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Abstract
We derive covariant equations for two-fermion systems, taking into account the
anomalous magnetic moments of the particles.

1. Introduction

Relativistic dynamics of two interacting fermions is the basic problem of the test of
quantum electrodynamics in low energy bound state problems.

Altough 4-dimensional Bethe-Salpeter equation (BSE) [1] provides an exact formalism,
one has to resort to an appropriate 3-dimensional exactly solvable wave equation for
practical calculations. Different kinds of 3-dimensional reductions of BSE are available
in the literature [2, 3, 4].

A new approach, called the self energy formulation of quantum electrodynamics, to
the bound state problem has been formulated by Barut and his collaborators [5, 6] and
applied to the spectra of hydrogen, muonium and positronium [7, 8] There is also a
generalization of the results of this approach to the relativistic N-body problem in Ref.
9].

. Since it is easy to boost a system when the theory is fully covariant, we are going to
derive the covariant equation of two fermions interacting with their charges and anomalous
magnetic moments in the framework of the self-energy QED.
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2. Derivation of the two-fermion equation

We start from the action of two (distinct) fermion fields ¢ (), 12(x) interacting with
the electromagnetic field A,:

:/dx - WF“”JrZ bj(@) (in,0" —my) 5 () (1)

— ey @)y (@) A (@) = aby ()0 (@) P |}

The fermions have electric charges e; and anomalous magnetic moments a; and spin
matrices 47; j = 1,2. The equations of motion obtained from (1) are

8VF;U/ = ]f:)t = Z [eﬂﬁﬂ;ﬂﬂj + 2aj8’/ @j%u%‘)] (2)

J

and,
[(iv" 0, —mj) —ejv" Ay —ajot Fulv; = 0. (3)

The total current in (2) satisfies the continuity equation d,J* = 0 as required by the
Maxwell equations and charge conservation. A, is obtained from 0,04, = j, in the
gauge 0, A" = 0, and the general solution is

Au(z) = / dyD(z — 5)i1* (1), (4)

and from (2) we have

Aula) = [ dDla =) 3 [esis Wty + 20,05 (530 @)] . (5)

J

The last term in the action (1) is 2aj1ﬁja“”wj8VAM , or by partial integration,

—aj/dmﬁj(x)%u%(x)w” = —Q%/dx [0y (b0t 1b;)] A

Also the free Lagrangian of the Maxwell field is equivalent to 5 f dxj*A,. Consequently
the action can be written as

A= /dx Z @j (@) (V" 0, — my) ;i (x) (6)
1 _ . _
-y §@j€k/dy¢j (@) (x) D(z — y)¥r (Y)7u o (y)
3.k
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The diagonal terms j = k correspond to self energy, the interaction of the particle’s
current with itself. Here, we are interested in the mutual interaction of two different
particles, hence in terms with j # k.

For the mutual interaction of two particles we use the retarded Green’s function
D™ (z —y). Now for the ejeg-interaction there are two terms in (6) with coefficents ejes
and esep. In the second term we interchange x and y and use the identity

D'y —x) = D*(z —y). (7)
This is equivalent to writing the interaction term as
=S esen [ dadyd (0 5(@) Do~ )W n(o)
j<k
where )
D — §(Dret + Dadv).

Similarly, for the other interaction terms, we note that
a)\Dret(x _ y) — _a)\DadV(x _ y),

which allows as to combine various terms to obtain the action in (6) as

A= [ do | 320,00 ("9, — mj) v (0) ®)
= Sesen | by a1 021D = Dl
= 20 [ oy Dl = ()
=S [ dudya)or s ()9, ~ 90

— > dajax / dyp; (x)"" 1 (2)0,0™ D(x — y) Pk (y)orubr (y)

i<k
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Now we define the composite or bilocal field ¢(z, y), which is a 16-component spinor,
by
oz, y) = 1(x) @ 2(y) (9)

so that the spin algebra is a direct product of two Dirac algebras. And from now on the
first term of the direct product will always refer to particle 1, and the second term to
particle 2.

In order to vary the action with respect to this composite field we have to rewrite the
action in terms of it. The interaction terms in the action already contain the composite
fields. The free part of the action is a sum of terms each containing one-field only. In
order to write this part in terms of composite fields we multiply the free particle part of
one particle with the general relativistic integral of the other particle, e.g.,

/mwxwvwwxwzl (10)

from which we get the usual normalization integral [ dg'w;wg =1 for n = (1000).
Then the action in terms of composite fields ¢ becomes

A=/¢M%@4H%W%—mﬂ®7%+74wﬂw%h—mM¢@w)

+ /dxdng(x, Y) [—elegfy“ ® ’yMD(x —y) — 2e1a97" @ U,Mé?)‘D(x — ) (11)
— 2a1e00" ® 'yyé?“D(x —y) —4aja20" ® U,Mé?ué))‘D(x — y)] o(z,y).

In this form it is not yet convenient to vary the action. We have to rewrite it with all
terms under the same 7-fold integral sign. To do that we decompose the Green’s function

D(z — y) in the second integral-term, as

- 11

D(w—y) = 57-0[(=—9)’] (12)
:lié[(x_y)'n_TIQL]‘i‘&[(x—y)'7’l+7“12l]
247’(’ 121 )

where we introduce the relativistic distance r12, as
) ,11/2
ries = [(@=y)n)? = @-y?] (13)

which for n = (1000) is just the 3-dimensional 712. Now 3" integration can be performed.
But in the terms involving the derivative of D(Jc — y), we perform partial integrations
with respect to x before 3° integration to avoid the derivatives of the Green’s function.
The result is:

A= /dxdg’qg(x, Y) [((v"0, —m1) @y -n+v-n® (ir" 0, — m2)
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1

T121

> Y @ opun (14)

L > o' ® U;¢A>] o(z,y).

T121

1 1
+ — [ —erea—" @7, — 2e1az | O
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1
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In (14) the composite field ¢(x, y) refers to 1 (¢ret + Padv), that is the combination of the
two contributions coming from retarded and advanced points. For simplicity, we shall
write only ®(x,y) for this combination.

Now the variation of the action with respect to composite field ® gives the equation
of motion:

[(i’)/ua;t - ml) QY- n+y-n® (ifyua;t - m2) (15)
1

+— (—61 €2 @y, — 2e1a2 (8A > R o
47 121 T121

1

T121

1
— 2a1e9 (E\)ME) o ® Yy — 4aias (é)ua)\ > o’"® O-;L)\>:| q)(x,y) =0..

Finally writing the composite field ® as a column matrix

Dy
D9
b = , 16
. (16)
Doo
in which @14, ..., $oy are four-component spinors, and inserting the explicit form of Dirac

matrices in the covariant Weyl representation, with

~u
7/‘:( 0 06 >, &lt:a”:(l,&’)

ot

where & are Pauli matrices, we obtain four coupled covariant equations satisfied by four
4-component spinors:

ot ® &M> [P (17)
T121

(&-p1®&-n+&-n®&-p2—eleg

—~ [mg& n @ I + 2iejazd* (" ® 6,05 — A ® I)] Doy

T121
1
— [m1]® o-n+ 22'60162(?)“— (5’“0’” ®Ro, —1I® 5’“):| P19
T121
+ 4aqa9 (aya)‘&”a“ ® 6uox — 0,0,6"c" @1
1

T121

— M @ Gu0n+ 0PI I) d, =0
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(&-p1®a-n+&-n®&-p2—eleg 5’”®O'M>(I)21 (18)

T121

—~ [mg& n @ I + 2iejazd* (" ® 0,65 — GA® I)] By

T121
1
— [mll ® 0o -n+ 2iajexd,— (6"0" ®o, — I ® U“)] Py
T121
+ 4aqa9 (aua)‘&”a“ ®ouoy — 0,0,6"c" @1
1

T121
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(U-p1®&-n+a-n®&-p2—eleg U“@&M>(I>12 (19)

T121

— [mga n® I+ 2ie;ad (0! @G on —0or® I)] P4
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1
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T121

1
— [mga n® I+ 2iejasd —— (0! @ ooy —or® I)] Py
T121L

1
— [mll ® 0o -n+ 2iajepd,— (06" ®o, — I ® U“)] Py
T121
+ 4aqa9 (aua)‘a”&“ ® ooy — 0,007 " @1
1

T121

— M ® 00N+ I ® I) Bop = 0.

3. Conclusion

After the elimination of the electromagnetic field in the interaction of two charged
fermions 1, 12 we wrote the action in terms of a composite field
d(x,y) = ¥1(x) ® 2 (y). By varying the action with respect to ® we obtained the covari-
ant linear equations in configuration space of the system in Weyl representation.
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