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Abstract

In this study, second-order coherence and its frequency-dependent character-
istics and the photon statistical properties of the two-mode He-Ne laser field are
investigated.
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1. Introduction

In this study, second-order coherence g(2)(τ ) of the two-mode laser field at the steady
state and associate frequency-dependent formula of g(2)(τ ) for free running two-mode laser
are investigated from the quantum theory of the light [1,2]. The frequency-dependent
characteristics and its quasi-periodicity of g(2)(τ ) of a two-mode laser field are theoreti-
cally analyzed [3].

2. Theory

2.1. Frequency-Dependent Formula of g(2)(τ )

If the two-mode annihilation operators are â1 and â2, the wave functions with space
variables are U1(x) and U2(x), the mode volumes are V1=V2=V , then the electric field
operator of a two-mode laser with frequencies ω1 and ω2 can be written as follows [4,5]:

Ê(x, t) = Ê+(x, t) + Ê−(x, t), (1)

where
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Ê+(x, t) =
2∑

k=1

Uk(x)âk exp(−jωkt) (2)

Ê−(x, t) =
2∑
k=1

U∗k (x)â(+)
k exp(jωkt) (3)

and

Uk(x) = j

(
h̄ωk
2ε0V

)1/2

exp(jkj.x) k = 1, 2. (4)

For an ideal multimode laser field, the density matrix can be written as a coherent
state with random phase

ρ =
N∏
k=1

ρk ×
∏

k=N+1

|Ok × Ok|, (5)

where

ρk = |βk × βk| =
1
2π

2π∫
0

dΦk|βk × βk| (6)

with

βk = |βk| exp(jΦk). (7)

Here, |βk|2 = 〈n̂k〉 is average photon number of the k−th mode, Φk is the random
phase, and |Ok〉 is the state vector of the k−th mode of the vacuum state. The creation
operator â(+)

k and the annihilation operator âk′ satisfy [6] the relation〈
â

(+)
k âk′

〉
= Tr

{
ρâ

(+)
k âk′

}
= 〈n̂k〉δkk′. (8)

For a two-mode laser field, N=2, k=1,2 and from the definition of the second-order
quantum correlation function of the light field

G(2)(τ ) =
〈
Î(t)Î(t + τ )

〉
=
〈
Ê(−)(t)Ê(−)(t + τ )Ê(+)(t+ τ )Ê(+)(t)

〉
,

(9)

one has

G(2)(τ ) =
[
|U1|2〈n̂1〉 + |U2|2〈n̂2〉

]2
+ 2|U1|2|U2|2〈n̂1〉〈n̂2〉 cos(∆ωqτ ). (10)
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Since the first-order quantum correlation function of the two-mode laser field is given
by

G(1)(τ ) =
〈
Ê(−)(t)Ê(+)(t + τ )

〉
= |U1|2〈n̂1〉 exp(−jω1τ ) + |U2|2〈n̂2〉 exp(−jω2τ ),

(11)

Equation (10) can be rewritten as

G(2)(τ ) =
[
|U1|2〈n̂1〉 + |U2|2〈n̂2〉

]2
−
[
|U1|4〈n̂1|2 + |U2|4〈n̂2〉2

]
+
∣∣∣G(1)(τ )

∣∣∣2. (12)

From the definition of the degree of second-order coherence

g(2)(τ ) =
G(2)(τ )[

G(1)(0)G(1)(0)
] =

〈
Î(t)Î(t+ τ )

〉
〈
Î(t)

〉2 (13)

The general formula of the degree of second-order coherence of a two-mode laser field at
the steady state is given by:

g(2)(τ ) = 1−

〈
Î1

〉2

+
〈
Î2

〉2

[〈
Î1

〉
+
〈
Î2

〉] +
∣∣∣g(1)(τ )

∣∣∣2, (14)

where 〈
Î1

〉
= h̄ω1〈n̂1〉, (15)

〈
Î2

〉
= h̄ω2〈n̂2〉 (16)

are the output intensities of a two-mode laser at the steady state [7,8,9].

If k =

〈
Î1

〉
〈
Î2

〉 (17)

is the relative intensity of the two-mode output, Equation (17) is can be rewritten as

g(2)(τ ) =
2k

(1 + k2)
+
∣∣∣g(1)(τ )

∣∣∣2, (18)

where g(1)(τ ) is the degree of first-order coherence of the light. In order to discuss the
influence of the frequency width δνH of longitudinal mode upon the g(2)(τ ), we employ
the semi-classical theory of light to derive the degree of first-order coherence g(1)(τ ). The
form of g(1)(τ ) is given by
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g(1)(τ ) =
exp(−πδνHτ )〈
Î1

〉
+
〈
Î2

〉 ∣∣∣∣〈Î1〉2

+
〈
Î2

〉2

+ 2
〈
Î1

〉〈
Î2

〉
cos(2π∆νqτ )

∣∣∣∣1/2 (19)

g(1)(τ ) =
exp(−πδνHτ )

1 + k

∣∣1 + k2 + 2k cos(2π∆νqτ )
∣∣1/2, (20)

where δνH is the frequency width of the longitudinal modes. When δνH → 0, or the
delay time τ , and optical path difference ∆` = cτ are very small, Equations (14)-(18) can
be simplified to:

g(2)(τ ) = 1 +
2
〈
Î1

〉〈
Î2

〉
[〈
Î1

〉
+
〈
Î2

〉]2 cos(2π∆νqτ ) (21)

g(2)(τ ) = 1 +
2k

[1 + k]2
cos(2π∆νqτ ) (22)

If the output intensity of the two modes are same,
〈
Î1

〉
=
〈
Î2

〉
or k=1, with δνH → 0,

Equation (14) or Equation (23) can be simplified further to

g(2)(τ ) = 1 +
∣∣∣g(1)(τ )

∣∣∣2 = 1 +
1
2

cos(2π∆νqτ ). (23)

It is clear that the range of the degree of second-order coherence g(2)(τ ) of a two-mode
laser field is

1
2
≤ g(2)(τ ) ≤ 3

2
. (24)

If the influence of the drift effect ∆ν of longitudinal-mode frequency on two-mode
output intensities in a free running laser is considered, the general Equations (14)-(18)
for the frequency dependence of g(2)(τ ) in a two-mode laser field can be modified as

g(2)(∆ν, τ) = 1− Î2
1 (∆ν) + Î2

2 (∆ν)[
Î1(∆ν) + Î2(∆ν)

]2 +
∣∣∣g(1)(∆ν, τ)

∣∣∣2 (25)

g(2)(∆ν, τ) =
2k(∆ν)

[1 + k(∆ν)]2
+
∣∣∣g(1)(∆ν, τ)

∣∣∣2, (26)

where

∆ν = ν1 −
(
νD −

∆νq
2

)
= ν2 −

(
νD +

∆νq
2

)
. (27)

The corresponding g(1)(∆ν, τ) is given by
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g(1)(∆ν, τ ) =
exp(−πδνHτ )

Î1(∆ν) + Î2(∆ν)

∣∣∣Î1(∆ν)2 + Î2(∆ν)2 + 2Î1(∆ν)Î2(∆ν) cos(2π∆νqτ )
∣∣∣1/2
(28)

g(1)(∆ν, τ) =
exp(−πδνHτ )

1 + k(∆ν)

∣∣1 + k(∆ν)2 + 2k(∆ν) cos(2π∆νqτ )
∣∣1/2, (29)

where

k(∆ν) =
Î1(∆ν)
Î2(∆ν)

(30)

is the instantaneous intensity ratio of the two-mode output at the drift amount ∆ν
of longitudinal-mode frequency. When δνH can be neglected or τ , ∆` are very small,
Equations (25)-(26) can be simplified as

g(2)(∆ν, τ) = 1 +
2Î1(∆ν)Î2(∆ν)[
Î1(∆ν) + Î2(∆ν)

]2 cos(2π∆νqτ ); (31)

g(2)(∆ν, τ) = 1 +
2k(∆ν)

[1 + k(∆ν)]2
cos(2π∆νqτ ). (32)

For a two-mode He-Ne laser working at steady state, if the two-mode intensities are
equal, k=1, and the degree of second-order coherence g(2)(τ ) is given by

g(2)(τ ) =
1
2

+ exp(−2πδνHτ ) cos2(π∆νqτ ). (33)

[10-13].
However, for a free running two-mode He-Ne laser, the ratio of the two-mode laser

intensities at ∆ν is given by

k(∆ν) =
Î1(∆ν)
Î2(∆ν)

= exp
[
8 ln2
∆ν2

D

∆νq∆ν
]
, (34)

where ∆νD and ∆νq are the laser line width and space of longitudinal modes, ∆ν is the
amount of the frequency drift of the two-mode frequency ν1,ν2 relative to the frequency-
symmetric point

(
νD ± ∆νq

2

)
. Substituting Equation (34) into Equations (25)-(26) and

(28)-(29), one has the general formula for frequency-dependent g(2)(τ ):

g(2)(∆ν, τ) =
1 + exp(−2πδνHτ )

[
cos(2π∆νqτ ) + cosh

(
8 ln2∆νq ∆ν

∆ν2
D

)]
1 + cosh

(
8 ln2∆νq ∆ν

∆ν2
D

) (35)
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If ∆ν does not vary with the time t, Equation (35) becomes the general formula of
g(2)(τ ) of the two-mode He-Ne laser field at the steady state. When δνH → 0, or τ ,∆`
are very small, Equation (35) reduces to

g(2)(∆ν, τ) = 1 +
cos(2π∆νqτ )

1 + cos
(
8 ln2∆νq ∆ν

∆ν2
D

) , (36)

where

∆νq =
c

2nL
=

c

2L
(37)

and L is the length of the laser cavity and n is the index of refraction of the active
medium, (for gases n ∼= 1).

2.2. Frequency-Dependent Characteristics of g(2)(τ )

Assuming,

∆` = 2mL m = 0,±1,±2, ... (38)

(that is, the optical path difference ∆` is even multiples of the laser cavity length L),
from Equations (25)-(26) and (28)-(29), one obtains the frequency-dependent g(2)(τ ) of
the two-mode laser field as

g(2)(∆ν, 2mL) = exp
(
−4mπδνH

L

c

)
+

2k(∆ν)
[1 + k(∆ν)]2

(39)

and

g(2)(∆ν, 2mL) = 1 +
2k(∆ν)

[1 + k(∆ν)]2
. (40)

Similarly, if

∆` = (2m+ 1)L m = 0,±1,±2, ... (41)

(the optical path difference is odd multiples of the laser cavity length L), the frequency-
dependent g(2)(τ ) of the two-mode laser field is given by

g(2) (∆ν, (2m+ 1)L) =
2k(∆ν) + [1− k(∆ν)]2 exp

[
−2(2m+ 1)πδνH L

c

]
[1 + k(∆ν)]2

(42)

and

g(2) (∆ν, (2m+ 1)L) = 1 +
2k(∆ν)

[1 + k(∆ν)]2
. (43)
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Obviously, at

∆` = 2mL

or

∆` = (2m+ 1)L

the degree of second-order coherence g(2)(τ ) is related to the relative intensity k(∆ν), to
the frequency-drift effect ∆ν of the longitudinal modes.

Moreover, when

∆` = (2m+ 1)
L

2
m = 0,±1,±2, ... (44)

the optical path difference is odd multiples of L/2, the frequency-dependent g(2)(τ ) of
the two-mode laser field is given by

g(2)

[
∆ν, (2m+ 1)

L

2

]
= 1 (45)

if δνH → 0.
When the longitudinal mode is drifted and the relative intensity ratio k(∆ν) varies

from 0.1 to 10.0, the frequency-dependent curve of g(2)(τ ) is calculated from Equations
(25)-(26) and (28)-(29) for the optical path difference ∆` = 0, L

2
, L, 3

2
L, ... and 2L or for

k(∆ν)=0.1,0.5,1.0,5.0 and 10.0. The variation of g(2)(τ ) against the relative intensity
ratio k(∆ν), or the optical path difference ∆` for L =25 cm, ∆νq=600 MHz, δνH=30
MHz is obtained [14].

For a two-mode He-Ne laser with frequency tuning ∆ν , optical path difference ∆`=L
from Equation (35), one has

g(2)(∆ν, L) =
cosh

(
8 ln2∆νq ∆ν

∆ν2
D

)
1 + cosh

(
8 ln2∆νq ∆ν

∆ν2
D

) . (46)

This is the tuning Equation of g(2)(τ ) for a two-mode He-Ne laser field at ∆` = L.
Similarly, when ∆` = 0 or 2L, Equation (35) gives

g(2)(∆ν, 0) = g(2)(∆ν, 2L) = 1 +
1

1 + cosh
(
8 ln2∆νq ∆ν

∆ν2
D

) . (47)

Assuming L=25 cm, ∆νq=600 MHz, ∆νD=800, 1000 and 1200 MHz when the tun-
ing amount ∆ν=±600 MHz, the frequency-tuning curves of g(2)(τ ) is calculated from
Equations (46) and (47).

Differentiation of Equation (46) gives the slope of g(2)(∆ν, L) tuning curve at some
amount ∆ν of frequency tuning:
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k(∆ν) =
d

d(∆ν)
g(2)(∆ν, L) =

a sin k(a∆ν)
[1 + cosh(a∆ν)]2

, (48)

where

a = 8 ln2
∆νq
∆ν2

D

(49)

3. Results and Discussions

In this study, the general formula of the degree of second-order coherence g(2)(τ )
and of the frequency-dependent relationship are investigated from the quantum theory
of the light. The second-order quantum coherence, its frequency-dependent and photon
statistical properties of the steady state and of the free running two-mode laser field have
been investigated.

The degree of second-order coherence g(2)(τ ) is related to the relative intensity k(∆ν),
to the frequency-drift effect ∆ν of the longitudinal modes.
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