatically and the non-adiabatic transitions take place.
0n the other hand, away from the crossing points, the
system follows adiabatic dynamics. Consequently, the
evolution matrices associated with the system are differ-
ent for close to and away from the crossing points21,22.
Between the crossings, the system evolves following the

π
2

3 π
2

5 π
2

Jcos(k)

h 0 cos (ω t)

t
−1

−0.5

 0

 0.5

 1

 0

FIG. 4: Variation of energy levels due to the application of
an oscillatory transverse field. The gap becomes minimum
at the points where the magnetic field (shown by oscillatory
solid line) becomes equal to −J cos k.

matrix

Gj =

[

e−iθj 0
0 eiθj

]

,

where j denotes the direction in which the system goes
through the crossing points. The LZ crossing in the non-
adiabatic region can be approximately described by the
evolution matrix

GLZ,j =

[

cos χ
2 sin χ

2 e
iθLZ,j

− sin χ
2 e

−iθLZ,j cos χ
2

]

,

where the angle χ is given by

sin2 χ

2
= 1 − exp(−2πγ) (13)

where γ is defined in the previous section and j once
again defines the direction of quenching (with respect to
the crossing point). We have suppressed the notation k
denoting the wave vector for the time being. Also

θLZ,1 ≈ π

2
+ θstokes (14)

θLZ,2 ≈ π

2
− θstokes (15)

θstokes =
π

4
+ argΓ(1 − iγ) + γ(lnγ − 1) (16)

where Γ(x) is the gamma function and θstokes → π/4
or θstokes → 0, as γ → 0 or γ → ∞ respectively. If
the system is repeatedly quenched with the sinusoidal
field a series of Landau Zener crossings take place with
the evolution of the system described by the successive
application of matrices defined above. More specifically
for one full cycle, i.e., ωt going from 0 to 2π, one can
write the complete evolution matrix as a product of Gj

and GLZ,j , given by

G = GLZ,2G2GLZ,1G1, (17)

which can be generalized for N complete cycles to the
form

GN = (GLZ,2G2GLZ,1G1)
N . (18)

The probability amplitude of the states |i〉 Ci,N (i = 1, 2)
at the final time ωt = 2Nπ therefore obeys the relation
[

C1,N

C2,N

]

= (GLZ,2G2GLZ,1G1)
N

[

C1,0

C2,0

]

(19)

where C1,0 = 1 and C2,0 = 0 at initial time t = 0. A
little bit of algebra yields

GLZ,2G2GLZ,1G1 =

[

g11 g21
−g∗21 g∗11

]

(20)

where

g11 = cos2
χ

2
e−i(θ1+θ2) − sin2 χ

2
ei(−θLZ,1+θLZ,2−θ1+θ2)

g21 = sin
χ

2
cos

χ

2
(ei(θLZ,1+θ1−θ2) + ei(θLZ,2+θ1+θ2

)) (21)

Denoting the probability that for mode k the system is
in state |2〉 after the nth crossing by Qn,k, we get,

Q1,k = (1 − pk) (22)

as seen in the previous section and for one complete full
period of oscillation

Q2,k = 4pk(1 − pk) sin2 (θstokes + θ2) (23)

For small anisotropy i.e., (Jx − Jy)2 <<

ω
√

h2
0 − J2 cos2 k we have θstokes → π/4, and θ1

and θ2 are given by

θ2 = 2

∫ π/2ω

0

√

(h0 cosωt+ J cos k)2 + ∆2
k

≈ (
2h0 + Jπ cos k

ω
) (24)

θ1 = 2

∫ π

π/2ω

√

(h0 cosωt+ J cos k)2 + ∆2
k

≈ (
−2h0 + Jπ cos k

ω
). (25)

Subsituting Eqs. 24 and 25 in Eq. 23, we get19,20

Q2,k = 4pk(1 − pk) sin2 (
2h0 + Jπ cos k

ω
+
π

4
). (26)



6

Q2,k as obtained numerically and analytically as given in
Eq. 26 are plotted as a function of k in fig. (5) and (6).
The numerical plot is fairly in agreement with the analyt-
ical results. It is seen that Q2,k oscillates, with the tun-
neling probability going to zero for many k’s, showing the
signatures of constructive and destructive interferences.

It is clear that for very small ω, Q2,k oscillates rapidly
with k due to the presence of the sinusoidal term in eq.
(26). As a result the coarse grained or average Q2,k (de-

noted by Q2,k), obtained by integrating each Q2,k over
a small range around that k followed by normalization,
gives

Q2,k = 2pk(1 − pk), (27)

as obtained previously for repetition under linear
quenching24. It has been shown in recent works11,12,24

that, for linear quenching, we can evaluate the transi-
tion probabilities at the end of each cycle by using the
coarse grained density matrix only, thereby simplifying
the problem greatly by neglecting the off-diagonal terms
in the matrix. Analogously, in the present case also, the
characterstic time scale associated with the rate of change
of the off-diagonal terms in the density matrix for a mode
k sets the critical value of ω below which we can safely
denote the tunneling probability by the coarse grained
expression of Q2k only, thereby yielding eq. (27)19. One
concludes that in the limit of very small ω, the time in-
terval between two successive crossings is large enough
to destroy the phase information in the coarse grained
probabilities.

k

Q
2k

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0  10  20  30  40  50  60  70  80  90

FIG. 5: Variation of Q2,k with k for h0 = 20, |Jx − Jy| =
0.005, ω = 0.01 and J = 1. The widely spaced dashed line
is analytical, and the numerical data points are shown on the
closely spaced dashed line.

To generalize to the case of many complete periods, it
is useful to recast eqn. (20) in the form as21

GLZ,2G2GLZ,1G1 =

(

cos ζ
2 sin ζ

2e
iφ

− sin ζ
2e

−iφ cos ζ
2

)

(

e−iθ/2 0
0 eiθ/2

)

(28)

π
2

π
4

k

Q
2,k

Q 2,k

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0

FIG. 6: Variation of Q2,k with k for h0 = 20, |Jx−Jy| = 0.005,
ω = 0.01 and J = 1 obtained by averaging out the oscillations
of the data shown in fig. 5. The dashed line is analytical, and
the solid line is numerical. The smooth dotted line is the plot
of course grained excitation probability Q2,k as obtained from
eq. (27).

ω

s

n

s

n

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1e−05  2e−05  3e−05  4e−05  5e−05

FIG. 7: Variation of actual and course grained kink density
and entropy density with ω for h0 = 20, |Jx − Jy | = 0.005
and J = 1 for one complete cycle, obtained by numerically
integrating Q2,k and Q2k in eq. (26) and eq. (27) respectively.
The actual and course grained plots for kink density match
reasonably well, whereas we see a significant difference in case
of entropy density, eventhough their qualitative behaviours
show similarity for a wide range of ω. The peaks of the plots
occur near ω0.

We shall call the diagonal matrix as U1 and the other
as U2 which successively operate on the column matrix
(C1,k, C2.k). The angles ζ and θ are given as

sin2 ζ

2
≈ 4 sin2 χ

2
cos2(

θLZ,1 − θLZ,2

2
− θ2) (29)

θ = tan−1 A

B
(30)

where

A = cos2
χ

2
sin (θ1 + θ2)

+ sin2 χ

2
sin (θLZ,1 − θLZ,2 + θ1 − θ2)
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and

B = cos2
χ

2
cos (θ1 + θ2)

− sin2 χ

2
cos (θLZ,1 − θLZ,2 + θ1 − θ2)

φ ≈ θLZ,1 + θLZ,2

2
− θ2 (31)

The dynamics described by Eq. (28) can be understood
by exploring the properties of the rotation matrices U1

and U2. The role of U2 is to rotate a vector about an axis
in the x − y plane by an angle of ζ, whereas the matrix
U1 brings about a rotation of the vector by an angle θ
around the z axis only32. If θ is a multiple of 2π, which
we call the resonance condition, the z-axis rotation does
not affect the dynamics and the small oscillations of ζ
add up constructively to produce full oscillations between
the diabatic states |1〉 and |2〉. On the other hand, if θ
differs from a multiple of 2π by more than ζ, then the
rotations about angle ζ do not add up constructively, and
the oscillations will be suppressed, thus resulting in an
effective rotation about an axis almost parallel to the z
axis only21 (see figure 9). In the present context, the
resonance condition is given by,

θ ≈ 2(θ1 + θ2) =
4πJ cos k

ω
= 2nπ, (32)

i.e.,

2J cos k

ω
= n (33)

Therefore for the resonance conditions, we can write
[

C1,N

C2,N

]

= ±
(

cos ζ
2 sin ζ

2e
iφ

− sin ζ
2e

−iφ cos ζ
2

)N [

C1,0

C2,0

]

From this formalism it is clearly seen that for the res-
onance conditions, after N complete cycles, we get N
successive rotations by the small angle ζ. This causes
oscillations in the probabilities of the two states with fre-
quency given by

Ω =
ζ

2π/ω
=
ωζ

2π

=
ω

π
sin−1[2

√

1 − pk

cos (θstokes −
2h0 + Jπ cos k

ω
)]. (34)

Since ζ depends on the wave vector k, the proba-
bilities for each resonant mode oscillates with its own
characteristic frequency. As a result the kink density
as well as the entropy density obtained by integrating
over all modes shows an oscillatory behaviour (see fig-
ure 10). The oscillatory behaviour of the entropy den-
sity observed here is an artifact of retaining the phase
information of the off-diagonal terms of the density ma-
trix. It can be shown that in absence of phase informa-
tion, |C1,k(t)|2, |C2,k(t)|2 → 1/2 after each crossing, and
as a result the entropy density of the system increases
monotonically24 with the number of crossings.

2
ππ

4
3 π
4

πk

k
p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

FIG. 8: Graph showing the behaviour of the excitation
probability as a function of number of full cycles for h0 =
20, (Jx − Jy) = 0.005, J = 1 and ω = 0.01. The dashed
line is obtained analytically for k = 81.95210 with integral
2J cos k/ω = 28, while the solid line is the analytical graph
for k = 25.84190 with integral 2J cos k/ω = 180. Numeri-
cal data points shown on the dashed line corresponding to
k = 81.95210 match exactly with the analytical results.

N

p
k
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 5e−05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0  5  10  15  20

FIG. 9: Graph showing the behaviour of the excitation prob-
ability as a function of number of full cycles, obtained analyt-
ically for h0 = 20, |Jx − Jy | = 0.005, J = 1, ω = 0.01, k = 800

and non-integral 2J cos k/ω. As expected, the excitation
probability varies randomly and does not differ appreciably
from its initial value.

IV. QUENCHING BY A MAGNETIC FIELD

VARYING BOTH LINEARLY AND

PERIODICALLY

In this section, we study the defect generation in a
transverse XY spin chain driven by a time-dependent
magnetic field h(t) which consists of a linear part as well
as an oscillatory part given by h(t) = t/τ + h0 cosωt
where τ denotes the rate of the linear part of the quench-
ing. In the limit h0 → 0, the dynamics reduces to the well
studied Kibble-Zurek problem of linear quenching while
in the other limit of τ → ∞, one should recover the re-
sults presented in earlier sections. The presence of both
the linear and periodic terms non-trivially modifies the
density of defect in the final state as shown below. The
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N
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 0.03

 0.035

 0  50  100  150  200  250  300  350

FIG. 10: Graph showing the behaviour of the kink density
(solid line) and entropy density (dashed line) as a function of
number of full cycles for h0 = 20, |Jx − Jy | = 0.005, J = 1,
and ω = 0.01, as obtained by numerically integrating the
excitation probabilities obtained by using eqn. (19).

reduced Hamiltonian in the present situation is given by

Hk(t) =
[

ǫ i(Jx − Jy) sin k
−i(Jx − Jy) sin k −ǫ

]

,

with ǫ = t/τ +h0 cosωt+J cos k and we shall once again
recall the parametes αk and ∆k as defined before.

t

−2

−1

 0

 1

 2

 3

 4

−10  0  5  10  15  20  25  30−5

FIG. 11: Graph showing the behaviour of the diabatic energy
levels with time when a linearly varying magnetic field is ap-
plied in addition to the oscillatory term. The inclined dotted
line is the plot of t/10, the solid line is t

10
+ cos t, and the

dashed line parallel to x axis is the constant −J cos k = 1.

For a given wavevector k, the instantaneous energy gap
is minimum at times t0,k such that

t0,k

τ
+ h0 cosωt0,k + J cos k = 0 (35)

Since cosωt0,k ≤ 1 always, so from the above equation
we can conclude that all the t0,k’s occur in the time in-
terval −τ(J + h0) < t0,k < τ(J + h0). Also, since time
between two successive t0,k’s is of the order of π/ω, so we
can estimate the number of times that the gap goes to

minimum for any k is ∼ 2h0τ
π/ω , with the minimum number

of times being 1. The situation is depicted in Fig. 11.
In the adiabatic limit (∆2

k/αk >> 1) the Landau Zener
transition time29,33 (τLZ) is given as τLZ ∼ ∆2

k/αk, and
in the non-adiabatic case, we have τLZ ∼ 1/

√
αk. It

should be noted in the present case, the rate of change of
diagonal terms αk = | d

dt2( t
τ + h0 cosωt + J cos k)|t0,k

=

2| 1τ −h0ω sinωt0,k|. Hence for our theory to be valid, i.e.,
to get widely separated non-overlapping LZ transitions,
we need τ << π

ω(Jx−Jy) for the adiabatic and
√
τ << π

ω

for the non-adiabatic situations.
We prepare the system in its ground state at t→ −∞

with |C1,k(−∞)|2 = 1 and the probability of defect for
the mode k in the final state at t → +∞ is given by the
probability |C1,k(+∞)|2. For the linear as well as peri-
odic driving, Eq. 8 when linearized around the crossing
point t = t0,k gets modified to

d2C1,k

d2t
+ 2i((

1

τ
− h0ω sinωt0,k)(t− t0,k))

dC1,k

dt

+ ∆2
kC1,k = 0, (36)

which leads to the non-adiabatic transition probability

pk = e
−

π∆2
k

1
τ

−h0ω sin ωt0,k (37)

In the limit of small τ and large ω, we can expand the

excitation probability as pk ≈ 1 − π(Jx−Jy)2 sin2 k
1/τ−h0ω sin ωt0,k

. Fur-

ther, for 1
τ >> h0ω sinωt0,k, we can write the expression

for kink density as

n ≈ 1

π

∫ π

0

[1 − π(Jx − Jy)2 sin2 k

1/τ − h0ω sinωt0,k
]dk

≈ 1 − π(Jx − Jy)2

2
τ. (38)

The approximate equation given in Eq. (38) matches per-
fectly with the numerical integration results (see Fig. 13).
On the other hand, in the limit of large τ and small ω,
only the modes close to k = 0 or π contribute to the de-
fect density, and by considering only the 0 and k modes
in t0,k, we can arrive at an approximate analytical ex-
pression given by

n =
1

π

∫ π

0

pkdk =
π
√

1
τ − h0ω sinωt0,0

2|Jx − Jy|

+
π
√

1
τ − h0ω sinωt0,π

2|Jx − Jy|
(39)

The kink density as a function of τ for the non-adiabatic
and adiabatic cases, as obtained from equations (38) and
(39) respectively, are plotted in Figs. 13 and 14 together
with the corresponding numerically obtained values. As
expected, in case of non-adiabatic evolution, we get exact
matching between analytical and numerical results only
for low values of τ for which 1

τ >> h0ω sin t0,k, whereas
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in case of adiabatic evolution, we see good agreement
between the analytical and numerical results only when
1
τ is not close to h0 sinωt0,0 or h0 sinωt0,π, since around
these values of τ , the effects of h0 sinωt0,k for k 6= 0, π
become important.

It should be noted that for the single crossing case,
using the similar line of arguments given in section II,
one can propose a generalized Kibble- Zurek scaling form
of the defect density in the final state given as

n ∼ a0[|
1

τ
− h0ω sinωt0,0|νd/(νz+1)]

+ aπ[|1
τ
− h0ω sinωt0,π|νd/(νz+1)], (40)

where a0 and aπ are two constants.

k

p
k

 0.984
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 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  20  40  60  80  100  120  140  160  180

FIG. 12: pk vs k (in degrees) for the case when gap becomes
minimum only once, with τ = 2, h0 = 1, ω = 0.1, |Jx − Jy | =
0.05 and J = 10. The dashed line is analytical and the nu-
merical results shown as data points coinside exactly with the
analytical values.

n

τ
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 0.975
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 0.985

 0.99

 0.995

 1
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FIG. 13: Kink density (n) vs τ for h0 = 1, ω = 0.1, |Jx−Jy | =
0.05 and J = 10. The solid line is the plot of eq. (38), and
the dashed line is obtained by numerical integration of the
analytical expression of pk as given in eq. (37). We get exact
matching between the two results for low τ only, as expected
from the theory. Only single crossing occurs for the range of
τ shown in the figure.

n
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FIG. 14: Kink density n vs τ for h0 = 1, ω = 0.000001, ∆ =
0.05 and J = 10. Only single crossing occurs for the range of
τ shown in the figure. The dashed line is found by numerical
integration of eq. (37), and the solid line is obtained by using
eq. (39). We get exact matching between the two results
except when 1

τ
is very close to h0ω sin ωt0,0 or h0ω sin ωt0,π.

Now we concentrate on the situation of multiple cross-
ings of the energy minima. For multiple crossings to oc-
cur for a given wave vector k, Fig. 11 implies that there
should exist a t = t such that 1

τ − h0ω sinωt = 0, i.e.,

sinωt = 1
τh0ω . This is possible only if | 1

τh0ω | ≤ 1. The
Schrodinger equations for the probability amplitudes can
be put in the form

dC1,k

dt
= ∆ke

i( t2

τ
+

2h0 sin ωt

ω
+2Jt cos k)C2,k (41)

dC2,k

dt
= ∆ke

i( t2

τ
+

2h0 sin ωt

ω
+2Jt cos k)C1,k (42)

Using the relation e±iz sin ωt =
∑∞

r=−∞ Jr(z)e
±irωt,

where Jr(z) is the Bessel function of first kind of order
r, given by

Jr(η) = Σ∞
m=0

(−1)m

m!Γ(m+ r + 1)
(
η

2
)2m+1, (43)

we recast the equation to the form

dC1,k

dt
= ∆k

∞
∑

r=−∞

Jr(
2h0

ω
)ei( t2

τ
+2Jt cos k+rωt)C2,k. (44)

The terms on the R.H.S. of eqn. (44) being rapidly

varying in time,
dC1,k

dt attains a non-negligible value only
when the phase is stationary. Using

t2

τ
+ 2Jt cosk + rωt

=
1

τ
(t+

2Jτ cos k + rωτ

2
)2 − (2Jτ cos k + rωτ)2

4τ
(45)

we find that
dC1,k

dt is non-negligible only close to t =

− 2Jτ cos k+rωτ
2 , with r = 0,±1,±2, .... The above relation
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implies the existence of an effective phase transition for
each value of r. Choosing r = l (say) and denoting Ci,k

by Ci,k,l (i = 1, 2), we get

dC1,l,k

dt
= ∆kJle

−i (2Jτ cos k+lωτ)2

4τ

ei 1
τ
[t+ 2Jτ cos k+lωτ

2 ]2C2,l,k (46)

Invoking upon the transformation to a new variable
s = t+ lωτ/2, we get

dC1,l,k

ds
= ∆kJle

−i l2ω2τ2+4Jτ2lω cos k
4τ

e−iJ2τ cos2 ke
i
τ
(s+Jτ cos k)2C2,l,k (47)

Let us compare with purely linearly quenching case (h0 =
0), when the above equation gets modified to

dC1,l,k

ds
= ∆ke

−iJ2τ cos2 ke
i
τ
(s+Jτ cos k)2C2,l,k (48)

The role of periodic modulation on top of the lin-
ear quenching is to renormalize ∆k to ∆k with ∆k =

∆kJle
−i l2ω2τ2+4Jτ2lω cos k

4τ . Note that ∆k also vanishes at
the quantum critical point for the modes k = 0 and π.

The dividing of the probability amplitudes for a given
wave vector to different l values by using the Bessel’s
function can be visualized in the following way: The two
energy levels for the wave vector k are assumed to consist
of a number of sublevels23, with probability amplitudes
of the lth level being denoted by C1,l,k and C2,l.k. Each
sublevel undergoes a level crossing only once through the
course of dynamics, and for the lth transition for the
mode k, the incoming state (given by

−−−−→
Cl−1,k) and the out-

going state (given by
−−→
Cl,k) are connected by the transfer

matrix23

Ml,k

=

[

Dl,k βl,ke
−i l2ω2τ2+4Jτ2lω cos k

4τ

−β∗
l,ke

−i l2ω2τ2+4Jτ2lω cos k
4τ Dl,k

]

,

where Dl,k =
√
pl,k and βl,k = sgnJl(η)

√

1 − pl,ke
−iφl,k ,

in which pl,k = e−πτ∆2(Jl(η))2 , η = 2h0/ω and φl,k is the
Stokes phase given by

φl,k = π/4 + argΓ(1 − iδl,k) + δl,k(lnδl,k − 1) (49)

where δl,k = τ∆2
k(Jl(η))

2/2, in terms of the gamma func-
tion Γ(z).

It should be noted that Jl(η) → 0 for large l, and
Σ∞

l→−∞J
2
l (η) = 1. So the transition is confined to a

finite region, and the infinite series of recursive relation
for l → ∞ converges to a finite value. In case of l for
which Jl(η) ≈ 0, Ml,k gets reduced to an identity matrix.
Hence taking Jl(η) = 0 ∀l > lf we can write the state

vector
→

Cl,k= (C1,l,k, C2,l,k) as

→

Cl,k = Ml,k

→

C l−1,k

= Ml,kMl−1,k...M0,k...M−lf+1,kM−lf ,k

→

Cin,k (50)

where
→

Cin,k denotes the initial condition. The proba-
bility of excitation at infinite time is given by pk(∞) =
|C1,k(∞)|2.

pk(∞) = |C1,k(∞)|2
= |

[

1 0
]

Mlf ,kMlf−1,k...

M0,k...M−lf+1,kM−lf ,k

→

Cin,k |2 (51)

We are interested in evaluating the defect density in
the final state in the limit of large τ and hence the off-
diagonal terms in the matrix Ml,k vanish upon coarse-
graining, i.e., upon integration over all k. This approx-
imation leads to the final result for the coarse grained
non-adiabatic transition probability given by

|C1,l,k|2 = pl,k|C1,l−1,k|2 + (1 − pl,k)|C2,l−1,k|2 (52)

after neglecting the cross terms. The effects of the critical
points are manifested by ∆k vanishing at k = 0, π and
those modes do not evolve from their initial state.

Comparison between kink density obtained by numer-
ical integration of Schrödinger equation and by using the
approximate analytical eqns. (51) and (52) for different τ
has been shown in figure (15). We also plot the diagonal
entropy density in figures. (16) and (17). Although, the
defect density in the final state decays with increasing τ ,
the entropy density is found to increase and ultimately
saturates as τ increases. This is in sharp contrast to the
cases of linear quenching12,24 where it attains a maxima
at a characteristic scale τ = τ0, and falls off on either
side of τ0. This behaviour can be explained in the fol-
lowing way: for very small τ the system fails to evolve
appreciably and therefore remains very close to its initial
ordered state at the final time. For larger values of τ , the
probabilities change which introduces disorder in the fi-
nal state leading to higher value of entropy density . For
very large τ , the linear term becomes insignificant com-
pared to the oscillatory term in the Hamiltonian. Conse-
quently, only the oscillatory quenching term contributes
to the dynamics of the system, keeping the entropy of the
system constant for a fixed value of ω. It is to be noted
that the interaction between the levels depend on the
value of Jl(2h0/ω) which saturates in the limit of large
ω if h0 is held fixed irrespective of the values of l and
k. As a result, the kink density and also entropy density
saturate in the limit of large ω, as shown in fig. (17)

V. CONCLUSION

In conclusion, we have studied the effects of interfer-
ence in the quenching dynamics of a one-dimensional
transverse XY spin chains in the presence of a time-
dependent magnetic field h(t) = h0 cosωt or h(t) =
t/τ + h0 cosωt. The system is initially prepared in its
ground state and we estimate the defect density and en-
tropy density in the final state following the quench using
both approximate analytical and direct numerical inte-
gration techniques. In all the situations, the analytical
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n

τ
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FIG. 15: Graph showing the variation of the kink density with
τ for multiple crossings occurring with h0 = 1, (Jx − Jy) =
0.05, (Jx + Jy) = 10, and ω = 0.1 . Results obtained by
numerically solving Schrödinger equation (dotted line) match
reasonably well with the analytical ones (dashed line).
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FIG. 16: Graph showing the variation of the kink density
(solid line) and entropy density (dashed line) with τ as ob-
tained analytically for h0 = 1, (Jx − Jy) = 0.05, (Jx + Jy) =
10, and ω = 0.1.

and numerical results are found to be in good agreement.
Our observations presented in the paper are summarized
as follows.

Firstly, we have studied the defect density in the fi-
nal state following a single crossing by linearizing the
oscillatory magnetic field round the time at which the
instantaneous energy gap is minimmum. We show that
in the limit of large h0 and small ω, the defect density
scales as

√
ω. The observation is supported by numeri-

cal solution of the Schrodinger equation in the limit of
small ω. On the other hand, the diagonal entropy density
shows a maximum at a characteristic frequency scale ω0

as defined in the text. Effects of interference are invisible
in the case of a single crossing only. We do also suggest
an equivalent Kibble-Zurek scaling relation for the defect
density in the above situation.

In the next section we generalize to the multiple cross-
ing situation where the interference of the probability
densities play a dominant role. We use two different

ω

 0.4
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 0.6

 0.7

 0.8

 0  5  10  15  20

FIG. 17: Graph showing the variation of the kink density
(solid line) and entropy density (dashed line) with ω as ob-
tained analytically for h0 = 1, (Jx − Jy) = 0.05, (Jx + Jy) =
10, and τ = 50.

transfer matrices valid close to and away from the cross-
ing points. We show that for a full cycle of oscillation
the results obtained for repeated linear quenching24 when
the off-diagonal terms of the density matrix are coarse
grained, leading to loss of phase information which gives
rise to constructive and destructive interferences, is a
valid approximation in the limit of small ω. For mul-
tiple crossings, we show that there exist resonance wave
vectors for which the non-adiabatic transition probability
oscillates between zero and one with the number of cross-
ings following a characteristic k-dependent frequency. As
a result the defect density also exhibits an oscillatory be-
haviour. The entropy density also shows a similar de-
pendence on the number of crossings, which is in stark
contrast with the linear quenching case, in which exclu-
sion of the interference effects in the excitation probabili-
ties causes the entropy density to increase monotonically
with the number of crossings. It may be noted that a
similar oscillatory behaviour is observed for the central
spin of quantum Heisenberg chain34.

Lastly, we study the quenching of the spin chain in
the presence of a magnetic field which is varying linearly
with time as t/τ and also modulated by a periodically
varying part h0 cosωt. For the single crossing case, we
once again use the linearization method which predicts a
defect density that is in fair agreement with the numeri-
cally obtained result.For multiple crossings, we again in-
voke the transfer matrix approach to evaluate the cross-
grained defect density. In this case it has been shown
that for large values τ we can safely neglect the phase in-
formation, and hence the effects of interference, by coarse
graining the density matrix. Our analytical and numer-
ical results show that the defect density decreases with
increasing τ for a given ω whereas when ω is varied with
τ fixed, the defect density saturates for higher values of
ω. The entropy density also exhibits a monotonic in-
crease as a function of τ with fixed ω, an observation
that is in sharp contrast with the linear quenching case
where the entropy density attains a maximum at a char-
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acteristic time scale τ0
12 . This may be an artifact of

the integrability of the model which gets decoupled into
independent two-level systems35.
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