Turk J Phys
25 (2001) , 489 — 497.
(© TUBITAK

The Theoretical Analysis of The Second Order
Coherence ¢'?(7) and Power Stabilization of
Two-Mode He-Ne Laser

Erol TASAL, M. Selami KILICKAYA
Department of Physics, Osmangazi University, Eskisehir - TURKEY

Received 17.11.2000

Abstract

In this study, second-order coherence and its frequency-dependent character-
istics and the photon statistical properties of the two-mode He-Ne laser field are
investigated.
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1. Introduction

In this study, second-order coherence 9(2)(7') of the two-mode laser field at the steady
state and associate frequency-dependent formula of g(?)(7) for free running two-mode laser
are investigated from the quantum theory of the light [1,2]. The frequency-dependent
characteristics and its quasi-periodicity of 9(2)(7') of a two-mode laser field are theoreti-
cally analyzed [3].

2. Theory

2.1. Frequency-Dependent Formula of ¢(?)(7)

If the two-mode annihilation operators are a; and a-, the wave functions with space
variables are Uy (x) and Us(z), the mode volumes are V1=Vo=V, then the electric field
operator of a two-mode laser with frequencies w; and ws can be written as follows [4,5]:

E(x,t) = E* (2, t) + E~ (. 1), (1)

where
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Et(x,t) = Z Uk (x)ay, exp(—jwit) (2)
k=1
E~(x,t) = Z U (x)dfj) exp(jwit) (3)
k=1
and
we \ /2
Uk(z) =3 (;Z_O?/) exp(jkj.x) k=1,2. (4)

For an ideal multimode laser field, the density matrix can be written as a coherent
state with random phase

N
p=T1Lrx T 10k %04l (5)
k=1 k=N-+1
where
1 27
Pk:|ﬁkxﬁk|:%/d¢k|ﬁkxﬁk| (6)
0
with
Br = |Bk| exp(j ). (7)

Here, |3k]* = (Ax) is average photon number of the k—th mode, @ is the random

phase, and |Oy) is the state vector of the k—th mode of the vacuum state. The creation

operator dfj) and the annihilation operator d. satisfy [6] the relation

<a§j>ak1> = T?‘{pdfj)dkf} = () G- (8)

For a two-mode laser field, N=2, k=1,2 and from the definition of the second-order
quantum correlation function of the light field

GO (r) = (1)t +7))

o . . 9)
- <E< YOEC (t+1)E® (t + T)E(+)(t)>,

one has
GO(r) = [P ) + U2 40a)] -+ 2000 P62 ) ) cos(Bugr). (10)
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Since the first-order quantum correlation function of the two-mode laser field is given
by
aW(r) = <E(_)(t)E(+)(t +r)>
= |U1* (i) exp(—jur7) + |Us|* (f12) exp(—jwsr),

Equation (10) can be rewritten as

(1)

@) = [102 ) + | 0) ] — [0l al? + 01 5207] + [0 0| @2)

From the definition of the degree of second-order coherence

@) GO(r) _ <f(t)f(t +27')> (3)
CROEDO] (fa)

The general formula of the degree of second-order coherence of a two-mode laser field at
the steady state is given by:

o1~ AL HE) sl (14)

9

+

where

<f2> = fuws (it2) (16)

are the output intensities of a two-mode laser at the steady state [7,8,9].

(1)
If k=-— (17)
()
is the relative intensity of the two-mode output, Equation (17) is can be rewritten as

2k
(1+£2)

where g(!)(7) is the degree of first-order coherence of the light. In order to discuss the
influence of the frequency width svg of longitudinal mode upon the g(®)(7), we employ
the semi-classical theory of light to derive the degree of first-order coherence g(*) (7). The
form of g()(7) is given by

9 (r) = el (18)
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s () = ﬁ (Y +(5) o) (1 eostomdvn| (19
gM(r) = MH + k% 4 2k cos(27rA1/qT)|1/2, (20)

1+k
where dvg is the frequency width of the longitudinal modes. When dvgy — 0, or the
delay time 7, and optical path difference A¢ = ¢7 are very small, Equations (14)-(18) can
be simplified to:

g (r) =1+ M cos(2mAv,T) (21)
[(5) + ()]
g (r) =1+ ﬁ cos(2mAv,T) (22)

If the output intensity of the two modes are same, <f1> = <f2> or k=1, with dvyg — 0,

Equation (14) or Equation (23) can be simplified further to
2 1
g (r)y=1+ ‘g(l)(r)‘ =1+ 3 cos(2mAv,T). (23)

It is clear that the range of the degree of second-order coherence ¢(®) (1) of a two-mode

laser field is
L)

5 <97(1) <
2

If the influence of the drift effect Av of longitudinal-mode frequency on two-mode
output intensities in a free running laser is considered, the general Equations (14)-(18)
for the frequency dependence of 9(2)(7') in a two-mode laser field can be modified as

: (24)

N W

g (Av, 7Y =1— 1(Av) + I(Av) 5 + ‘g(l)(Ay, 7')‘2 (25)
[fl (Av) + IAQ(AV)}
g?(Av,7) = % + ‘g(l)(Ay, T)‘Q, (26)
where
AZ/ZVl—(VD—%):VQ—(VD-FATV). (27)

The corresponding g™ (Av, 1) is given by
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g(l)(Ay, T) = fle()i)z(/)_j-(sfl;b({;)y) ‘fl (Av)? + jQ(AV)Q + 20 (AV)fg(Al/) COS(27TAVQT)‘1/2
(28)
g(l)(Ay, T) = %“ + k;(AV)2 + 2k(Av) cos(27rAl/qT)|1/2, (29)
where
o fl(Al/)
k(Av) = A (30)

is the instantaneous intensity ratio of the two-mode output at the drift amount Av
of longitudinal-mode frequency. When drvy can be neglected or 7, Al are very small,
Equations (25)-(26) can be simplified as

2f1 (Al/)fg(Al/)

g (Av,7) =1+ 5 cos(2mAv,T); (31)
|:j1(AV) + IAQ(AZ/)1|
@ (Av,T) = _2k(Ay) cos(2mAv,T
97 (Av,T) =1+ [1+/€(Al/)]2 (27 Av,T). (32)

For a two-mode He-Ne laser working at steady state, if the two-mode intensities are
equal, k=1, and the degree of second-order coherence 9(2)(7') is given by

1
g A (1) = 3 + exp(—27m0vyT) cos? (TAv,T). (33)

[10-13].
However, for a free running two-mode He-Ne laser, the ratio of the two-mode laser
intensities at Av is given by

K(A) = Li(Av) exp [81112

= = = Av,Avl|, 34
IQ(AV) AV% q :| ( )

where Avp and Ay, are the laser line width and space of longitudinal modes, Av is the

amount of the frequency drift of the two-mode frequency v1,vs relative to the frequency-

symmetric point (Z/D + AQV"). Substituting Equation (34) into Equations (25)-(26) and

(28)-(29), one has the general formula for frequency-dependent ¢(®)(7):

1+ exp(—2movyT) [COS(Q?TAZ/QT) + cosh (8 In 2AVQAAT’;)}
D

g(2)(Ay, T) = (35)

1 + cosh (8 In 2AV‘1AATV2)
D
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If Av does not vary with the time ¢, Equation (35) becomes the general formula of
9(2)(7') of the two-mode He-Ne laser field at the steady state. When dvy — 0, or 7,Af
are very small, Equation (35) reduces to

2w A
9O (A, ) = 14 —SCCTAAT) (36)
1+ cos (8 In 2AV‘1AATV2)
D
where

c c

Ay, = — = —
YaT o0l T 2L (37)

and L is the length of the laser cavity and n is the index of refraction of the active
medium, (for gases n = 1).
2.2. Frequency-Dependent Characteristics of ¢(?)(7)

Assuming,

Al=2mL m=0,+1,+2, ... (38)

(that is, the optical path difference Al is even multiples of the laser cavity length L),
from Equations (25)-(26) and (28)-(29), one obtains the frequency-dependent ¢‘®)(7) of
the two-mode laser field as

2k(Av)

L
@) (Av,2mL) = ex (—4m7r51/ —> + ——— 39
9 7( ) p H, [1+I<;(A1/)]2 (39)
and
g P (Av,2mL) =1+ M (40)
[1+ k(Av))
Similarly, if

Al=2m+1)L m=0,%1,42, ... (41)

(the optical path difference is odd multiples of the laser cavity length L), the frequency-
dependent g(2)(7') of the two-mode laser field is given by

2k(Av) 41— k:(AV)]2 exp [—2(2m + 1)mévy %]
[1+ k(Av))?

g (Av, (2m+1)L) = (42)

and

2k(Av)

@ (Av, (2m = —_— .
g'* (Av,(2m+1)L) 1+[1+I<:(Ay)]2

(43)
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Obviously, at
Al =2mL
or
Al=(2m+ 1)L

the degree of second-order coherence g(?)(7) is related to the relative intensity k(Av), to
the frequency-drift effect Av of the longitudinal modes.
Moreover, when

L
Al=@2m+1)g m=0%1%2 . (44)

the optical path difference is odd multiples of L/2, the frequency-dependent 9(2)(7') of
the two-mode laser field is given by

g [Ay, (2m + 1)5] =1 (45)

if (Sl/H — 0.

When the longitudinal mode is drifted and the relative intensity ratio k(Av) varies
from 0.1 to 10.0, the frequency-dependent curve of g (7) is calculated from Equations
(25)-(26) and (28)-(29) for the optical path difference A¢=0,% L, 2L, ... and 2L or for
k(Av)=0.1,0.5,1.0,5.0 and 10.0. The variation of ¢(?)(7) against the relative intensity
ratio k(Av), or the optical path difference A¢ for L =25 cm, Av,=600 MHz, dvx=30
MHz is obtained [14].

For a two-mode He-Ne laser with frequency tuning Av, optical path difference A¢=L
from Equation (35), one has

cosh (8 In QAVQAATVQ)
g (Av, L) = L

(46)

1 + cosh (8 In2Av, AAV’; ) .
D

This is the tuning Equation of g? () for a two-mode He-Ne laser field at A¢ = L.
Similarly, when A¢ = 0 or 2L, Equation (35) gives

1

1 + cosh (8 In2Av, AAU”Q ) .
D

g P (Av,0) = ¢?(Av,20) =1 + (47)

Assuming L=25 cm, Av,=600 MHz, Avp==800, 1000 and 1200 MHz when the tun-
ing amount Av=4600 MHz, the frequency-tuning curves of 9(2)(7') is calculated from
Equations (46) and (47).

Differentiation of Equation (46) gives the slope of g(*)(Av, L) tuning curve at some
amount Av of frequency tuning:
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d asink(aAv)
k(Av) = ——¢P(Av, L) = , 48
(&) d(AV)g ( ) [1+ cosh(aAv)]? (48)
where
Av
a= 81n2AV% (49)

3. Results and Discussions

In this study, the general formula of the degree of second-order coherence 9(2)(7')
and of the frequency-dependent relationship are investigated from the quantum theory
of the light. The second-order quantum coherence, its frequency-dependent and photon
statistical properties of the steady state and of the free running two-mode laser field have
been investigated.

The degree of second-order coherence g(2) (7) is related to the relative intensity k(Av),
to the frequency-drift effect Av of the longitudinal modes.
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