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Abstract

Simple relations in terms of effective g parameters are given for linear resonators that contain laser
rods with curved endfaces and for symmetrical and asymmetric ring resonators of Nd:Glass and Nd:YAG
lasers. The equivalence relationships of thick and thin lenses have been applied.
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1. Introduction

Solid-state lasers, especially Nd:Glass and Nd:YAG systems, are important high-power light sources
for material-processing applications [1]. Many applications of lasers in material processing require a high
average or CW output power with high beam quality. Mainly, two laser systems have come to be used in
this field: the CO2 gas laser and the Nd:YAG, ND:Glass solid-state lasers. The solid state lasers have several
advantages compared to the CO2 lasers. Many Studies have been devoted to the optical resanators for these
lasers [2]. By using rod resonators, symetrical and asymetric ring resonators, the output power of solid-state
lasers can be increased without reducing the beam quality. If a suitable arrangement of rods and mirrors is
used, the output power increases proportianally to the number of rods.

The laser-rod heating caused by excitation from the lamps, which induces lens effects that change the
resonator properties, is an interesting problem in the design of optimized laser resonators [3]. This problem
seems to be even greater with the new generation of solid laser materials [4]. The rod is usually approximated
by a thick lens of variable focal length, and the stability regions are described in terms of equivalent g
parameters [5, 6, 7]. The laser performance can be summarized as follows: Output energy and peak power
in Q–switched operation are comparable to those obtainable with a Nd:YAG rod of comparable dimensions
[8]. Output pulse energies of several hundred joules at repetition rates exceeding one per second would be
expected, however, using a disc laser where the active medium consists of a stack of glass disk immersed in a
liquid coolant. The relevant properties of the resonators, such as the beam size between mirrors, beam–waist
location, and stability under pump–induced fluctuations of the focal length, have been analyzed [9, 10, 11].
Compensation for the thermal lens can be achieved with rods that have curved endfaces. Stability analysis
has been performed numerically for these resonators. Symmetrical ring resonators have also been analyzed
numerically. Rather intricate relations have been used for asymmetric ring resonators.

In this study, simple relations are presented for the resonators of Nd:Glass and Nd:YAG lasers that
contain laser rods with curved endfaces. Symmetrical and asymmetric ring resonators are also considered.
The stability regions for these resonators are described simply in terms of effective g parameters.
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2. Theory

2.1. Equivalence Relations of Thick and Thin Lenses
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Figure 1. (a) Diagram of the image formed by a thick lens, (b) an equivalent thin lens [12].

In Figure 1 are shown the refractive indices n
′
, n, n

′′
of the three media separated by two spherical

surfaces of centers of curvature C1 and C2 or C◦1 and C◦2 and back focal lengths f
′

1 and f2”, the latter two of
which are measured from the vertices A1 and A2 to the corresponding secondary focal points F

′

1 and F2”.
The front and back equivalent focal lengths f and f ′′ are measured from the focal points F and F ′′ to the
respective principal points H1 and H2. In the case of thin lens, H1 and H2 are superimposed on H. The
object AB is located at distance S, and its real image, A′′B′′, is formed at the distance S

′
, both distances

being measured from the principal planes [12].
Let us consider a thick lens as shown in Figure 1(a) where the lens faces have radii of curvature R1 and

R2. The equivalent thin lens is shown in Figure 1(b). This equivalence can be revealed better with a matrix
formalism. With the notations in Figure 1, when n

′
= n

′′
the matrix of the thick lens is [13, 14]

M =

 1− d
f
′
1

d
n

−n
f
′
1
− 1

f
′′
2

+ d
f
′
1f
′
2

1− d
nf
′′
2

. (1)

The distances from vertices A1 and A2 to the principal planes H1 and H2, respectively, are

A1H1 = h1 =
fd

nf
′′
2

(2)

A2H2 = −h2 =
−fd
f
′
1

. (3)

With this notation the matrix of the thick lens is

M =

 1− h2
f de

− 1
f

1− h1
f

 (4)

and it is equivalent to the following succession:

M =

 1 h2

0 1

 1 0

− 1
f 1

 1 h1

0 1

. (5)

That is, thick lens is equivalent to a thin lens of the same focal length placed between two spaces h1 and
h2. The effective thickness de of the thick lens is

de =
d

n
= h1 + h2 −

h1h2

f
. (6)
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By using thick lens formulas, we obtain for the distance dH measured between the principles planes H1

and H2 the equation

dH = (1− ∈) de (7)

where

∈=
R2 −R1

[n (R2 −R1) + d (n− 1)R2R1]
(8)

is an dimensionless parameter that indicates the fractional difference between distances de and dH [13].
Note that the focal length of the thick lens can be given in a form that is similar to that of an infinitesimally

thin lens,

1
f

= (n− 1)
(

1
Ro1
− 1
Ro2

)
(9)

with

Roi = (∈ n)Ri. (10)

A system of two thin lenses of focal lengths f1 and f2 placed at a distance d is equivalent to a thick lens:

 1 0

− 1
f2

1


 1 d

0 1


 1 0

− 1
f1

1

 =


1− d

f1
d

−n
f1
− 1

f2
+ d

f1f2
1− d

f2

. (11)

Generally a thick lens, which is characterized by the matrix

M =

 A B

C D

, (12)

where A, B, C and D are real and

detM = AD −BC = 1, (13)

is equivalent to a thin lens of focal length f placed between two spaces of lengths h1 and h2:

M =

 1 A−1
C

0 1


 1 0

C 1


 1 D−1

C

0 1

, (14)

where

C = − 1
f

(15)

h1 =
D − 1
C

and (16)

h2 =
A− 1
C

. (17)

It is also equivalent to a system of two thin lenses of focal lengths f1 and f2 placed at a distance d:
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M =

 1 0

D−1
B 1


 1 B

0 1


 1 0

A−1
B 1

 (18)

where

− 1
f1

=
A− 1
B

(19)

− 1
f2

=
D− 1
B

(20)

and

d = B. (21)

The general relations are useful in optical computations [14].

2.2. Equivalent Thick and Thin Thermal Lenses

In optically pumped laser rods, due to the temperature gradient, the real part of the refractive index
varies quadratically with distances r from the optical axis [15]:

n = no −
n2r

2

2
. (22)

The matrix of a laser rod of length d reads

M =

 cos γd (noγ)
−1 sin γd

−noγ sin γd cos γd

, (23)

where

γ2 =
n2

no
, (23a)

and it depends on the total heat dissipated in the rod volume [16]. Thus, the rod acts as a lens-like medium,
that is, as a thick lens of focal length f , effective thickness de, and distance h of the principal planes from
the rod ends given by

1
f

= noγ sin γd (24)

de =
sin γd
noγ

(25)

h =
tan γd

2

noγ
. (26)

The distance dH between the principal planes can be Equation (7) written in the form

dH = (1− ∈) de (27)

with

∈= 1 + tan2 γd

2
. (28)

One then obtains
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2h =∈ de. (29)

From Equation (28) one can see that ∈> 1, and then dH < 0 and 2h > de.
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Figure 2. (a) Solid – state laser resonator with a lens-like rod; (b) equivalent resonator with a thin lens [16]

In Figure 2 H1, H2 are the primary and secondary principal planes, respectively, placed at distances
A1H1 = A2H2 = h from the rod ends [16].

Therefore, when one takes into account the equivalence relations of thick and thin lenses, a longer
equivalent resonator with a thin lens placed in the middle of the rod results, as shown in Figure 2. In many
cases, especially when the stability under pump – induced fluctuations is analyzed, because h is dependent
on γ, it is correct to consider the distances L1 and L2 from the mirrors of the resonator to the ends of the
rod, and thus the distances from the mirrors to the thin thermal lens L1 + h and L2 + h. In Section 2.3 –
2.5 we deal with distances from the resonator mirrors to the rod ends.

2.3. Linear Resonator Containing a Laser Rod with Curved Endfaces
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Figure 3. ( a ) Linear laser cavity containing a rod with curved end faces of radius R
′
; (b) equivalent resonator

with the two curved end faces of the laser rod represented by two thin lenses of focal length f
′

[17, 18].

Let us consider the linear laser cavity schematically shown in Figure 3(a). It is bound by two spherical
mirrors of radii R1 and R2, and it contains a laser rod of length d with curved end surfaces of radius R

′
.

The equivalent resonator is shown in Figure 3(b), where −1
/
f
′ = (no − 1)

/
R
′ . By using a matrix formalism

[17, 18], one obtains the effective resonator length

L∗ =

(
L
′

1 + L
′

2 −
2L
′

1L
′

2

h

)(
1− h

f ′

)
− L

′

1L
′

2

(
1
f
− 2
h

)
(30)

where

L
′

i = Li + h− hLi
f ′

; i = 1, 2 (31)

The g∗i parameters of this resonator are
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g∗i = 1− L
′

j

[
1
f

+
2
f ′
− h

ff ′

]
− L∗

Ri
. (32)

When the rod has plane end faces (R
′
= ∞ and 1

/
f
′ = 0) equations (30) and (32) reduce to the well–

known relations for a resonator with a thin lens inside. The matrix M of the resonator that corresponds to
a plane Ej at one mirror inside the resonator is

M =

 Ai Bi

Ci Di

 (33)

where

Ai = 2g∗1g
∗
2 − 1 +

2L∗g∗j
Ri

(34)

Bi = 2g∗jL
∗ (35)

Di = 2g∗1g
∗
2 − 1−

2L∗g∗j
Ri

and (36)

Ci =
(AiDi − 1)

Bi
. (37)

(See Ref. [19]).
The stability condition is well known:

0 < g∗1g
∗
2 < 1. (37.a)

Equation (32) indicates that g∗i parameters have a linear dependence of 1/f . The intersections of the
1/f line with the axes g∗i = 0, i = 1, 2 and with the hyperbola g∗1g∗2 = 1 give the critical values of 1/f that
correspond to edges of the stability regions:

1
f

=
1

1− h
f
′

− 2
f1

+
1

h+ δ1

(
1− h

f ′

) +
1

h+ δ2

(
1− h

f ′

)
, (38)

where δ1 and δ2 have the following values:

δ1 = L2δ2 = L1 −R1forg
∗
1 = 0

δ1 = L1δ2 = L2 −R2forg
∗
2 = 0

δ1 = L1δ2 = L2forg
∗
1g
∗
2 = 1

δ1 = L1 −R1δ2 = L2 −R2forg
∗
1g
∗
2 = 1

. (39)

When the laser rod has plane endfaces (R
′
=∞ and 1

/
f
′= 0 ), Equations (38) reduces to

1
f

=
1

(h+ δ1)
+

1
(h+ δ2)

. (40)

The critical values of 1
/
f
′corresponding to the edges of the stability regions are obtained from Equation

(38):
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1
f
′ =

(
1
δ1

+ 1
δ2

)
2

+
1− 1

(2−hf )
h

±


(

1
δ1
− 1

δ2

)2

4
+

1[
h
(
2− h

f

)]2


1/2

. (41)

The simple elements of the matrix presented are useful for the resonator analysis. Relations for the beam
waist and its location have simple forms in terms of g parameters.

2.4. Symmetrical Ring Resonator

           ( a )

2L1

2L3

RR

       ( b )

L1 L2 L3

Figure 4. (a) Symmetrical ring cavity including two laser rods; (b) equivalent linear sequence for half of the ring

cavity [12 ].

Let us consider the symmetrical cavity shown in Figure 4(a). It contains two laser rods and two plane
and two spherical folding mirrors and is equivalent to twice the linear sequence represented in Figure 4(b).
We use the following notations:

1
fe

=
2
(
1− 2L3

R

)
R

(42)

he =
h+ L2 + L3(

1− 2L3
R

) (43)

ge = 1− he
f

(44)

L = L1 + h+ he (45)

L
′
= L− he (L1 + h)

f
. (46)

One obtains the effective resonator length for a round trip by starting at the median plane between the
spherical mirrors:

L∗ = 2
{
L−

(
L
′
)2
[

1
fe

+
1
fge

]
+

h2
e

fge

}
(47)

The effective g∗ parameter is

g∗ = 1− 2L
′
(

1
f

+
ge
fe

)
. (48)
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Then the matrix M of the symmetrical ring resonator corresponding to the plane between the spherical
mirrors is

M =


2 (g∗)2 − 1 2g∗L∗

2g∗ (g∗)2−1
L∗ 2 (g∗)2 − 1

 =

±


g∗ L∗

(g∗)2−1
L∗ g∗




2

. (49)

The resonator is stable for −1 < g∗ < 0 and 0 < g∗ < 1. The critical values of 1/f corresponding to the
edges of the stability regions are

1
f

=


1

L2+h−R2
forg∗ = 1

1
he

+ 1
L1+h

(50)

1
f

=


1
he
forg∗ = −1

1
L1+h + 1

L2+h−R2

(51)

2
f

=
1

L1 + h
+

2− 1

1−hefe
he

±

 1

(L1 + h)2 +
1[

he

(
1− he

fe

)]2


1/2

forg∗ = 0. (52)

At given values of f, h, R and L1 one obtains the following relations for L2 as a function of L3 corre-
sponding to the edges of the stability regions :

L2 =


f−h+R

2
forg∗ = 1

1
1
f −

1
L1+h

− h− L3

1−2L3
R

(53)

L2 =


1

1
f −

1
L1+h

− h− R
2 forg

∗ = −1

f−h+L3

1−2L3
R

(54)

L2 = f − h+
R

2
+

f2

2 (L1 + h− f)
− R2

4 (R− 2L3)
±

{
f4

(L1+h−f)2 + R4

4(R−2L3)2

}1/2

2
(55)

for g∗ = 0.
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Figure 5. Stability zones illustrated by the hatched area in the ( L2, L3 ) plane for the symmetrical ring resonator

of Figure 3. with R = 20cm, L1 = 20cm, the length of one rod d = 10cm, no = 1.85 and γ = 0.0566 [17, 18].

A diagram of stability in terms of L2 and L3 is shown in Figure 4. The two vertical lines and four curves
that delimit the stability regions are given by Equations (53), (54) and (55).

For a confocal symmetrical ring resonator, when R = 2L3, the matrix M corresponding to the median
plane between the spherical mirrors is;

M =


g∗ L∗

(g∗)2−1
L∗

g∗

, (56)

where

g∗ = −1 +
2L
′

f
(57)

L∗ = 2L
′
[
L1 + h

f
− 1
]

(58)

L
′
= L1 + L2 + 2h− L3 −

(L1 + h) (L2 + h− L3)
f

. (59)

The critical values of 1/f corresponding to the edges of the stability regions are

1
f

=


1

L1+hforg
∗ = 1

1
L2+h−L3

(60)

1
f

=


0forg∗ = −1

1
L1+h

+ 1
L2+h−L3

(61)

1
f

=
1

L1 + h
+

1
L2 + h− L3

±
{

1
(L1 + h)2 +

1
(L2 + h − L3)

2

}1/2
forg∗ = 0. (62)
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2.5. Asymmetric Ring Resonator
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Figure 6. (a) Schematic of a typical asymmetric ring resonator; (b) the equivalent linear sequence for a clockwise

round trip starting at the median plane between the focusing elements; (c) simple system of a thin lens placed between

two spaces, which is equivalent to the clockwise round trip [12].

Let us consider the asymmetric ring cavity shown in Figure 6(a). It contains one laser rod, two focusing
elements such as spherical mirrors or lenses and a convenient number of plane mirrors to complete the ring.
The linear sequence, which is equivalent to a clockwise round trip that starts at the median plane between
the focusing elements, is shown in Figure 6(b). Finally, it is equivalent to a thin lens placed between two
spaces as shown in Figure 6(c). The corresponding matrix is:

M =

 g∗1 L∗

g∗1 g
∗
2−1
L∗

g∗2

, (63)

where

g∗i = 1− hei
fe

(64)

L∗ = he1 + he2 −
he1he2

fe
(65)

with the following notation:

L
′
= L1 + L2 + 2h− (L1 + h) (L2 + h)

f
(66)

1
fe

=
1
f

+
1
f1

+
1
f2
− L

′

f1f2
−

[
(L1+h)
f1

+ (L2+h)
f2

]
f

(67)
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TAŞAL, KILIÇKAYA

hei
fe

=
L3

fe
+
L
′

fj
+

(Li + h)
f

(68)

The stability condition is

−1 <
g∗1 + g∗2

2
< +1 (69)

g∗1g
∗
2
1/f (70)

(See Ref. [22]).

1

1
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  *
1g

  *
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  f
1

Figure 7. Stability zones illustrated by the hatched area for the asymmetric ring resonator of Figure 6. The point

(g∗1 , g
∗
2 ) representing the resonator moves linearly with the dioptric power 1/f of the thermal lens along the straight

line [22].

A simple diagram of stability is shown in Figure 7. The intersections of the 1/f line with the axes g∗i = 0,

i = 1,2 and with the g∗1 + g∗2 = ±2 lines give the critical values of 1/f corresponding to the edges of the
stability regions:

1
f

=

(
1− L3

fi

)
Lei

+
1

(Lj + h− fj)
forg∗i = 0; (71)

1
f

=
−
[
±2− 2 + (L1 − L2)

(
1
f1
− 1

f2

)
+ 2

(
Le1
f2

+ Le2
f1

)]
[
Le1

[
1− (L2+h)

f2

]
+ Le2

[
1− (L1+h)

f1

]] forg∗1 + g∗2 = ±2, (72)

where

Lei = Li + L3 + h− L3 (Li + h)
fi

. (73)
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3. Results and Conclusion

The simple elements of a matrix can be used for an extended analysis of this resonator. In this study
simple relations are investigated for the resonators of Nd:Glass and Nd:YAG lasers. Nd:Glass and Nd :
YAG lasers simple relations of thick and thin lenses have been applied. Finally, the stability condition is
well known: 0 < g∗1g

∗
2 < 1.
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