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c© TÜBİTAK

Theory of Antisymmetric Tensor Fields

Valeri DVOEGLAZOV
Universidad de Zacatecas,

Apartado Postal 636, Suc. UAZ, Zacatecas 98062, Zac., México
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Abstract

It has long been claimed that the antisymmetric tensor field of the second rank is pure longitudinal
after quantization. In my opinion, such a situation is quite unacceptable. I repeat the well-known
procedure of the derivation of the set of Proca equations. It is shown that it can be written in various
forms. Furthermore, on the basis of the Lagrangian formalism I calculate dynamical invariants (including
the Pauli-Lubanski vector of relativistic spin for this field). Even on the classical level, the Pauli-
Lubanski vector can be equal to zero after applications of well-known constraints. The importance of
the normalization is pointed out for the problem of the description of quantized fields of maximal spin
1. The correct quantization procedure permits us to propose a solution to this puzzle in modern field
theory. Finally, the discussion of the connection of the Ogievetskĭı-Polubarinov-Kalb-Ramond field and
the electrodynamic gauge is presented.

PACS: 03.50.-z, 03.50.De, 03.65.Pm, 11.10.-z, 11.10.Ef
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1. Introduction

Quantum electrodynamics (QED) is a construct which has found overwhelming experimental confirma-
tions (for recent reviews see, e.g., Refs. [1, 2]). Nevertheless, a number of theoretical aspects of this theory
deserve more attention. First of all, they are: the problem of “fictious photons of helicity other than ±j,
as well as the indefinite metric that must accompany them”; the renormalization idea, which “would be
sensible only if it was applied with finite renormalization factors, not infinite ones (one is not allowed to
neglect [and to subtract] infinitely large quantities)”; contradictions with the Weinberg theorem “that no
symmetric tensor field of rank j can be constructed from the creation and annihilation operators of massless
particles of spin j”, etc. They were shown by Dirac [3, 4] and by Weinberg [5]. Moreover, it appears now
that we do not yet understand many specific features of classical electromagnetism; foremost among which
the problems of longitudinal modes, of the gauge of the Coulomb action-at-a-distance, and of the Horwitz
additional invariant parameter, (see Refs. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]). Secondly, the standard model,
which has been constructed on the basis of ideas which are similar to QED, appears to be unable to explain
many puzzles in neutrino physics.

In my opinion, all these shortcomings can be the consequence of ignoring several important questions.
Huang says that “in the classical electrodynamics of charged particles, a knowledge of F µν completely deter-
mines the properties of the system. A knowledge of Aµ is redundant there, because it is determined only up
to gauge transformations, which do not affect F µν . . . Such is not the case in quantum theory...” [16]. Indeed,
we learnt about this fact from the Aharonov-Bohm [17] and the Aharonov-Casher effects [18] . However,
recently several attempts have been undertaken to explain the Aharonov-Bohm effect classically [19]. These
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attempts have, in my opinion, logical basis. In the meantime, quantizing the antisymmetric tensor field leads
us to a new puzzle, which until now had not received fair hearings. It was claimed that the antisymmetric
tensor field of the second rank is longitudinal after quantization (in the sense of the helicity σ = 0), (see
Refs. [20, 21, 22, 23, 24]).1 In the meantime, we know that the antisymmetric tensor field (electric and mag-
netic fields, indeed) is transverse in the Maxwellian classical electrodynamics. It is not clear how physically
longitudinal components can be transformed into the physically transverse ones in some limit. It may be
of interest to compare this question with the group-theoretical consideration in Ref. [25] which deals with
the reduction of rotational degrees of freedom to gauge degrees of freedom in infinite-momentum/zero-mass
limit. See the only mentions of the transversality of the quantized antisymmetric tensor field in Refs [26, 27].
It is often concluded that: one is not allowed to use the antisymmetric tensor field to represent the quantized
electromagnetic field in relativistic quantum mechanics. Instead one should pay attention to the 4-vector
potential and gauge freedom. Nevertheless, I am convinced that a reliable theory should be constructed
on the basis of a minimal number of ingredients (i.e. an “Occam’s Razor” formulation) and should have a
well-defined classical limit (as well as the massless limit). Moreover, physicists recently turned again to the
problem of energy in QED [28, 29].

Therefore, in this paper I undertake a detailed analysis of translational and rotational properties of the
antisymmetric tensor field, I derive various forms of the Proca equations (which also can be written in the
Duffin-Kemmer form), then calculate the Pauli-Lubanski operator of relativistic spin (which must define
whether the quantum is in the left- or right- polarized states or in the unpolarized state) and then conclude
if it is possible to obtain the conventional electromagnetic theory with photon helicities σ = ±1 provided that
strengths (not potentials) are chosen to be physical variables in the Lagrangian formalism. The particular
case also exists when the Pauli-Lubanski vector for the antisymmetric tensor field of the second rank is equal
to zero, corresponding to the claimed ‘longitudinality’ (helicity σ = 0 ?) of this field. The answer achieved
is that the physical results depend on the normalization and chosen type of the ‘gauge’ freedom.

Research in this area from a viewpoint of the Weinberg’s 2(2j+1) component theory has been started in
Refs [30, 31, 32, 8, 9, 10, 11, 12, 33, 34]. I would also like to point out that the problem at hand is directly
connected with our understanding of the nature of neutral particles, including neutrinos [35, 36, 37, 38].

2. Bargmann-Wigner Procedure, the Proca Equations and Rele-

vant Field Functions

We believe in the power of the group-theoretical methods in the analyses of the physical behaviour of
different-type classical (and quantum) fields. We also believe that the Dirac equation can be applied to
some particular quantum states of the spin 1/2. Finally, we believe that the spin-0 and spin-1 particles can
be constructed by taking the direct product of the spin-1/2 field functions [39]. So, on the basis of these
postulates let us firstly repeat the Bargmann-Wigner procedure of obtaining the equations for bosons of spin
0 and 1. The sets of basic equations for j = 0 and j = 1 are written (e.g., Ref. [40])

[iγµ∂µ −m]αβ Ψβγ(x) = 0 , (1)

[iγµ∂µ −m]γβ Ψαβ(x) = 0. (2)

We expand the 4× 4 matrix wave function into antisymmetric and symmetric parts in a standard way:

Ψ[αβ] = Rαβφ+ γ5
αδRδβφ̃+ γ5

αδγ
µ
δτRτβÃµ , (3)

Ψ{αβ} = γµαδRδβAµ + σµναδRδβFµν, (4)
1M. Kalb and P. Ramond claimed explicitly [21b, p. 2283, the third line from below] that “thus, the massless φµν has

one degree of freedom”. While they call φµν as “potentials” for the field Fαβγ = ∂αφβγ + ∂βφγα + ∂γφαβ , nevertheless, the
physical content of the antisymmetric tensor field (potential) of the second rank (the representation (1,0)⊕(0,1) of the Lorentz
group) must be in accordance with the requirements of relativistic invariance. Furthermore, “the helicity - the projection of
the spin onto the direction of motion - proves to be equal to zero . . . even without the restriction to plane waves, the 3-vector
of spin [formula (12) of [23]] vanishes on solutions . . . ”; [23b], Avdeev and Chizhov claimed in their turn (I assume that they
meant the relativistic spin vector).
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where R = CP has the properties (which are necessary to make expansions (3, 4) to be possible in such a
form)

RT = −R, R† = R = R−1, (5)
R−1γ5R = (γ5)T , (6)
R−1γµR = −(γµ)T , (7)
R−1σµνR = −(σµν )T . (8)

The explicit form of this matrix can be chosen:

R =
(
iΘ 0
0 −iΘ

)
, Θ = −iσ2 =

(
0 −1
1 0

)
, (9)

provided that γµ matrices are in the spinorial representation. Equations (1,2) lead to the Kemmer set of
the j = 0 equations:

mφ = 0, (10)

mφ̃ = −i∂µÃµ, (11)

mÃµ = −i∂µφ̃, (12)

and to the Proca-Duffin-Kemmer set of the equations for the j = 1 case2 , 3:

∂αF
αµ +

m

2
Aµ = 0 , (15)

2mF µν = ∂µAν − ∂νAµ , (16)

In the meantime, in the textbooks, the latter set is usually written as (e.g., Ref. [41], p. 135)

∂αF
αµ + m2Aµ = 0 , (17)

F µν = ∂µAν − ∂νAµ . (18)

The massive-case set (17,18) is obtained from (15,16) after the normalization change Aµ → 2mAµ or Fµν →
1

2m
Fµν . Of course, one can investigate other sets of equations with different normalizations of the Fµν and

Aµ fields. Are all these sets of equations equivalent? As we shall see, to answer this question is not trivial.
2We could use another symmetric matrix γ5σµνR in the expansion of the symmetric spinor of the second rank. In this case

the equations will read

i∂α eFαµ +
m

2
Bµ = 0, (13)

2imeFµν = ∂µBν − ∂νBµ. (14)

in which the dual tensor eFµν = 1
2
εµνρσFρσ presents, because we used that γ5σµν = i

2
εµνρσσρσ ; Bµ is the corresponding

vector potential. The equation for the antisymmetric tensor field (which can be obtained from this set) does not change its
form (cf. [12, 42]) but we see some “renormalization” of the field functions. In general, it is permitted to choose various relative
phase factors in the expansion of the symmetric wave function (4) and also consider the matrix term of the form γ5σµν . We
shall have additional phase factors in equations relating the physical fields and the 4-vector potentials. They can be absorbed
by the redefinition of the potentials/fields (the choice of normalization/phase). The above discussion shows that the dual tensor
of the second rank can also be expanded in potentials, as opposed to the opinion of the referee (“Journ. Phys. A”) of my
previous paper.

3Recently, after completing this work, the paper [43] was brought to our attention. It deals with the redundant components
in the j = 3/2 spin case. In our case the redundant components are the 4-vector potentials. The relations between parity
properties and spin contents have not been considered in full in [43].
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The paper [34a] argued that the physical normalization is such that in the massless limit zero-momentum
field functions should vanish in the momentum representation (there are no massless particles at rest). Next,
we advocate the following approach: the massless limit can and must be taken in the end of all calculations
only, i. e., for physical quantities.

Let us proceed further. In order to be able to answer the question about the behaviour of the spin
operator Ji = 1

2 ε
ijkJjk in the massless limit, one should know the behaviour of the fields Fµν and/or Aµ in

the massless limit. We want to analyze the first set (15,16). We advocate the following definitions see [44,
p.209]4

εµ(0,+1) = − 1√
2


0
1
i
0

 , εµ(0, 0) =


0
0
0
1

 , εµ(0,−1) =
1√
2


0
1
−i
0

 , (19)

and (p̂i = pi/ | p |, γ = Ep/m), (see Ref. [44, p. 68] or Ref. [45, p. 108]),

εµ(p, σ) = Lµ ν(p)εν(0, σ) , (20)

L0
0(p) = γ , Li 0(p) = L0

i(p) = p̂i
√
γ2 − 1 , (21)

Li k(p) = δik + (γ − 1)p̂ip̂k (22)

for the field operator of the 4-vector potential (see Ref. [45, p.109] or Ref. [41, p. 129])5 , 6 and

Aµ(x) =
∑

σ=0,±1

∫
d3p

(2π)3

1
2Ep

[
εµ(p, σ)a(p, σ)e−ip·x + (εµ(p, σ))cb†(p, σ)e+ip·x] . (23)

The Normalization of the wave functions in the momentum representation is thus chosen to the unit,
ε∗µ(p, σ)εµ(p, σ) = −1.7 We observe that in the massless limit all the defined polarization vectors of the
momentum space do not have good behaviour; the functions describing spin-1 particles tend to infinity. This
is not satisfactory. Nevertheless, after renormalizing the potentials, e. g., εµ → uµ ≡ mεµ we come to the
wave functions in the momentum representation:8

uµ(p,+1) = − N√
2m


pr

m+ p1pr
Ep+m

im+ p2pr
Ep+m

p3pr
Ep+m

 , uµ(p,−1) =
N√
2m


pl

m+ p1pl
Ep+m

−im+ p2pl
Ep+m

p3pl
Ep+m

 , (24)

4Of course, different choices of the 4-vectorial basis are connected by unitary transformations.
5Remember that the invariant integral measure over the Minkowski space for physical particles isZ

d4pδ(p2 −m2)⇒
Z

d3p

2Ep
, Ep =

p
p2 +m2.

Therefore, we use the field operator as in (23). The coefficient (2π)3 can be considered at this stage as chosen for convenience. In
Ref. [44] the factor 1/(2Ep) was absorbed in creation/annihilation operators and instead of the field operator (23) the operator
was used in which the εµ(p, σ) functions for a massive spin-1 particle were substituted by uµ(p, σ) = (2Ep)−1/2εµ(p, σ), which
may lead to confusions in the definitions of the massless limit m→ 0 for classical polarization vectors.

6In general, it might be useful to consider front-form helicities (the E(2) basis [45], and/or “time-like” j = 0 polarizations)
too. But, we leave the presentation of rigorous theory of this type for subsequent publications. Here we want only to note that
the choice (23) implicitly assumes the choice of the corresponding gauge invariance.

7The metric used in this paper gµν = diag(1,−1,−1,−1) is different from that of Ref. [44].
8It is interesting to note that all vectors uµ satisfy the condition pµuµ(p, σ) = 0, σ = 0,±1. It is relevant to the case of the

Lorentz gauge and, perhaps, to the analyses of the neutrino theories of light.
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uµ(p, 0) =
N

m


p3
p1p3
Ep+m
p2p3
Ep+m

m+ p2
3

Ep+m

 , (25)

(N = m and pr,l = p1 ± ip2) which do not diverge in the massless limit. Two of the massless functions
(with σ = ±1) are equal to zero when the particle, described by this field, is moving along the third axis
(p1 = p2 = 0, p3 6= 0). The third one (σ = 0) is

uµ(p3, 0) |m→0=


p3

0
0
p2

3
Ep



±Ep

0
0
Ep

 , (26)

and at the rest (Ep = |p| = ±p3 → 0) also vanishes. Thus, such a field operator describes the “longitudinal
photons” which is in complete accordance with the Weinberg theorem B − A = σ for massless particles
(let us remind that we use the D(1/2, 1/2) representation). Thus, the change of the normalization can
lead to the “change” of physical content described by the classical field (at least, comparing with the well-
accepted one). Of course, in the quantum case one should somehow fix the form of commutation relations
by some physical principles.9 In the connection with the above consideration it is interesting to remind
that the authors of Ref. [41, page 136 therein] tried to inforce the Stueckelberg’s Lagrangian in order to
overcome the difficulties related to the m→ 0 limit (or the Proca theory→ Quantum Electrodynamics). The
Stueckelberg’s Lagrangian is well known to contain the additional term which may be put in correspondence
to some scalar (longitudinal) field (cf. also [6]).

Furthermore, it is easy to prove that the physical fields F µν (defined as in (15,16), for instance) vanish in
the massless zero-momentum limit under the commensurated definitions of normalization and field equations.
It is straightforward to find B(+)(p, σ) = i

2mp×u(p, σ), E(+)(p, σ) = i
2mp0u(p, σ)− i

2mpu0(p, σ) and the
corresponding negative-energy strengths. Here they are:10

B(+)(p,+1) = − iN

2
√

2m

−ip3

p3

ipr

 = +e−iα−1B(−)(p,−1), (27)

B(+)(p, 0) =
iN

2m

 p2

−p1

0

 = −e−iα0B(−)(p, 0), (28)

B(+)(p,−1) =
iN

2
√

2m

 ip3

p3

−ipl

 = +e−iα+1B(−)(p,+1), (29)

and

9I am very grateful to an anonymous referee of my previous papers (“Foundation of Physics”) who suggested to fix them
by requirements of the dimensionless nature of the action in the variational formalism (apart from the requirements of the
translational and rotational invariancies).

10In this paper we assume that [εµ(p, σ)]c = eiασ [εµ(p, σ)]∗, with ασ being arbitrary phase factors at this stage. Thus,
C = I4×4 and Sc = eiασK. It is interesting to investigate other choices of the C, the charge conjugation matrix and/or consider
a field operator composed of CP-conjugate states.
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E(+)(p,+1) = − iN

2
√

2m

Ep − p1pr
Ep+m

iEp − p2pr
Ep+m

− p3pr
E+m

 = +e−iα
′
−1E(−)(p,−1), (30)

E(+)(p, 0) =
iN

2m

 − p1p3
Ep+m

− p2p3
Ep+m

Ep − p2
3

Ep+m

 = −e−iα
′
0E(−)(p, 0), (31)

E(+)(p,−1) =
iN

2
√

2m

 Ep − p1pl
Ep+m

−iEp − p2pl
Ep+m

− p3pl
Ep+m

 = +e−iα
′
+1E(−)(p,+1), (32)

where we denoted, as previously, a normalization factor standing in the definitions of the potentials (and/or
in the definitions of the physical fields through potentials) as N . Let us note that as a result of the above
definitions we have

• The cross products of magnetic fields of different spin states (such as B(+)(p, σ) ×B(−)(p, σ′)) may
be unequal to zero and may be expressed by the “time-like” j = 0 potential (see the formula (43)
below):11

B(+)(p,+1)×B(−)(p,+1) = − iN
2

4m2
p3

p1

p2

p3

 =

= −B(+)(p,−1)×B(−)(p,−1) , (33)

B(+)(p,+1)×B(−)(p, 0) = − iN
2

4m2

pr√
2

p1

p2

p3

 =

= +B(+)(p, 0)×B(−)(p,−1) , (34)

B(+)(p,−1)×B(−)(p, 0) = − iN
2

4m2

pl√
2

p1

p2

p3

 =

= +B(+)(p, 0)×B(−)(p,+1) . (35)

Other cross products are equal to zero.

• Furthermore, one can find the interesting relation:

B(+)(p,+1) ·B(−)(p,+1) + B(+)(p,−1) ·B(−)(p,−1) +

+B(+)(p, 0) ·B(−)(p, 0) =
N2

2m2
(E2

p −m2) , (36)

11The relevant phase factors are assumed to be equal to zero here.
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due to

B(+)(p,+1) ·B(−)(p,+1) =
N2

8m2
(prpl + 2p2

3) =

= +B(+)(p,−1) ·B(−)(p,−1) , (37)

B(+)(p,+1) ·B(−)(p, 0) =
N2

4
√

2m2
p3pr = −B(+)(p, 0) ·B(−)(p,−1) ,

(38)

B(+)(p,−1) ·B(−)(p, 0) = − N2

4
√

2m2
p3pl = −B(+)(p, 0) ·B(−)(p,+1) ,

(39)

B(+)(p,+1) ·B(−)(p,−1) =
N2

8m2
p2
r , (40)

B(+)(p,−1) ·B(−)(p,+1) =
N2

8m2
p2
l , (41)

B(+)(p, 0) ·B(−)(p, 0) =
N2

4m2
prpl . (42)

For the sake of completeness let us present the momentum-space field functions corresponding to the
“time-like” polarization:

uµ(p, 0t) =
N

m


Ep
p1

p2

p3

 , B(±)(p, 0t) = 0, E(±)(p, 0t) = 0 . (43)

The polarization vector uµ(p, 0t) has the good behaviour in N = m, m → 0 (and also in the subsequent
limit p → 0) and it may correspond to some quantized field (particle). As one can see, the field operator
composed of the states of longitudinal (e.g., as positive-energy solution) and time-like (e.g., as negative-
energy solution)12 polarizations may describe a situation when a particle and an antiparticle have opposite
intrinsic parities (cf. [34a]). Furthermore, in the case of the normalization of potentials to the mass N = m
the physical fields B and E, which correspond to the “time-like” polarization, are equal to zero identically.
The longitudinal fields (strengths) are equal to zero in this limit only when one chooses the frame with
p3 =| p |, cf. with the light front formulation, Ref. [46]. In the case N = 1 and (15,16) we have, in general,
the divergent behaviour of potentials and strengths in the massless limit in this spin basis.13

3. Translational and Rotational Properties of Antisymmetric Ten-

sor Field

I begin this Section with the antisymmetric tensor field operator (in general, complex-valued):

F µν(x) =
∑

σ=0,±1

∫
d3p

(2π)32Ep

[
F µν(+)(p, σ) a(p, σ) e−ipx + F µν(−)(p, σ) b†(p, σ) e+ipx

]
(44)

and with the Lagrangian, including, in general, mass term:14

L =
1
4

(∂µFνα)(∂µF να) − 1
2

(∂µF µα)(∂νFνα)− 1
2

(∂µFνα)(∂νF µα) +
1
4
m2FµνF

µν . (46)

12At the present level of our knowledge only relative intrinsic parities have physical sense. Cf. [12].
13In the case of N = 1 the fields B±(p,0t) and E±(p,0t) would be undefined in the limit m → 0. This fact was also not

fully appreciated in the previous formulations of the theory of (1,0) ⊕ (0,1) and (1/2,1/2) fields.
14The massless limit (m→ 0) of the Lagrangian is connected with the Lagrangians used in the conformal field theory and in

the conformal supergravity by adding the total derivative:

LCFT = L+
1

2
∂µ (Fνα∂

νFµα − Fµα∂νFνα) . (45)
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The Lagrangian leads to the equation of motion in the following form (provided that the appropriate anti-
symmetrization procedure has been taken into account):

1
2

( + m2)Fµν + (∂µF ,α
αν − ∂νF ,α

αµ ) = 0, (47)

where = −∂α∂α (cf. with the set of Equations (15,16)). It is this equation for antisymmetric-tensor-field
components that follows from the Proca-Duffin-Kemmer-Bargmann-Wigner consideration, provided that
m 6= 0 and in the final expression one takes into account the Klein-Gordon equation ( −m2)Fµν = 0. The
latter expresses relativistic dispersion relations E2 − p2 = m2 and it follows from the coordinate Lorentz
transformation laws [47, §2.3].

Following the variation procedure given, e.g., in Refs [48, 49, 50], one can obtain that the energy-
momentum tensor is expressed:

Θλβ =
1
2
[
(∂λFµα)(∂βF µα) − 2(∂µF µα)(∂βF λ α)−

− 2(∂µF λα)(∂βFµα)
]
−Lgλβ . (48)

One can also obtain that for rotations xµ
′

= xµ +ωµνxν the corresponding variation of the wave function is
found from the formula:

δFαβ =
1
2
ωκτT αβ,µνκτ Fµν . (49)

The generators of infinitesimal transformations are then defined as

T αβ,µνκτ =
1
2
gαµ(δβκ δ

ν
τ − δβτ δ

ν
κ) +

1
2
gβµ(δνκδ

α
τ − δντ δ

α
κ )+

+
1
2
gαν(δµκ δ

β
τ − δµτ δ

β
κ) +

1
2
gβν(δακ δ

µ
τ − δατ δ

µ
κ). (50)

It is T αβ,µνκτ , the generators of infinitesimal transformations, that enter in the formula for the relativistic
spin tensor:

Jκτ =
∫
d3x

[
∂L

∂(∂Fαβ/∂t)
T αβ,µνκτ Fµν

]
. (51)

As a result one obtains:

Jκτ =
∫
d3x [(∂µF µν)(g0κFντ − g0τFνκ) − (∂µF µκ)F0τ + (∂µF µτ )F0κ+

+ F µκ(∂0Fτµ + ∂µF0τ + ∂τFµ0)− F µτ (∂0Fκµ + ∂µF0κ + ∂κFµ0)] . (52)

If one agrees that the orbital part of the angular momentum

Lκτ = xκΘ0 τ − xτΘ0 κ, (53)

The Kalb-Ramond gauge-invariant form (with respect to “gauge” transformations Fµν ⇒ Fµν + ∂νΛµ − ∂µΛν ), Ref. [20, 21],
is obtained only if one uses the Fermi procedure mutatis mutandis by removing the additional “phase” field λ(∂µFµν)2, with
the appropriate coefficient λ, from the Lagrangian. This has certain analogy with the QED, where the question of whether the
Lagrangian is gauge-invariant or not, is solved depending on the presence of the term λ(∂µAµ)2. For details see Ref. [21] and
what is below. In general it is possible to introduce various forms of the mass term and of corresponding normalization of the
field.

42



DVOEGLAZOV

with Θτλ being the energy-momentum tensor, does not contribute to the Pauli-Lubanski operator when
acting on the one-particle free states (as in the Dirac j = 1/2 case), then the Pauli-Lubanski 4-vector is
constructed as follows [41, Eq. (2-21)]

Wµ = −1
2
εµκτνJ

κτP ν, (54)

with Jκτ defined by Eqs. (51,52). The 4-momentum operator P ν can be replaced by its eigenvalue when
acting on the plane-wave eigenstates. Furthermore, one should choose space-like normalized vector nµnµ =
−1, for example n0 = 0, n = p̂ = p/|p|. 15 After lengthy calculations in a spirit of [41, p. 58, 147] one
can find the explicit form of the relativistic spin:

(Wµ · nµ) = −(W · n) = −1
2
εijknkJ ijp0 , (55)

Jk =
1
2
εijkJ ij = εijk

∫
d3x

[
F 0i(∂µF µj) + F j

µ (∂0F µi + ∂µF i0 + ∂iF 0µ)
]
.

(56)

Now it becomes obvious that the application of the generalized Lorentz conditions (which are quantum ver-
sions of free-space dual Maxwell’s equations) leads in such a formulation to the absence of electromagnetism
in a conventional sense. The resulting Kalb-Ramond field is longitudinal (helicity σ = 0). All the compo-
nents of the angular momentum tensor for this case are identically equated to zero. The discussion of this
fact can also be found in Ref. [21, 9]. This situation can happen in the particular choice of the normalization
of the field operators and unusual “gauge” invariance.

Furthermore, the spin operator recasts in the terms of the vector potentials as follows (if one takes into
account the dynamical equations, Eqs. (13,14,15,16)):16

Jk = εijk
∫
d3x

[
F 0i(∂µF µj) + F̃ 0i(∂µF̃ µj)

]
=

=
1
4
εijk

∫
d3x

[
Bj(∂0Bi − ∂iB0)−Aj(∂0Ai − ∂iA0)

]
. (59)

If we put, as usual, F̃ µν = ±iF µν (or Bµ = ±Aµ) for the right- and left- circularly polarized radiation
we shall again obtain equating the spin operator to zero. The same situation would happen if one chooses
“unappropriate” normalization and/or if one uses the equations (17,18) in the massless limit without nec-
essary precautions. The straightforward application of (17,18) would lead to the proportionality Jκτ ∼ m2

and, thus, it appears that the spin operator would be equal to zero in the massless limit, provided that
the components of Aµ have good behaviour (do not diverge in m → 0). Probably, this fact (the relation
between generators and the normalization) was the origin of why many respectable persons claimed that the
antisymmetric tensor field is a pure longitudinal field. On the other hand, in a private communication Prof.
Y. S. Kim stressed that neither he nor E. Wigner used the normalization of the spin generators to the mass.

15 One should remember that the helicity operator is usually connected with the Pauli-Lubanski vector in the following

manner (J · bp) = (W · bp)/Ep, see Ref. [51]. The choice of Ref. [41, p. 147], nµ =
�
tµ − pµ p·t

m2

�
m
|p| , with tµ ≡ (1,0,0,0) being a

time-like vector, is also possible but it leads to some obscurities in the procedure of taking the massless limit. These obscurities
will be clarified in a separate paper.

16Formula (59) has certain similarities with the formula for the spin vector obtained from Eqs. (5.15,5.21) of Ref. [50]:

Ji = εijk

Z
J0
jkd

3x , (57)

J0
αβ =

�
Aβ

∂Aα

∂x0
−Aα

∂Aβ

∂x0

�
. (58)

It describes the “transverse photons” in the ordinary wisdom. But, not all the questions related to the second Bµ potential,

the dual tensor eFµν and the normalization of 4-potentials and fields have been clarified in the standard textbooks.
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What is the situation which is realized in Nature (or both)? The theoretical answer depends on the choice
of the field operators, namely on the choice of positive- and negative- energy solutions, creation/annihilation
operators and the normalization.

One of the possible ways to obtain σ = ±1 is a modification of the electromagnetic field tensor, i.e.,
introducing the non-Abelian electrodynamics [7, 52]:

Fµν ⇒ Ga
µν = ∂µA

(a)
ν − ∂νA(a)

µ − i
e

~
[A(b)
µ , A(c)

ν ], (60)

where (a), (b), (c) denote the vector components in the (1), (2), (3) circular basis. In other words, one can
add some ghost field (the B(3) field) to the antisymmetric tensor Fµν which initially supposed to contain
transverse components only. As a matter of fact, this induces the hypotheses on a massive photon and/or
an additional displacement current. I can agree with the possibility of the B(3) field concept (while rigorous
elaboration is required in the terminology of the modern quantum field theory), but, at the moment, I
prefer to avoid any auxiliary constructions (even if they may be valuable in intuitive explanations and
generalizations). If these non-Abelian constructions exist they should be deduced from a more general
theory on the basis of some fundamental postulates, e.g., in a spirit of Refs [53, 34, 38]. Moreover, this
concept appears to be in contradiction with the concept of the m → 0 group contraction for a photon as
presented by Wigner and Inonu [54] and Kim [25].

In the procedure of the quantization one can reveal an important case, when the transversality (in the
meaning of existence of σ = ±1) of the antisymmetric tensor field is preserved. This conclusion is related
with existence of the dual tensor F̃ µν or with correcting the procedure of taking the massless limit.

In this Section, I first choose the field operator, Eq. (44), such that:

F i0(+)(p) = Ei(p), F jk(+)(p) = −εjklBl(p); (61)

F i0(−)(p) = F̃ i0(p) = Bi(p), F jk(−)(p) = F̃ jk(p) = εjklEl(p), (62)

where F̃ µν = 1
2
εµνρσFρσ is the tensor dual to F µν; and εµνρσ = −εµνρσ , ε0123 = 1 is the totally antisym-

metric Levi-Civita tensor. After lengthy but standard calculations one achieves:17

Jk =
∑
σσ′

∫
d3p

(2π)32Ep

{
iεijkEi

σ(p)Bj
σ′(p)

2
[
a(p, σ)b†(p, σ′) + a(p, σ′)b†(p, σ)+

+ b†(p, σ′)a(p, σ) + b†(p, σ)a(p, σ′)
]
−

− 1
2Ep

[
ipk(Eσ(p) · Eσ′ (p) + Bσ(p) ·Bσ′ (p))− (63)

− iEk
σ′ (p)(p · Eσ(p)) − iBk

σ′ (p)(p ·Bσ(p))
] [
a(p, σ)b†(p, σ′) + b†(p, σ)a(p, σ′)

]}
.

One should choose normalization conditions for field functions in the momentum representation. For in-
stance, one can use the analogy with the (dual) classical electrodynamics:18

(Eσ(p) · Eσ′ (p) + Bσ(p) ·Bσ′ (p)) = 2Epδσσ′ , (64)
Eσ ×Bσ′ = pδσσ′ − pδσ,−σ′ . (65)

These conditions still imply that E ⊥ B ⊥ p.
17Of course, the question of the behaviour of vectors Eσ(p) and Bσ(p) and/or of creation and annihilation operators with

respect to the discrete symmetry operations in this particular case deserves detailed elaboration.
18Different choices of the normalization can still lead to equating the spin operator to zero or even to the other values of

helicity, which differ from ±1. This was also discussed with Prof. N. Mankoc-Borstnik during the Workshop “Lorentz Group,
CPT and Neutrinos” (Zacatecas, México, June 23-26, 1999). The question is: which cases are realized in Nature and what
processes do correspond to every case?
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Finally, one obtains

Jk = −i
∑
σ

∫
d3p

(2π)3

pk

2Ep

[
a(p, σ)b†(p,−σ) + b†(p, σ)a(p,−σ)

]
. (66)

If we want to describe states with the definite helicity quantum number (photons) we should assume that
b†(p, σ) = ia†(p, σ) which is reminiscent of the Majorana-like theories [35, 38]. 19 One can take into account
the prescription of the normal ordering and set up the commutation relations in the form:

[
a(p, σ), a†(k, σ′)

]
− = (2π)3δ(p− k)δσ,−σ′ . (67)

After acting operator (66) on the physical states, e.g., a†(p, σ)|0 > , we are convinced that the antisym-
metric tensor field can describe particles with helicities to be equal to ±1). One can see that the origin of this
conclusion is the possibility of different definitions of the field operator (and its normalization), non-unique
definition of the energy-momentum tensor [49, 28, 29] and possible existence of the ‘antiparticle’ for the
particle described by antisymmetric tensor field. This consideration is obviously related to the Weinberg
discussion of the connection between helicity and representations of the Lorentz group [5a]. Next, I would
like to point out that the Proca-like equations for antisymmetric tensor field with mass, e.g., Eq. (47) can
possess tachyonic solutions, see for the discussion in Ref. [8]. Therefore, in a massive case the free physical
states can be mixed with unphysical (at the present level of our knowledge) tachyonic states.

4. Normalization and m→ 0 Limit of the Proca Theory

As opposed to the previous sections, where we assumed that the application of the generalized Lorentz
condition is not always well-founded, in this Section we pay more attention to the correct procedure of
taking the massless limit. We note that not all obscurities were clarified in previous sections and recent
works [55, 56, 42].20 Let us analyze in a straightforward manner the operator (59). If one uses the following
definitions of positive- and negative-energy parts of the antisymmetric tensor field in the momentum space,
i. e., according to (27-32) with (ασ = 0),

(Fµν)(+)
+1 = +(Fµν)(−)

−1 , (Fµν)(+)
−1 = +(Fµν)(−)

+1 , (Fµν)(+)
0 = −(Fµν)(−)

0 . (68)

then for field operator (44) one obtains in the frame where p1,2 = 0

19Of course, the imaginary unit can be absorbed by the corresponding re-definition of negative-frequency solutions.
20First of all, we note that the equality of the angular momentum generators to zero can be re-interpreted as

WµP
µ = 0 ,

with Wµ being the Pauli-Lubanski operator. This yields

Wµ = λPµ

in the massless case. But, according to the analysis above the 4-vector Wµ would be equal to zero identically in the massless
limit. This is not satisfactory from the conceptual viewpoints.
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Jk ≡ m

2

∫
d3x E(xµ) ×A(xµ) =

m2

4

∫
d3p

(2π)3 4E2
p


 0

0
Ep

 (69)

[
a(p,+1)b†(p,+1)− a(p,−1)b†(p,−1)+

+ b†(p,+1)a(p,+1)− b†(p,−1)a(p,−1)
]
+

+
Ep

m
√

2

Ep
iEp
0

[a(p,+1)b†(p, 0) + b†(p,−1)a(p, 0)
]
+

+
Ep

m
√

2

 Ep
−iEp

0

[a(p,−1)b†(p, 0) + b†(p,+1)a(p, 0)
]
+

+
1√
2

 m
−im

0

[a(p, 0)b†(p,+1) + b†(p, 0)a(p,−1)
]
+

+
1√
2

m
im
0

[a(p, 0)b†(p,−1) + b†(p, 0)a(p,+1)
] .

Above, we used that according to dynamical equations (15,16) written in the momentum representation, one
has

[(∂µF µj(p, σ)](+) = −m
2
uj(p, σ) , [(∂µF µj(p, σ)](−) = −m

2
[uj(p, σ)]∗ (70)

[∂µF̃ µj(p, σ)]± = 0 . (71)

Next, it is obvious that though ∂µF µν may be equal to zero in the massless limit from the formal viewpoint,
and Equation (69) is proportional to the squared mass at first sight, it must not be forgotten that the
commutation relations may provide additional mass factors in the denominator of (69). It is the factor
∼ Ep/m2 in the commutation relations21

[a(p, σ), b†(k, σ′)] ∼ (2π)3 Ep
m2

δσσ′δ(p− k). (72)

which is required by the principles of the rotational and translational invariance22 (and also by the necessity
of the description of the Coulomb long-range force ∼ 1/r2 by means of the antisymmetric tensor field of the
second rank).

The dimension of the creation/annihilation operators of the 4-vector potential should be [energy]−2

provided that we use (24,25) with N = m and εµ ⇒ uµ. Next, if we want the F µν(xµ) to have the dimension
[energy]2 in the unit system c = ~ = 1,23 we must divide the Lagrangian by m2 (with the same m, the mass
of the particle!):

L =
L(Eq.46)

m2
. (73)

In this case, the antisymmetric tensor field has the dimension which is compatible with the inverse-square
law, but the procedure of taking massless limit is somewhat different (and cannot be carried out from the

21Remember that the dimension of the δ function is inverse to its argument.
22That is to say: the factor ∼ 1

m2 is required if one wants to obtain non-zero energy (and, hence, helicity) excitations.
23The dimensions [energy]+1 of the field operators for strengths was used in my previous research in order to keep similarities

with the Dirac case (the (1/2,0)⊕ (0,1/2) representation) where the mass term presents explicitly in the term of the bilinear
combination of the fields.
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beginning). This procedure will have the influence on the form of (59,69) because the derivatives in this
case pick up the additional mass factor. Thus, we can remove the “ghost” proportionality of the c- number
coefficients in (69) to ∼ m. The commutation relations also change their form. For instance, one can now
consider that [a(p, σ), b†(k, σ′)]− ∼ (2π)32Epδσσ′δ(p − k) . The possibility of the above renormalizations
was not noted in the previous papers on the theory of the 4-vector potential and of the antisymmetric
tensor field of the second rank. Probably, this was the reason why people were confused after including the
mass factor of the creation/annihilation operators in the field functions of (1/2, 1/2) and/or (1, 0)⊕ (0, 1)
representations, and/or applying the generalized Lorentz condition inside the dynamical invariant(s), which,
as noted above, coincides in the form with the Maxwell free-space equations.

Finally, we showed that the interplay between definitions of field functions, Lagrangian and commutation
relations occurs, thus giving the non-zero values of the angular momentum generators in the (1, 0)⊕ (0, 1)
representation.

The conclusion of the “transversality” (in the meaning of existence of σ = ±1) is in accordance with the
conclusion of the Ohanian’s paper [55], cf. formula (7). therein:24

J =
1

2µ0c2

∫
<e(E×A∗) d3x = ± 1

µ0c2

∫
ẑE2

0

ω
d3x , (74)

with the Weinberg theorem, also with known experiments. The question, whether the situation could be
realized when the spin of the antisymmetric tensor field would be equal to zero (in other words, whether
the antisymmetric tensor field with unusual normalization exists or whether the third state of the massless
4-vector potential exists, as argued by Ogievetskĭı and Polubarinov [20]), must be checked by additional
experimental verifications. We do not exclude this possibility, founding our viewpoint on papers [21, 23, 43,
52].

Finally, one should note that we agree with the author of work [55] (see Eq. (4)) about the gauge
non-invariance of the division of the angular momentum of the electromagnetic field into the “orbital” and
“spin” part (74). We proved again that for the antisymmetric tensor field J ∼

∫
d3x E×A. So, what people

actually did (when spoken about the Ogievetskĭı-Polubarinov-Kalb-Ramond field) is: when N = m they
considered the gauge part of the 4-vector field functions. Then, they equated A containing the transverse
modes on choosing pr = pl = 0 (see formulas (24)). Under this choice the E(p, 0) and B(p, 0) are equal to
zero in the massless limit. But, the gauge part of uµ(p, 0) is not. The spin angular momentum can still be
zero. When N = 1 the situation may be the same because of the different form of dynamical equations and
the Lagrangian. So, for those who prefer simpler consideration, it is enough to regard all possible states of
4-potentials/antisymmetric tensor field in the massless limit in the calculation of physical observables. Of
course, I would like to repeat, it is not yet clear and it is not yet supported by reliable experiments whether
the third state of the 4-vector potential/antisymmetric tensor field has physical significance and whether it
is observable.

5. Conclusions

In conclusion, I calculated the Pauli-Lubanski vector of relativistic spin on the basis of the Nötherian
symmetry method [48, 49, 50]. Let me recall that it is connected with the angular momentum vector, which
is conserved as a consequence of the rotational invariance. After explicit [21] (or implicit [23]) applications
of the constraints (the generalized Lorentz condition) in the Minkowski space, the antisymmetric tensor
field becomes ‘longitudinal’ in the meaning that the angular momentum operator is equated to zero (this

24Formula (7) of Ref. [55] is in the SI unit system. Our arguments above are similar in the physical content with that paper.
But, remember that in almost all papers the electric field is defined to be equal to Ei = F i0 = ∂iA0−∂0Ai, with the potentials
being not well-defined in the massless limit of the Proca theory. Usually, the divergent part of the potentials was referred to
the gauge-dependent part. Furthermore, the physical fields and potentials were considered classically in the cited paper, so
the integration over the 3-momenta (the quantization inside a cube) was not implied; see the formula (5) therein. Please pay
also attention to the complex conjugation operation on the potentials in the Ohanian’s formula. We did not still exclude the
possibility of the mathematical framework, which is different from our presentation, but the conclusions, in my opinion, must
be in accordance with the Weinberg theorem, provided that, of course, the relativistic covariance is assumed.
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interpretation was attached by the authors of the works [20, 21, 23]). I proposed one of the possible ways
to resolve this apparent contradiction with the Correspondence Principle in Refs [8, 9, 10, 11] and in several
unpublished works[56]. The present article continues and sums up this research. The achieved conclusion is:
the antisymmetric tensor field can describe both the Maxwellian j = 1 field and the Ogievetskĭı-Polubarinov-
Kalb-Ramond j = 0 field. Nevertheless, I still think that the physical nature of the E = 0 solution discovered
in Ref. [33], its connections with the so-called B(3) field, Ref. [7, 52], with Avdeev-Chizhov δ′- type transversal
solutions [23b], which cannot be interpreted as relativistic particles, as well as with my concept of χ boundary
functions, Ref. [11], are not completely explained until now. Finally, while I do not have any intention of
doubting the theoretical results of the ordinary quantum electrodynamics, I am sure that the questions put
forth in this note (as well as in previous papers of both mine and other groups) should be explained properly.
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