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Abstract

The equations describing the Kaluza-Klein reduction of conformally flat spaces are
investigated in arbitrary dimensions. Special classes of solution related to pseudo-
Kähler and para-Kähler structures are constructed and classified according to space-
time dimension, signature and gauge field rank. Remarkably, rank two solutions
include gravitational kinks together with their centripetal and centrifugal deforma-
tions.
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1 Introduction

In a recent paper [1] Grumiller and Jackiw investigated the Kaluza-Klein re-
duction of conformally flat spaces from d+1 to d dimensions, for d ≥ 3. After
obtaining appropriate reduction formulas in terms of Kaluza-Klein functions,
they imposed the vanishing of the higher dimensional conformal tensor, pro-
ducing equations describing the ‘immersion’ of a codimension one spacetime
into a conformally flat space. Let us parameterize the higher dimensional line
element as ds2

(d+1) = gµνdxµdxν + (Aµdxµ + dxd)2, with Greek indices ranging

over 0, 1, ..., d − 1 and all quantities independent of the last coordinate xd.
Then, the Grumiller-Jackiw equations ((17a,b,c) in Ref. [1]) read
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Cµνκλ +
1

2

(

FµνFκλ − Fµ[κFλ]ν

)

− 3

2(d − 2)

(

gµ[κTλ]ν − gν[κTλ]µ

)

= 0, (1a)

Rµν −
1

d
Rgµν =

d + 1

4

(

FµκFν
κ − 1

d
F 2gµν

)

, (1b)

DκFµν +
2

d − 1
gκ[µDλFν]

λ = 0, (1c)

with gµν the d-dimensional spacetime metric, Dκ the associated covariant
derivative, Cµνκλ, Rµν , R the corresponding Weyl, Ricci and scalar curva-
tures, 1 Fµν = ∂µAν − ∂µAν the Kaluza-Klein gauge field, F 2 = FµνF

µν its
squared modulo, Tµν = FµκFν

κ − 1
2(d−1)

F 2gµν and square brackets denoting

antisymmetrization, t[µν] = (tµν − tνµ)/2. The spacetime metric gµν is here al-
lowed to carry arbitrary signature, while the signature of the extra coordinate
xd is chosen, for definiteness, as positive. The case with xd carrying a nega-
tive signature is straightforwardly obtained by replacing the d+1-dimensional
metric by its opposite and correspondingly changing the sign of all scalar and
sectional curvatures.
After addressing dimensional reduction for arbitrary dimensions Grumiller
and Jackiw specialized to d = 3 and constructed special solutions based on
a further Ansatz of the three-dimensional metric. In this note we investigate
equations (1a), (1b) and (1c) in their full generality. We construct classes of
solutions classified by spacetime dimension, signature and by the rank of the
Kaluza-Klein gauge field. All solutions with non-vanishing gauge curvature
are related to pseudo-Kähler or para-Kähler structures. Of particular interest
is the case of rank two gauge fields, where exceptional kink solutions together
with their centripetal and centrifugal deformations appear.
Our discussion proceeds as follows. In §2 we obtain explicit expressions for the
spacetime Riemann, Ricci and scalar curvatures in terms of the metric, gµν ,
and the gauge field, Fµν . This allows us to write down, in §3, integrability con-
ditions providing the higher dimensional generalization of the ‘gravitational
kink’ equations obtained by Guralnik, Iorio, Jackiw and Pi from the Kaluza-
Klein reduction of the gravitational Chern-Simons term [2]. These equations
are somehow easier to solve than the original ones. Null, maximal and interme-
diate rank solutions are eventually obtained in §4 and §5 and their relation to
pseudo-Kähler and para-Kähler structures is discussed. Our conclusions and
a list of the obtained solutions are presented in §6.

2 Riemann, Ricci and scalar curvatures

Here we shall demonstrate that equations (1a), (1b) and (1c) allow to express
the spacetime Riemann, Ricci and scalar curvatures entirely in terms of gµν

1 Our curvature conventions are Rµνκ
λ = ∂µΓλ

νκ − ..., Rµν = Rκµν
κ, and R = Rµ

µ.
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and Fµν , up to an arbitrary constant. Equation (1a) is solved by

Rµνκλ = rµνκλ −
1

2

(

FµνFκλ − Fµ[κFλ]ν

)

, (2)

with rµνκλ a tensor sharing the symmetries of the Riemann tensor—not the
Bianchi identities—satisfying the conditions

rµνκλ +
2

d − 2

(

gµ[κrλ]ν − gν[κrλ]µ

)

− 2

(d − 1)(d − 2)
rgµ[κgλ]ν = 0, (3)

with rµν = rκµν
κ and r = rµ

µ. These are 1
12

(d + 1)(d + 2)(d− 3) simultaneous
linear equations in 1

12
d2(d2 − 1) variables with coefficients only depending on

the spacetime metric, gµν . The general solution depends on 1
2
d(d + 1) param-

eters that are functions of the coordinates and is obtained as

rµνκλ = 2
(

gµ[λρκ]ν − gν[λρκ]µ

)

+ 2ρgµ[λgκ]ν, (4)

with ρµν a traceless symmetric tensor and ρ a scalar. The tensor ρµν is deter-
mined by equation (1b). From (2) and (4) we have Rµν = (d − 1)ρgµν + (d −
2)ρµν + 3

4
FµκFν

κ and R = d(d − 1)ρ + 3
4
F 2, which substituted in (1b) yield

ρµν =
1

4

(

FµκFν
κ − 1

d
F 2gµν

)

. (5)

Eventually, the scalar ρ is fixed by the contracted Bianchi identities and equa-
tion (1c). By inserting (5) in the above expressions for the Ricci and scalar
curvatures we obtain from DνRµ

ν = 1
2
DµR the equation

(d − 1)(d − 2)Dµρ =
d + 1

2
DνFµκF

νκ − 5d − 4

4d
DµF

2. (6)

Contracting (1c) with F κν and by means of the gauge theoretical Bianchi
identities we also obtain DνFµκF

νκ = d
4
DµF

2, showing that the right hand
side of (6) is indeed a total derivative. Integration gives

ρ =
d + 4

8d
F 2 + k, (7)

where k is a constant. Next, we substitute (7) and (5) in (4). By employing
this result and by successive contractions of Eq. (2) we obtain the Riemann,
Ricci and scalar spacetime curvatures in terms of the metric gµν , the gauge
field Fµν and the arbitrary constant k as

3



Rµνκλ = 2
(

k +
1

8
F 2
)

gµ[λgκ]ν

−1

2

(

gµ[κFλ]ξFν
ξ − gν[κFλ]ξFµ

ξ
)

− 1

2

(

FµνFκλ − Fµ[κFλ]ν

)

, (8a)

Rµν = (d − 1)kgµν +
(d + 1)

8
F 2gµν +

(d + 1)

4
FµκFν

κ, (8b)

R = d(d − 1)k +
(d + 1)(d + 2)

8
F 2. (8c)

Direct computation shows that the Riemann tensor (8a) satisfies the Bianchi
integrability conditions DξRµνκλ + DνRξµκλ + DµRνξκλ = 0, provided that
(1c) is satisfied. The integration of Grumiller-Jackiw equations is, therefore,
reduced to the integration of (1c) subject to (8).

3 Integrability conditions

It is useful to establish integrability conditions for (1c) subject to (8). Consider
the covariant derivative of (1c)

DλDκFµν +
2

d − 1
gκ[µDλDξFν]

ξ = 0. (9)

Antisymmetrizing (9) in κ, λ, reexpressing the commutator of covariant deriva-
tives in terms of the Riemann tensor and inserting (8), we obtain

1

d − 1
DµDκFν

κ −
(

k +
1

8
F 2
)

Fµν +
1

4
Fµ

κFκ
λFλν = 0. (10)

Symmetrizing this expression in µ, ν we have DµDκFν
κ+DνDκFµ

κ = 0, show-
ing that

Kµ =
1

d − 1
DνFµ

ν , (11)

is a Killing vector of our geometry, when it is not identically vanishing. The
existence of such a Killing was recognized by Grumiller and Jackiw in the
special case d = 3 ((26b) in Ref. [1]). Contracting now (9) with gκλ and by
means of DµKν + DνKµ = 0, we obtain

1

d − 1
DµDκFν

κ +
1

2
D2Fµν = 0. (12)

When substituted in (10), this yields the integrability conditions in the form

1

2
D2Fµ

ν +
(

k +
1

8
F 2
)

Fµ
ν − 1

4
Fµ

κFκ
λFλ

ν = 0. (13)
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Equations (12) and (13) are the higher dimensional analogue of the ‘traceless’
and ‘gravitational kink’ equations obtained from the Kaluza-Klein reduction
of the gravitational Chern-Simons term [2].

4 Null and maximal rank solutions

Equations (1c) and (13) are trivially solved by a vanishing gauge curvature.
The Riemann tensor (8a) consequently reduces to

Rµνκλ = k (gµλgκν − gµκgλν) , (14)

revealing that spacetime is a real pseudo-Riemannian manifold with constant
sectional curvature k. When complete, spacetime is then a real space form,
isomorphic to the pseudo-Euclidean real space R

d
s for vanishing sectional cur-

vature, to the real pseudo-projective space RP d
s —or pseudo-sphere Sd

s —for
positive sectional curvature or to the real pseudo-hyperbolic space RHd

s for
negative sectional curvature (see e.g. §8 of Ref. [3]). The signature is arbi-
trary, s = 0, ..., d. For Euclidean signature, s = 0, these are the standard
Euclidean space Rd ≡ Rd

0, sphere Sd ≡ Sd
0 and hyperbolic space Hd ≡ RHd

0 .
For Lorentzian signature, s = 1, one obtains the Minkowski Md ≡ Rd

1, deSitter
dSd ≡ Sd

1 and anti-deSitter AdSd ≡ RHd
1 spacetimes, respectively. Summariz-

ing we obtain

R
d
s(0) for k = 0, RP d

s (k) for k > 0, RHd
s (k) for k < 0, (15)

where we denote in brackets the sectional curvature, k. Real space forms are
conformally flat themselves, so that metric and vector potential can be con-
veniently displayed in the form

gµν =
1

(

1 + k
4
ηκλxκxλ

)2ηµν , Aµ = 0, (16)

with ηµν a pseudo-Euclidean metric carrying arbitrary signature.

Besides null rank solutions, a second class of solutions can be obtained when
the Kaluza-Klein two-form, Fµν , has maximal rank, rank{Fµν} = d. Given the
antisymmetry of Fµν , this is only possible in an even number of dimensions,
d = 2d. Equation (1c) is in fact trivially satisfied by a covariantly constant
gauge curvature

DκFµν = 0, (17)

a condition which is fully equivalent to the constancy of the scalar F 2 or
to the vanishing of the Killing vector Kµ. The integrability conditions (13)

5



consequently reduce to
(

k +
1

8
F 2
)

Fµ
ν − 1

4
Fµ

κFκ
λFλ

ν = 0. (18)

The maximal rank assumption implies the existence of an inverse F−1
µ

ν
of the

Kaluza-Klein gauge curvature, Fµ
ν , Fµ

κF−1
κ
ν

= F−1
µ

κ
Fκ

ν = δν
µ. Contracting

(18) with F−1
ν
ξ

and rearranging terms we obtain

1

4
Fµ

κFκ
ξ =

(

k +
1

8
F 2
)

δξ
µ. (19)

Contraction eventually fixes the value of the constant to k = −d+2
8d

F 2. A
covariantly constant gauge curvature Fµν is therefore solution of Grumiller-
Jackiw equations if and only if

Fµ
κFκ

ν = −1

d
F 2δν

µ. (20)

Depending on the sign of F 2, sign{F 2} ≡ σ, these equations introduce dif-
ferent kinds of spacetime structure, which are not frequently encountered in
theoretical physics, but are well studied in differential geometry. By rescaling
the Kaluza-Klein gauge curvature Fµ

ν , we introduce the mixed tensor

Jµ
ν = ±

√

d

|F 2|Fµ
ν . (21)

Equation (20), the anti-symmetry of Fµν and (17) are then rewritten as

Jµ
κJκ

ν = −σδν
µ, (22a)

Jµ
κJν

λgκλ = σgµν , (22b)

DκJµ
ν = 0. (22c)

For σ = + equation (22a) identifies Jµ
ν with an almost complex structure

on spacetime, (22b) states that gµν is an associated Hermitian metric, while
(22c) guarantees the integrability of the structure, making spacetime a pseudo-
Kähler manifold [4,5]. This implies that the even dimensional spacetime carries
an even index 2s, s = 0, ..., d. No solutions with Lorentzian signature are
admitted. For σ = − equation (22a) identifies Jµ

ν with an almost product
structure—more precisely an almost para-complex structure—on spacetime,
(22b) states that gµν is an associated anti-Hermitian metric, while (22c) again
guarantees the integrability of the structure, making spacetime a para-Kähler
manifold [4,6]. This implies that spacetime carries a neutral signature d = d/2.
Inserting (20) in (8a) and reexpressing everything in terms of Jµ

ν we obtain

Rµνκλ =
F 2

4d
(gµλgκν − gµκgλν + σJµλJνκ − σJµκJνλ − 2σJµνJκλ) . (23)
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This reveals that spacetime is a pseudo-Kähler manifold with constant holo-
morphic sectional curvature, when σ = + (see Proposition 2.1. and Corollary
2.2. in Ref. [5]) or a para-Kähler manifold with constant para-holomorphic
sectional curvature, when σ = − (see Propositions 3.7. and Theorem 3.8. in
Ref. [7]). When complete, spacetime is then a complex/para-complex space
form, the complex/para-complex analogue of real space forms.
The simplest examples of such spaces are provided by the pseudo-Euclidean
complex algebra Cd

s and para-complex algebra Ad of vanishing holomorphic,
respectively, para-holomorphic sectional curvature. 2 They are constructed by
endowing R2d with the metric and the almost complex/para-complex structure

ηµν =







σηd 0

0 ηd





 , εµ
ν =







0 ηd

−σηd 0





 , (24)

with ηd the matrix corresponding to a real d-dimensional pseudo-Euclidean
metric carrying arbitrary signature. On the other hand, it is readily checked
that gµν = ηµν and Fµ

ν ∝ εµ
ν are solutions of equations (1) only if F 2 = 0,

so that Cd
s and Ad can—in the best case—only be enumerated among null

rank solutions. For a non-vanishing F 2 the theorems mentioned above iden-
tify the constant holomorphic/para-holomorphic sectional curvature with F 2

d
.

Indefinite complex space forms (σ = +) of non-vanishing holomorphic sec-
tional curvature were investigated by Barros and Romero [5]. They are locally
isomorphic to the complex pseudo-projective space CP d

s with positive holo-
morphic sectional curvature or to the complex pseudo-hyperbolic space CHd

s

with negative holomorphic sectional curvature—one is obtained by the other
by replacing the metric with its opposite. Para-complex space forms (σ = −) of
non-vanishing para-holomorphic sectional curvature were instead constructed
by Gadea and Montesinos Amilibia [7] and further investigated by Gadea and
Muñoz Masqué [8]. They are locally isomorphic to the para-complex projec-
tive model BP d with positive para-holomorphic sectional curvature or to the
para-complex hyperbolic model BHd with negative para-holomorphic sectional
curvature—once again, one is obtained by the other by changing the sign of
the metric. 3 The explicit form of the metric, gµν , and of the vector potential,
Aµ, generating Fµν and hence Jµ

ν , are obtained as

2 The use is that of displaying the complex dimension d and signature s for com-
plex spaces and the para-complex dimension d, but not the para-complex signa-
ture—which always equals half of the dimension—for para-complex spaces.
3 Gadea and Montesinos Amilibia introduce para-complex projective models Pd(B)
carrying both positive and negative para-holomorphic sectional curvature. We par-
tially modify their notation and distinguish projective BP d ≡ Pd(B)—for positive
para-holomorphic sectional curvature—from hyperbolic BHd ≡ Pd(B)—for negative
para-holomorphic sectional curvature—para-complex models to conform to real and
complex space forms.

7



gµν =
1

(

1 + F 2

4d
ηκλxκxλ

)2

[

ηµν +
F 2

4d
(ηµνηκλ − ηµκηνλ − σεµκενλ) xκxλ

]

,

(25a)

Aµ = ±
√

|F 2|
d

(

1 +
F 2

4d
ηκλx

κxλ

)

εµ
νgνκx

κ, (25b)

with ηµν , εµ
ν given by (24) and εµν = εµ

κηκν . We remark that complex/para-
complex space forms are neither spaces of constant curvature nor conformally
flat spaces. By direct substitution of (25) in (1) it is possible to check that

CP d
s

(

|F 2|
d

)

and BHd

(

−|F 2|
d

)

(26)

—in brackets we give the holomorphic/para-holomorphic sectional curvature—
are indeed solutions of the Grumiller-Jackiw equations corresponding to a posi-
tive signature for the extra coordinate xd. Since the replacement of the higher
dimensional metric with its opposite produces a change in sign of gµν and
hence the replacement of projective with hyperbolic spaces and viceversa, the
remaining space forms

CHd
s

(

−|F 2|
d

)

and BP d

(

|F 2|
d

)

(27)

are instead solutions of the Grumiller-Jackiw equations corresponding to a
negative signature for the extra coordinate xd.

Real, complex and para-complex space forms are therefore seen under the
same light as solutions of the equations describing the Kaluza-Klein reduction
of conformally flat spaces. It is then natural to wonder what other spacetime
structures fulfill Grumiller-Jackiw equations. As far as maximal rank solu-
tions are concerned, we observe that no extra solutions can be constructed
by conformal deformation of pseudo-Kähler/para-Kähler structures. In fact,
for d > 2, the closure condition (dF )µνκ = 0 immediately implies the con-
stancy of the conformal factor. Nor can extra solutions be obtained from al-
most complex/para-complex structures by relaxing the integrability condition
(22c). In fact, the identity DνFµκF

νκ = d
4
DµF

2, obtained in §2, is compatible
with (20) if and only if F 2 is constant or d = 2. For these reasons we suspect
the complex/para-complex space forms to be the only maximal rank solutions
of equations (1), but we could not prove this statement.
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5 Intermediate rank solutions

Next we consider the case in which the Kaluza-Klein gauge field Fµν has
intermediate rank 0 < rank{Fµν} ≡ r < d and nullity null{Fµν} = d − r ≡ n.
Given the closure condition, (dF )µνκ = 0, a classical theorem of Darboux 4

ensures the possibility of finding, in a finite neighborhood of every point, local
coordinates xµ = (ξα, yi) with α = 0, ..., r − 1, i = 1, ..., n, in such a way that

Fµν =







Fαβ 0

0 0





 , (28)

with Fαβ = ∂αAβ − ∂βAα an r-dimensional non-degenerate closed two-form.
The ξα and yi parameterize non-degenerate and null gauge field directions
and will be referred as external and internal coordinates, respectively. Given
the antisymmetry of Fαβ the external dimension is always an even number,
r = 2r. Adapted coordinates are defined up to the coordinate transformations
ξα → ξ′α(ξ), yi → y′i(ξ, y), with internal diffeomorphisms allowed to depend
on external coordinates. In such adapted frames the spacetime metric can be
parameterized without loss of generality as

gµν =







gαβ + ak
αal

βhkl ak
αhkj

hila
l
β hij





 , (29)

with gαβ , hij and ai
α depending, in general, on external and internal coordi-

nates. Under the transformations above gαβ and hij transform as external and
internal metric tensors, respectively, while ai

α identifies with an external gauge
potential taking values in the internal diffeomorphisms algebra. The coordi-
nate splitting is completely characterized by the lower dimensional tensors

Êiαβ =
1

2

(

∂igαβ + fiαβ

)

, Eαij =
1

2
(∂αhij − Laα

hij) , (30)

with f i
αβ = ∂αai

β − ∂βai
α − aj

α∂ja
i
β + aj

β∂ja
i
α the gauge curvature associated

to the external vector potential (ai)α and Laα
the Lie derivative with respect

to the internal vector (aα)i. Êiαβ is a generalized second fundamental form
for the external space, which is not in general a spacetime submanifold. Most
remarkable, the vanishing of its antisymmetric part, f i

αβ, ensures the possibility
of introducing internal coordinates in such a way that ai

α and, hence, the
off-diagonal components of the d-dimensional metric vanish identically. For
every fixed value ξ̄ of the external coordinates, Eαij |ξ=ξ̄ represents instead the

4 Darboux theorem further ensures the possibility of setting Fαβ in a canonical
form. This is, however, of no relevance in our analysis.
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standard second fundamental form of the corresponding internal space, which
is always a spacetime submanifold [9].

In the adapted coordinate frame equations (1c) can be rewritten in terms of
the residual gauge field and the generalized fundamental forms as

∇̂γFαβ +
2

d − 1

(

gγ[α∇̂δFβ]
δ + gγ[αFβ]

δEδa
a
)

= 0, (31a)

Fα
δÊjγδ −

1

d − 1
gαγF

δǫÊjδǫ = 0, (31b)

∇kFαβ = 0, (31c)

Fα
δEδjk −

1

d − 1

(

∇̂δFα
δ + Fα

δEδa
a
)

hjk = 0, (31d)

hk[iF
γδÊj]γδ = 0, (31e)

with the relevant definition of the hatted derivative ∇̂α given below and ∇i

the standard internal covariant derivative associated to hij.
5 Equations (31b)

and (31c) immediately imply that ∂kgαβ = Êkαβ + Êkβα = 0 and ∂kFαβ =
∇kFαβ = 0, showing that the external metric and the residual gauge field only
depend on external coordinates

gαβ = gαβ(ξ), Fαβ = Fαβ(ξ). (32)

As a consequence, ∇̂α coincides with the standard external covariant derivative
associated to gαβ, ∇̂α ≡ ∇α. Contracting (31a) with gβγ , or (31d) with hjk,

we obtain (r − 1)Fα
δEδi

i = n∇δFα
δ or, equivalently,

Eαi
i =

n

r − 1
F−1

α
β∇γFβ

γ, (33)

with F−1
α

β
the inverse of the residual gauge curvature Fα

β, Fα
γF−1

γ
β

=
F−1

α
γ
Fγ

β = δβ
α. Substituting (33) back in (31a) yields

∇γFαβ +
2

r − 1
gγ[α∇δFβ]

δ = 0. (34)

Equations (34) precisely reproduce (1c) on the external subspace, i.e. along
the non-degenerate directions of the Kaluza-Klein gauge field. Substituting
(33) back in (31d) produces instead

Eγij −
1

n
Eγk

khij = 0, (35)

implying that all internal spaces are totally umbilical and that (fαβ)i is an
internal conformal Killing vector, ∇ifjαβ + ∇jfiαβ = 2

n
(∇kf

k
αβ)hij (see §4.2.

5 The general definition of ∇̂α (Eq.(35) in Ref. [9]) is of no relevance here.
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in Ref. [9]). As a consequence, it is always possible to further adapt internal
coordinates in such a way that the internal metric and the external gauge
curvature decompose as

hij = λ(ξ) cij(y), f i
αβ = f a

αβ(ξ) Ci
a
(y), (36)

with Ci
a
, a = 1, ..., (n + 1)(n + 2)/2, a basis of the internal conformal algebra.

Contracting now (31b) with gαγ, or (31e) with hik, we eventually obtain

(n − 1)FαβÊiαβ = 0. (37)

For n > 1 (37) requires FαβÊi
αβ = 1

2
Fαβf i

αβ = 0, which substituted back in
(31b) implies the vanishing of f i

αβ . For n = 1 (37) is identically satisfied and
(31b) reduces to a traceless equation implying the proportionality between
fαβ ≡ f 1

αβ and the inverse Kaluza-Klein field F−1
αβ ; correspondingly the sum

in (36) reduces to a single element of the internal conformal algebra. Summa-
rizing,

f i
αβ = 0 for n > 1 and fαβ = −1

r
fγδF

γδF−1
αβ for n = 1. (38)

The cases n > 1 and n = 1 are, therefore, better treated separately.

5.1 Nullity greater than one

By means of the generalizations of Gauss, Codazzi and Ricci equations [9], that
express higher dimensional curvatures in terms of lower dimensional curvatures
and generalized fundamental forms, it is immediately possible to reduce (8a)
in its lower dimensional components. Of the six resulting equations only two
are not identically satisfied

Rαβγδ = 2
(

k +
1

8
F2
)

γα[δγγ]β

−1

2

(

γα[γFδ]ξFβ
ξ − γβ[γFδ]ξFα

ξ
)

− 1

2

(

FαβFγδ − Fα[γFδ]β

)

, (39)

Kijkl = 2
(

k +
1

8
F2 +

1

n2
Eαm

mEα
n

n

)

hi[lhk]j, (40)

with Rαβγδ and Kijkl the Riemann tensors associated to the external metric gαβ

and the internal metric hij, respectively, and F2 = FαβFαβ = F 2. The Killing

vector (11) reduces to Kµ =
(

1
r−1

∇βFα
β, 0

)

. Correspondingly, the integrability

conditions (13) split in four lower dimensional equations. The only one which
is non-identically satisfied reads

11



1

2
∇2Fα

β +
(

k +
1

8
F2
)

Fα
β − 1

4
Fα

γFγ
δFδ

β = 0. (41)

We recognize that (34), (39) and (41) respectively reproduce (1c), (8a) and (13)
when r → d, ξα → xµ and Fαβ → Fµν . For n > 1 the problem along external
directions is therefore fully equivalent to finding maximal rank solutions of
our original set of equations. The only difference is that the residual rank r is
also allowed to take the value r = 2, precluded to the spacetime dimension d.
Once the external space geometry is determined by (34), (39), (41), equations
(40) fix the geometry of internal spaces correspondingly.

5.1.1 Equations (34), (39), (41) for r = 2

In two dimensions the gauge curvature is always proportional to the invariant
volume element, so that we can set in full generality Fα

β = ϕ εα
β , with εα

β

given by (24). Equations (39), (41) and the dimensional reduced (12) take
then the form

R = 2k + 3σϕ2, (42a)

∇2ϕ + 2kϕ + σϕ3 = 0, (42b)

∇α∇βϕ − 1

2
γαβ∇2ϕ = 0, (42c)

respectively, reproducing the ‘curvature constraint’, ‘gravitational-kink’ and
‘traceless’ equations obtained by Guralnik, Iorio, Jackiw and Pi from the
Kaluza-Klein reduction of the gravitational Chern-Simons term ((4.47,48,49)
in Ref. [2]). Local solutions are constructed in their paper and extended glob-
ally in Ref. [10]. Besides the symmetry preserving solutions R2

s, S2
s , H2

s and the
symmetry breaking solutions CP 1

s , BH1—and CH1
s , BP 1 for a negative signa-

ture of xd—for σ = − and k > 0 they found the extra class of ‘gravitational
kink’ solutions

gαβ =







−k2 sech4
(
√

k
2
ξ1
)

0

0 1





 , Aα =
(

±k sech2
(
√

k
2
ξ1
)

, 0
)

, (43)

with the corresponding kink profile

ϕ(ξ) = ±
√

2k tanh
(√

k
2
ξ1
)

. (44)

These solutions are associated to para-Kähler structures defined on spacetime.
It is in fact easy to check that Jα

β = ±Fα
β/ϕ, fulfills conditions (22) with

σ = −. The scalar F2 = −2ϕ2 is however non-constant and the Killing vector

is correspondingly non-vanishing, ∇βFα
β =

(

k2 sech4
√

k
2
ξ1, 0

)

. The solutions

12



corresponding to a negative signature of the extra Kaluza-Klein coordinate xd

are obtained by replacing the metric with its opposite. In the latter (former)
case, for small values of |

√
kξ1| the curvature is negative (positive). For larger

values it is positive (negative), achieving dS2 (AdS2) at infinity. While the
metric reproduces asymptotically the deSitter (anti-deSitter) spacetime, the
modulo of the gauge field correspond to a kink profile. For these reasons it is
natural to refer to these spaces as kink and anti-kink spaces. We denote them
by K2

1(k) and AK2
1 (k) respectively, where we give in brackets the positive

parameter labelling the solution.

5.1.2 r ≥ 2, n > 1: solutions from complex/para-complex space forms

The complex/para-complex space forms CP r
s , BHr—and CHr

s , BP r for a neg-
ative signature of xd—generate the following intermediate rank solutions of
Grumiller-Jackiw equations. For every even, strictly positive value of r = 2r
the external space is a complex/para-complex space form of real dimension

r and constant holomorphic/para-holomorphic sectional curvature F2

r
. The

Killing vector Kµ and the fundamental forms Eαij vanish identically, F2 is
constant and k = −r+2

8r
F2. Consequently, equation (40) require the internal

spaces to be n-dimensional real space forms of sectional curvature −F2

4r
. Space-

time results into the direct product of a complex/para-complex space form of

holomorphic/para-holomorphic sectional curvature F2

r
and a real space form

of sectional curvature −F2

4r
. For F2 > 0 and F2 < 0 we respectively obtain

CP r
s

(

|F2|
r

)

× RHn
s

(

−|F2|
4r

)

and BHr

(

−|F2|
r

)

× RP n
s

(

|F2|
4r

)

, (45)

with external and internal signatures unrelated. The choice of a negative sig-
nature for the extra coordinate xd produce instead the solutions

CHr
s

(

−|F2|
r

)

× RP n
s

(

|F2|
4r

)

and BP r

(

|F2|
r

)

× RHn
s

(

−|F2|
4r

)

. (46)

Metrics and vector potentials are immediately constructed by means of (25)
and (16).

5.1.3 r = 2, n > 1: kinks

The exceptional class of rank two kink/anti-kink solutions discussed in §5.1.1
also generates intermediate rank solutions of Grumiller-Jackiw equations. For
a positive signature of the Kaluza-Klein extra coordinate xd, the external
space metric is that of an anti-kink space AK2

1 (k). Since in two dimensions
the squared gauge field is always proportional to delta, Fα

γFγ
β = −1

2
F2δβ

α,
from (33) and the fundamental form definition (30) it is possible to show that

13



the scale factor λ(ξ) appearing in the internal metric is always proportional
to the squared field modulo F2. Up to a multiplicative constant we therefore
have

λ(ξ) = ± 4k tanh2
√

k
2
ξ1. (47)

Equation (40) fixes then the internal spaces to be n-dimensional real space
forms of constant sectional curvature ±2k2. For a positive choice of the warp
factor spacetime results into the warped product of the anti-kink space AK2

1 (k)
and the pseudo-sphere RP n

s (2k2)

AK2
1 (k) ×

4k tanh2
√

k
2
ξ1

RP n
s

(

2k2
)

, (48)

while for a negative choice the second term is replaced by the pseudo-hyperbolic
space RHn

s (2k2)

AK2
1(k) ×−4k tanh2

√
k
2
ξ1

RHn
s

(

−2k2
)

. (49)

The solutions corresponding to a negative signature of the extra Kaluza-Klein
coordinate are obtained by changing the sign of the higher dimensional metric.
For every positive value of k spacetime results into the warped product of the
kink space K2

1 (k) with either the pseudo-hyperbolic space RHn
s (−2k2)

K2
1(k) ×

4k tanh2
√

k
2
ξ1

RHn
s

(

−2k2
)

, (50)

or the pseudo-sphere RP n
s (2k2)

K2
1(k) ×−4k tanh2

√
k
2
ξ1

RP n
s

(

2k2
)

. (51)

Explicit expressions of metrics and vector potentials are immediately con-
structed by means of (43), (16) and (36).

5.2 Nullity equal to one

Eventually, we consider solutions with r = d − 1 and n = 1. This is the only
case in which it is not in general possible to introduce coordinates bringing
the spacetime metric (29) in block-diagonal form. In different words, this is
the only case in which the gauge field fαβ can be different than zero. It is
convenient to rescale the internal coordinate in such a way that h11 = λ(ξ)
and set λfαβFαβ = 2rl, with l(ξ, y) some undetermined function of the coordi-
nates. The Riemann tensor (8a) is then again reduced by means of generalized
Gauss, Codazzi and Ricci equations. Of the resulting conditions only one is
not identically satisfied. Taking (38) into account it reads

14



Rαβγδ = 2
(

k +
1

8
F2
)

γα[δγγ]β − 1

2

(

γα[γFδ]ξFβ
ξ − γβ[γFδ]ξFα

ξ
)

−2l2

λ

(

F−1
αβF−1

γδ − F−1
α[γF

−1
δ]β

)

− 1

2

(

FαβFγδ − Fα[γFδ]β

)

, (52)

with Rαβγδ again denoting the Riemann tensor associated to gαβ . The Killing

vector (11) reduces now to Kµ =
(

1
r−1

∇βFα
β + l a1

α, l
)

. Eventually, the inte-

grability condition (13) yields the lower dimensional equations

1

2
∇2Fα

β +
l2

λ
F−1

α
β

+
(

k +
1

8
F2
)

Fα
β − 1

4
Fα

γFγ
δFδ

β = 0, (53)

∇α l = 0 and ∇y l = 0. (54)

The first is the integrability condition for (34) subject to (52). The other two
fix l to a constant. For l = 0 equations (52), (53) exactly reproduce (39), (41),
or equivalently, (8a), (13). As a consequence every maximal rank solution,
including rank two, generates a nullity one solution. Proceeding as in §5.1.2
and §5.1.3, for a positive signature of the extra Kaluza-Klein coordinate, we
obtain the solutions

CP r
s

(

|F2|
r

)

× R, BHr

(

−|F2|
r

)

× R, (55)

together with the anti-kink warped products

AK2
1(k) ×±4k tanh2

√
k
2
ξ1

R. (56)

For a negative choice of the extra coordinate we have instead

CHr
s

(

−|F2|
r

)

× R, BP r

(

|F2|
r

)

× R, (57)

with the kink warped products

K2
1 (k) ×±4k tanh2

√
k
2
ξ1

R. (58)

For l 6= 0 new terms appear in the Riemannian curvature (52) and in the
integrability condition (53) and some extra consideration is necessary.

5.2.1 r ≥ 2, n = 1: more solutions from complex/para-complex space forms

Given the structure of the extra terms in (52) and (53), it is natural to look for
solutions related to Kähler and para-Kähler structures by a constant rescaling

Fα
β = ±

√

|F2|
r

Jα
β, (59)
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where Jα
β fulfills conditions (22) with σ the sign of F2 and where the constant

of proportionality has been fixed by squaring and tracing both members of
the equality. The constancy of F2 implies the constancy of λ(ξ) which is set
to plus or minus one by a proper rescaling of the internal coordinate, λ = ±1.
Equations (59) and (22) fix the value of the inverse Kaluza-Klein curvature to

F−1
α

β
= − r

F2 Fα
β. (60)

By substituting (60) back in (53), recalling that (22c) requires the vanishing
of ∇2Fα

β and proceeding as in §4, the integrability conditions fix the value of

the constant to k = rl2

λF2 − (r+2)F2

8r
. The eventual substitution of (60) and k in

(52) yields the Riemann tensor

Rαβγδ =

(

F2

2r
+

2rl2

λF2

)

(

gα[δgγ]β − σJα[δJγ]β − σJαβJγδ

)

, (61)

showing that the external space is either a pseudo-Kähler or a para-Kähler
manifold with constant holomorphic, respectively, para-holomorphic sectional
curvature F2

r
+ 4rl2

λF2 . Taking (29) and (38) into account, we see that space-
time results itself in a Kaluza-Klein space, with external space given by a
complex/para-complex space form and gauge structure proportional to the
underlying complex/paracomplex structure

fαβ = ±2l

√

r

|F2| Jαβ. (62)

When F2

r
+ 4rl2

λF2 = 0 the underlying space form has zero holomrphic/para-

holomorphic sectional curvature, corresponding to C
r
s for F2 > 0 and to A

r

for F2 < 0. Missing a standard notation, we borrow and slightly modify the
warped product notation and denote these ‘Kaluza-Klein products’ as

C
r
s (0) ×±

√

|F2|
r

Jαβ
R and A

r (0) ×±
√

|F2|
r

Jαβ
R. (63)

When F2

r
+ 4rl2

λF2 > 0 the space form has positive holomorphic/para-holomorphic

sectional curvature, corresponding to CP r
s for F2 > 0 and to A

rP for F2 < 0.
The corresponding spaces are

CP r
s

(

F2

r
+ 4rl2

λF2

)

×
±2l
√

r

|F2|
Jαβ

R and BP r
(

F2

r
+ 4rl2

λF2

)

×
±2l
√

r

|F2|
Jαβ

R. (64)

Eventually, when F2

r
+ 4rl2

λF2 < 0 the holomrphic/para-holomorphic sectional

curvature is negative and the space form corresponds to CHr
s for F2 > 0 and

to ArH for F2 < 0. The relative solutions are

CHr
s

(

F2

r
+ 4rl2

λF2

)

×
±2l
√

r

|F2|
Jαβ

R and BHr
(

F2

r
+ 4rl2

λF2

)

×
±2l
√

r

|F2|
Jαβ

R. (65)
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Explicit forms of metrics and gauge fields are immediately obtained by means
of (25), (29) and (62). The choice of a negative signature for the extra Kaluza-
Klein coordinate produces exactly the same solutions.

5.2.2 r = 2, n = 1: kinks centripetal/centrifugal deformations

For two external dimensions we can set again in full generality Fα
β = ϕ εα

β ,
with εα

β given by (24). As mentioned in §5.1.3, for r = 2 the warp factor
appearing in the internal metric is always proportional to F2, so that by a
proper rescaling of the internal coordinate we can set λ = τ F2, with τ = ±.
Equations (52), (53) and the dimensional reduced (12) take then the form

R = 2k + 3σϕ2 + τ
3l2

ϕ4
, (66a)

∇2ϕ + 2kϕ + σϕ3 − τ
l2

ϕ3
= 0, (66b)

∇α∇βϕ − 1

2
γαβ∇2ϕ = 0, (66c)

reproducing the gravitational kink equations of §5.1.1 up to centripetal (τ =
+) or centrifugal (τ = −) terms proportional to the square of the ‘angular
momentum’ l [11]. Besides reobtaining the Kaluza-Klein solutions (63), (64),
(65) for r = 2, it is interesting to follow the fate of the gravitational kink
solutions (56), (58) for a non-vanishing l. Equations (66a), (66b) and (66c)
are solved along the lines indicated in the appendices A and B of Ref. [2].
By thinking of (66b) as a Newtonian equation, ∇2ϕ = V ′(ϕ), for σ = − we
choose the integration constant in the potential in such a way that V (ϕ) =
(2K + L − ϕ2)

2
(ϕ2 − L)/4ϕ2. By differentiating and comparing with (66b),

we then obtain the relations k = K +3L/4 and l2 = 2τ (K + L/2)2 L between
the old and the new constants. In particular, L results to be positive for τ = +
and negative for τ = −. For K > 0, the integration of the corresponding flat-
space equation yields the solution

gαβ =











−
2K3 sech4

(√
K
2

ξ1

)

tanh2

(√
K
2

ξ1

)

2K tanh2

(√
K
2

ξ1

)

+L
0

0 1











, (67a)

Aα =
(

±K sech2
(√

K
2

ξ1
)

, 0
)

, (67b)

a1
α =



± K
√

2τL

2(2K+L) cosh2

(√
K
2

ξ1

)

−4K
, 0



 , (67c)
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Fig. 1. The gravitational kink profile with centripetal deformation (solid line) (a),
without deformation (b) and with centripetal deformation (c), together with the
corresponding potentials (dashed line).

with the corresponding centripetal/centrifugal distortion of the kink profile

ϕ(ξ) = ±
√

2K tanh2
(√

K
2

ξ1
)

+ L (68)

and the internal warp factor

λ(ξ) = −2 τ
(

2K tanh2
(√

K
2

ξ1
)

+ L
)

. (69)

Spacetime carries a Kaluza-Klein-like structure, complicated by a nontrivial
warp factor that cannot be set to one without introducing an explicit inter-
nal coordinate dependence in the other entries of the metric. For l → 0 the
constants L and K respectively approach 0 and k, (67a), (67b), (68) correctly
reproduce (43), (44), while spacetimes reduces to (56). For negative values of
L (τ = −) the external metric gαβ , together with the corresponding scalar cur-

vature, is singular at ξ1 = ±
√

2
K

arctanh
√

|L|
2K

, while the gauge field ϕ(ξ) only

results to be defined for |ξ1| ≥
√

2
K

arctanh
√

|L|
2K

. The effect of the centrifugal
deformation is therefore that of opening a gap in spacetime, thus dividing it
in two disconnected regions. In Figure 1 we plot the gauge field kink profile,
its centrifugal and centripetal deformations, together with the corresponding
potential V (ϕ).
The solutions corresponding to a negative signature of the extra Kaluza-Klein
coordinate xd, are once again obtained by changing the sign of the higher di-
mensional metric. As it has to be expected, in the latter (former) case, space-
time achieves dS3 (AdS3) at infinity. We find it natural to refer to this classes
of solutions as c-kink/anti-c-kink spacetimes and denote them by

cK3
s (k, l) and AcK3

s (k, l), (70)

with s = 1, 2, where we give in brackets the parameters labeling the solution.
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Table 1
Solutions of Grumiller-Jackiw equations.

rank nullity solutions

r = 0 n = d R
d
s(0), RP d

s (k), RHd
s (k)

r ≥ 2 n > 1 CP r
s

(

F2

r

)

× RHn
s

(

−F2

4r

)

, BP r
(

F2

r

)

× RHn
s

(

−F2

r

)

,

CHr
s

(

F2

r

)

× RPn
s

(

−F2

4r

)

, BHr
(

F2

r

)

× RPn
s

(

−F2

4r

)

r = 2 n > 1 AK2
1 (k) ×

4k tanh2
√

k
2
ξ1

RPn
s

(

2k2
)

AK2
1 (k) ×−4k tanh2

√

k
2
ξ1

RHn
s

(

−2k2
)

K2
1 (k) ×

4k tanh2
√

k
2
ξ1

RHn
s

(

−2k2
)

K2
1 (k) ×−4k tanh2

√

k
2
ξ1

RPn
s

(

2k2
)

r ≥ 2 n = 1 C
r
s (0) ×±

√

|F2|
r

Jαβ
R, A

r (0) ×±
√

|F2|
r

Jαβ
R,

CP r
s

(

F2

r
± 4rl2

F2

)

×
±2l
√

r

|F2|
Jαβ

R,

BP r
(

F2

r
± 4rl2

F2

)

×
±2l
√

r

|F2|
Jαβ

R,

CHr
s

(

F2

r
± 4rl2

F2

)

×
±2l
√

r

|F2|
Jαβ

R,

BHr
(

F2

r
± 4rl2

F2

)

×
±2l
√

r

|F2|
Jαβ

R

r = 2 n = 1 AcK3
s (k, l), cK3

s (k, l)

r = 2d n = 0 CP d
s

(

F 2

d

)

, BP d
(

F 2

d

)

, CHd
s

(

F 2

d

)

, BHd
(

F 2

d

)

6 Conclusions

We have shown that the equations describing the vanishing of the Weyl con-
formal tensor in d + 1-dimensional Kaluza-Klein theories, resembling equa-
tions of motion of some d-dimensional Einstein-Maxwell-like theory, admit
highly symmetric solutions with maximally compatible metric and electro-
magnetic structures. Null and maximal rank solutions are respectively real
and complex/para-complex space forms. Intermediate rank solutions are di-
rect products of real space forms and complex/para-complex space forms with
related sectional and holomorphic/para-holomorphic sectional curvatures. Re-
markable exceptions are found for nullity-one and rank-two gauge structures.
In the former case, solutions are themselves Kaluza-Klein spaces, with met-
ric of a complex/para-complex space form and gauge field proportional to
the corresponding complex/para-complex structure. In the latter, the the-
ory supports two dimensional gravitational kinks, mixing with the remaining
dimensions through warped products and Kaluza-Klein like structures. The
covariant methods developed in Ref. [9] have proven extremely fruitful in ob-

19



taining intermediate rank solutions. A summary of our results is presented in
Table 1.
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