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Abstract

A free-carrier absorption theory is given for quantum wells structures in III-V semiconducting mate-
rials, for the case when the carriers a scattered by alloy-disorder. It is found that absorption coefficients
due to alloy-disorder and to phonons are of the same order. Results are shown that the absorption
coefficient decreases with increasing photon frequency and increases with increasing temperature. It is
also shown that the absorption coefficient increases with decreasing layer thickness. We also found that
absorption in quantum wells structures is enhanced by going to quantum wells of smaller thickness over
its value in the bulk III-V semiconducting materials.

1. Introduction

Developments in molecular beam epitaxy and modulation doping technique have made it possible to
produce high quality heterojunctions and quantum wells involving binary and ternary compound semicon-
ductors. However, among the thing that have yet to be fully understood are the varous scattering mecha-
nisms, important among which, in ternaries, is alloy-disorder scattering [1-4]. Alloy-disorder scattering in
quantum wells (QWs) and superlattice system has been the subject of many theoretical investigation [5-9].
Free–carries absorption (FCA) is one of the powerful means to understand the scattering mechanisms of
carriers. The theory of FCA in semiconducting QWs has been studied via absorption assisted by acoustic
[10] and polar optical [11-14] phonon scattering including the effects of phonon confinement [15], piezoelectric
coupling (16), ionized impurities [17], interface-roughness [18] and electron-electron scattering [19].

In this paper we present the theory of FCA in QWs when carriers are scattered by alloy-disorder. We
consider the FCA for the cases where the radiation field is polarized in the plane of the layer. Absorption
coefficient will be calculated for the examples of InGAs QWs.

2. Formalism

Assuming the usual effective mass approximation for conduction band, the energy eigenfunctions and
eigenvalues for electrons in an infinite QW can be written as

Ek,n = Ek +En =
~2k2

2m∗ + n2E0, E0 =
π2~2

2m ∗ d2
, n = 1, 2, 3, ....

Ψk,n =
(

2
Ω

)1/2

exp
(
i
−→
k −→r

)
sin
(nπz
d

)
(1)
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Here, d is the thickness of the layer, −→k = {kx, ky} and −→r = {x, y}are wave vector and position vector
in the plane of the layer, Ω0 is the volume of the crystal, n is the subband number and z is the coordinate
perpendicular to the plane of the layer.

The FCA coefficient when alloy-disorder scattering is dominant can be related to the scattering rate for
free carriers to make an intraband transition from a given initial state with the simultaneous scattering of
carriers by alloy-disorder and can be calculated using the standard second order Born golden rule approx-
imation. In second-order pertubation theory, the matrix element connecting the initial and final states for
an optical transition in a QW is given by

< k′n′|M |kn >=
∑
k′′m

[
< k′n′|HR|k′′m >< k′′m|Vi|kn >

Enk −Emk′′
+
< k′n′|Vi|k′′m >< k′′m|HR|kn >

Enk − Emk′′ + ~Ω

]
, (2)

where k′n′ and k′′m are wave vector and subband index for initial and intermediate state, respectively, ~Ω
is the photon energy, HR is the interaction Hamiltonian between the electrons and the radiation field Vi is
the alloy-disorder scattering potential.

The matrix element of the electron-photon interaction Hamiltonians using the wave functions are

< k′n′|HR|kn >= − e~
m∗

(
2π~n0

∈ ΩΩ0

)1/2 (
−→ε −→K

)
δnn′δkxkxδkyky′ . (3)

Here ∈ is the dielectric constant of the material, n0 the number of photons in the radiation field and ε
is the polarization vector of the radiation field.

We assume that the alloy-disorder scattering potential under virtual crystal approximation is a spherically
symmetric square well of height ∆E and radius r0. The potential at site (ri, zi) may be expanded in the
following two-dimensional Fourier series [7,8]:

Vi (ri, zi) =
∑
q11

2π∆E rzJ1(rzq11)
q11

exp [i−→q 11 (−→r −−→r i)],

r2
z = r2

0 − (z − zi)2
(4)

where J1 is the Bessel function of first order of the first kind. Using this form of the potential, the matrix
element for transition from a state kn to another state k′n′ may be expressed as

< k′n′|Vi|kn >=
2
d

exp (−iqIIri) δk,k′+qII Λnn′ (zi) , (5)

where

Λnn′ (zi) =

zi+r0∫
zi−r0

dz 2π∆E
rzJI (rzqII)

qII
sin

nπ z

d
sin

n′ π z

d
.

Now considering all the alloy sites to be randomly distributed to the ratio x : (1− x), one may write for
the scattering rate from the initial state to the final state as

Wkn, k′n′ =
16π2e2n0 N0x (1− x) |k′ − k|2

∈ m ∗2 Ω3Ω2
0d

Fnn′ · δ (En′k′ − Enk − ~Ω) (6)

where Fnn′ =
d/2∫
−d/2

dzi|Λnn′ (zi)|2, and N0 is the number of alloy sites per unit volume.

370



IBRAGIMOV

The absorption coefficient is calculated by summing over all occupied initial states and unoccupied final
states. The absorption coefficient for radiation field polarized in the plane of the layer is finally given by

α =
4e2m ∗ N0x (1− x)
π ~6d3c ∈1/2 Ω3

∞∑
n=1

Nf∑
n=1

∫ ∫
(fkn − fk′n′)Fnn′ (Ek′ + Ek) δ (Ek′n′ − Ekn − ~Ω) dEkdEk′. (7)

The integral over final states can be eliminated using the energy-conserving delta function. In order to
evaluate Fnn′, it is assumed that qnrz << 1, so that J1 (x) ≈ x

2 , and also that the variation sine terms
in the range zi − r0 6 z < zi + r0 are negligible. We may then put z = ziin the arguments and take the
terms outside the integral, obtaining thus a factor 4

3
r0 after integration. The ziintegration is then performed

analyticallyto give

Fnn′ =
(

4
3
πr3

0∆E
)2

d

4

(
1 +

1
2
δnn′

)
.

When the distribution function for a quasi-two dimensional nondegenrate electron gas,

fnk =
(

2π~2ned

m ∗KBTγ

)
exp

(
− En
KBT

)
exp

(
− EK
KBT

)
, γ =

∑
n

exp
(
− En
KBT

)
(8)

used in Eg.(7), we obtain the following for the FCA coefficient in the QW structure:

α =
64π2e2r6

0 (∆E)2
neN0x (1− x)KBT

9 ∈1/2 ~4dcΩ3γ

∞∑
n=1

Nf∑
n′=1

(
1 +

1
2
δnn′

)

e
−n

2E0
KBT

[
1 +

~Ω −
(
n′2 − n2

)
E0

2KBT

](
1− exp

(
− ~Ω
KBT

)) (9)

where Nf is the largest integer equal to or less than
(
n2 + ~Ω

E0

) 1
2
. Here, ne is the carrier density per unit

volume.
It is interesting to note, that in the quantum size limit, in a temperature range where the inter-subband

transitions are not allowed due to the energy differences between the subbands being very large (i.e. E2−E1
KBT

=
3E0
KBT

>> 1and E2−E1
~Ω = 3E0

~Ω >> 1) we can assume n = n′ = 1. The expression for α in this case to then
reduces to

α =
32 π2e2r6

0 (∆E)2
neN0x (1− x) KBT

3 ∈ 1
2 ~4cdΩ3

(
1− e−

~Ω
KBT

)(
1 +

~Ω
2KBT

)
. (10)

For comparison, the FCA in a nondegenerate bulk semiconductor when electron-alloy-disorder scattering
is dominant, is [20]

αbulk =
32
√

2π1/2m∗1/2ner
6
0 (∆E)2 N0x (1− x)

27~3 (kBT )1/2
cΩ ∈1/2

sinh (~Ω/2KBT )K2 (~Ω/2KBT ) (11)

In the limit ~Ω¿¿KBT the ratio of the FCA in QW to that in the bulk for electron-alloy-disorder scattering
takes the particularly simple form

α

αbulk
=

9π~1/2

√
2dΩ1/2m∗1/2

. (12)
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3. Results and Discussion

We have evaluated, the above expressions for α at 300K in In0.53Ga047As-InP QWs using the following
parameters [7]: d=10 nm; m*=0.042m0; ∆E=0.53eV; r0 =

√
3a/4; N0 = 4/a3; a=0.587nm with α the

lattice constant, and ne = 1017cm−3

The results are presented in Figure 1 as a function of photon frequency. Curve 2 refers to the alloy
disorder and curves 1 and 3 refer to confined and bulk phonon modes [15]. The frequency range is chosen
such that the only the two lowest subbands are involved in the transitions. It is shown that α decreases
monotonically with increasing photon frequency. It can also be seen that the FCA coefficients are of the
same order due to alloy-disorder and phonons.

In Figure 2 , we plot the FCA coefficient α in InGaAs QW with d = 10 nm as a function of the photon
frequency for various temperatures. It is shown that α decreases monotonically with increasing photon
frequency and increases with increasing temperature
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Figure 1. FCA coefficient in InGaAs QW due to alloy

disorder scattering as a function of the photon frequency

for T=300 K (2). Curves 1 and 3 correspond to the FCA

for GaAs/GaAlAs QWs when the carrier are scattered

by confined and bulk phonons (Ref. [15]), respectively.

Figure 2. The FCA coefficient in InGaAs QW structure

for alloy-disorder scattering as a function of the photon

frequency d=10 nm. We have chosen T=300 K (—-),

T=77 K (- · - · -) and T=20 K (- - -).

The kinks in the curves indicate alloy-disorder-assisted transition between the subbands. The enhance-
ment of the absorption coefficient associated with scattering to higher subbands also holds for other scattering
mechanisms [10-14].

In Figure 3, we plot the FCA coefficient α as a function of the photon frequency in InGaAs QW with
the temperature at T=300 K. As in Figure 3 the inflection points correspond to the connection of new
intersubband transitions. From Figure 3 we see that the FCA coefficient is enhanced as the QW thickness
decreases. Also, as the QW thickness decreases, the location of the first point in the absorption is shifted to
higher photon frequencies. As the thickness of the QW decreases the separation between adjacent subbands
increases and when ~Ω < 3E0, the alloy-disorder-assisted transitions can only take place to states in the
same subband. For thickness QW such that ~Ω < 3E0, the absorption process depends just upon the rate
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at which the free-carrier are scattered by the alloy-disorder.
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Figure 3. The FCA coefficient in InGaAs QW structure for alloy-disorder scattering as a function of the photon

frequency with T=300 K. We have chosen d=10 nm (—-) , 15 nm (- · - · -) and 20 nm (- - -).

We have evaluated, numerically, the Expression (12) and found that FCA in QW structures is enhanced
by going to QWs of smaller thickness over its value in the bulk semiconducting materials.
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