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Abstract

By considering the decay of a black hole as a result of the interaction of a quantum
system with a dissipative vacuum, or in terms of string theory, the interaction of
localized string modes with non-local string modes, we demonstrate how the single
parameter representing dissipation can be calculated in terms of known fundamental
constants. In view of the uncertainty embodied in all the present theories of black
hole decay it is suggested that the approach of this note might provide fresh insight
to the problem of black hole decay.

P.A.C.S.: 98.80-Dr Cosmology

1. Introduction

Classical black hole solutions occurs in general relativity and provide us with con-
vincing evidence for the “cosmic” censorship principle which hides a singularity behind
an event horizon [1]. The celebrated theorems of black hole physics essentially prevent
us from thinking of the internal structure of a black hole in a classical sense and allow
us to describe a black hole in terms of its mass, angular momentum and electric and
magnetic charge [2, 3]. Actually, the recent work of Coleman et. al. [4], Krauss et. al. [5]
have shown that classical black holes can carry “quantum hair” than can be probed by
a “Aharanov Bohm” type effect which has also led to the belief that Planck black holes
are truly elementary particles [6]. The stunning discovery of Hawking [7] that a black
hole radiates a thermal spectrum of particles due to quantum field theoretic effects in a
classical gravitational background has opened up a whole new field of inquiry in black
hole physics. The celebrated relation originally proposed by Bekenstein [8] relating the
black hole entropy to its area and the black hole temperature to its surface gravity has
encouraged both students of string theory and quantum gravity to search for a deeper
microscopic origin to the Bekenstein formula for black hole entropy. In this direction

521



WOLF

Strominger and Vafa [9] have derived the Bekenstein-Hawking entropy by counting the
microstates in string theory, and Das and Mather [10] along with Mukohyama [11] have
also derived the Bekenstein-Hawking formula by counting D brane states for the corre-
sponding black hole geometry. The same authors have also shown that the decay rate
of a configuration of D branes by the emission of low energy quanta is equivalent to the
corresponding decay rate according to the Hawking emission process.

One of the central problems with the Hawking process is that it does not allow for
the quantization of the gravitational degrees of freedom of a black hole. In this regard
Kastrup [12] has discussed the quantization of the surface area of a black hole in terms of
Bohr-Sommerfeld quantization and has arrived at a formula of a black hole mass in terms
of the quantum number n according to the formula Eα

√
n. Barreira et. al. [13] have

argued that this should lead to a discrete emission spectrum (non-thermal) for a black hole
as opposed to a continuous thermal spectrum; but if the quantum states are sufficiently
close, the continuous spectrum emerges. The discreteness would most likey apply to low
quantum transitions. Along with these pioneering works in Ref. [9, 10, 11] Nanopoulos
has expounded on the universality of the Procrustean principle wherein all quantum
systems must be considered open systems due to the interaction of truncated delocalized
string modes with the local model (particles) [14]. This suggests that the decay of a black
hole can be viewed as the dissipative evolution of the black-hole geometry (internal string
states) interacting with the environment (non-local modes). Raine and Sciama [15] have
also discussed that black hole decay can be viewed as the dissipative quantum evolution
of the black hole interacting with a dissipative vacuum and the evaporation process is
associated with the infalling negative Casimir energy in much the same way that the
Lamb shift is represented by a change in the energy of the vacuum due to the presence
of the atom.

In the following note, motivated first by the notions of string theory and the Pro-
crustean principle and secondly by the inspiration of Raine and Sciama (Ref. [15])
we discuss the quantum dissipation of a black hole to be represented by a retarded
Schrodinger evolution. The original papers of Caldirola and Montaldi [16] and Caldirola
[17] discussed a retarded Schrodinger evolution with the result that all excited states
decay. In this paper we interpret this mechanism of decay to be either the result of the
string interaction (Ref. [14]) or the non-pertubative interaction of the black hole with
the vacuum. By considering the black hole state to be represented by the eigenstates
derived by Kastrup (Ref. [12]) we show how the “discrete time parameter”, being the
result of all environmental interactions of the black hole with the environment, can be
calculated in terms of the fundamental constants we already know. Original motivations
for introducing a discrete time parameter stem from studies of the Schrodinger Langevin
equation [18] along with studies of the interaction of a harmonic oscillator with a string
in the quantum domain where certain features of the quantum motion can be described
by a few parameters after the modes of the string (reservoir) are eliminated [19, 20, 21].
Here, one of the parameters is the discrete time interval. Also in the study of the fission
of superheavy nuclei into daughter nuclei there exists a transient time that, in a certain
sense, can be viewed as a discrete time parameter in the spirit of the Caldirola dissipative
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Schrodinger Equation [22]. Whenever a quantum system with a discrete set of quantum
states interacts with an environment with a continuous spectrum dissipation will occur
which can be described by a few parameters which in principle can be calculated from
the temperature, composition and other properties of the environment. As stated above,
one of the parameters is the discrete time interval. The analysis which follows enables us
to think of black hole decay not as the result of perturbative quantum gravity but rather
as a result of a universal interaction of the black hole with the environment.

2. Black Hole Decay as a Quantum Dissipative Process

We begin by writing the retarded dissipative Schrodinger equation discussed in Ref.
[16]:

Hψ = ih̄

ψ(t) − ψ(t − τ )
τ

 (2.1)

(τ= discrete time parameter).
To solve Eq. (2.1) we write

Hψ =
ih̄

τ

1− e−τ ∂
∂t

ψ

Setting

ψ(t) = e−αtψ(0). (2.2)

Eq. (2.2) is the result of assuming a discrete time difference for the wave function that is
slanted backward in time. Such a backward discrete time difference will always lead to a
decreasing exponential in time.
We now find

H(e−αtψ(0)) =
ih̄

τ
(1− eτα)e−αtψ(0),

thus

eτα =
1 +

τiH

h̄


α =

1
τ

lne
1 +

τiH

h̄

 (2.3)

In order to stabilize the ground state we modify Eq. (2.1) to read

(H −H0)ψ(t) = ih̄

ψ(t) − (ψt − τ )
τ

 ,

where H0= ground state eigenvalue = Ē0.

When this is done Eq. (2.3) becomes
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α =
1
τ

lne
1 +

τi

h̄
(H −H0)

 (2.4)

We now draw from the work of Kastrup (Ref. [12] where the surface of a black hole is
quantized in the spirit of the Bohr Sommerfeld quantization rules, for which the result of
his calculation give for the eigenstates

En =
1
4

√
ᾱ

π
mpc

2
√
n (2.5)

mp = Planck mass, ᾱ = 4 lne 2, and the degeneracy of each quantum state is g(n) = 2n−1.
(Here g(n) results by requiring each eigenstate to have the Bekenstein-Hawking value for
the entropy.) The ground state energy would be (n=1)

Ēo =
1
4

√
ᾱ

π
mpc

2.

If a quantum black hole is in a superposition of states, we have

ψ(0) =
∑
n,i

CinUni(0),

where Uni(0) is the eigenstate of energy En and i includes the degenerate states (that is,
there are 2n−1 different values of Cn for each n). For the wave function at t we have from
Eq. (2.2) and Eq. (2.4)

ψ(t) = e
− t
τ lne

1+ iτ
h̄ (H−H0)


ΣCinUni(0). (2.6)

We now expand the natural log in Eq. (2.6) to give

lne
1 +

τi

h̄
(H −H0)

 =
τi

h̄
(H −H0) +

τ2

2h̄2 (H −H0)2.

The above approximation will be valid provided the excitation energy of the black hole
doe not exceed the limit τ (En−Ēo)

h̄ < 1. If the discrete time interval is small enough the
approximation will be valid.

Substituting in Eq. (2.6) gives

ψ(t) =
∑
n,i

CinUni(0)e−
i
h̄ (En−Ē0)te−

τ

2h̄2 (En−Ē0)2t.

We now assume Cin is the same for each degenerate state of n

Cin = Cn.

524



WOLF

Because each principal quantum state has a degeneracy of g(n) there must be another
internal quantum number in the Bohr-Sommerfield quantization of the black hole that
discriminates between different internal states with the same n. The assumption Cin = Cn
is equivalent to equal probabilities of the internal states.
We write for the energy at time t (mass of black hole)

< E >= ψ∗Hψ =
N0∑
1

|Cn|2g(n)Ene−
τ
h̄2 (En−Ē0)2t (2.7)

(g(n)) = digeneracy function, E1 = Ē0).
Here we introduce the cut-off for n of N0. Introducing a cut-off for n is equivalent to
saying that there is some natural mechanism that forbids black holes of arbitrarily large
size since the radius will be proportional to n1/2. This is certainly true in an observational
sense, since we don’t observe them. We also normalize the initial state such that

N0∑
1

|Cn|2g(n) = 1.

Suppose for example n is large and |Cn|2 = αn. This relation implies that the higher
the quantum number n, the greater the probability the black hole will be in that state.
Such a situation is most likely to occur at low temparatures since M varies inversely as
T . Then

N0∑
1

an2n−1dn =

N0∫
1

an2n−1dn = 1

giving

a

[
eN0 lne 2

 N0

2 lne 2
− 1

2(lne 2)2

 − elne 2

 1
2 lne 2

− 1
(lne 2)2

] = 1. (2.8)

Thus Eq. (2.8) can be s olved for a.

From Eq. (2.7) we have for small t for the energy of the Black Hole

E(t) = MC2 =
N0∑
1

|Cn|2g(n)En −
N0∑
n>1

|Cn|2g(n)En
h̄2 τ (En − Ē0)2t (2.9)

calling

c2M0 =
N0∑
1

|Cn|2g(n)En,

and
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c2β =
N0∑
n>1

|Cn|2g(n)En
(En − Ē0)2

h̄2 τ. (2.10)

Then from Eq. (2.9) we have

M(t) = M0 − βt. (2.11)

Thus for small time the mass decays in a linear fashion.

To compare the results with the results based on the Hawking effect we note that pri-
mordial black holes can play a vital role in the reionization of the universe for Z ≤ 60.
Primordial black holes can form from “primordial density perturbations”, cosmological
phase transitions involving buble collisions and from the collapse of cosmic strings [23].
Their existence can be inferred from the high fraction of anti-protons in cosmic rays, the
annihilation line radiation coming from the center of the galaxy as well as the spectrum
of the positron background (Ref. [23]). When the Hawking process is applied to a black
hole it turns out that the entire spectrum of elementary particles can be emitted from a
black hole with higher mass black holes favoring light particle emissions, the equation for
the emission rate is of the following form (Ref. [23]).

dM

dt
= − k

M2
f(M) = −5.34x1025f(M)

M2
, (2.12)

where

f(M) = 1.569 + Σaie
− M
Ci ,

(C.G.S.) and ai, Ci refer to the different heavy particle types. The constant 1.567 refers
to the emission of e−, e+, γ, νe, νµ, ντ (Ref. 18). Eq. (2.12) results after integrating over
the entire thermal spectrum for each particle species. If we study the simple case of the
emission of photons we have

dM

dt
= − 1

c2
(4πR2)(σT 4), (2.13)

where R = 2GM
c2

= radius of black hole, σ= Stefan Boltzman constant = 2π5k4

15h3c2
, k =

Boltzmann constant, T = h̄c3

8πGkM (Bekenstein-Hawking formula for T = T (M), Eq.
(2.13) gives

dM

dt
= − γ

M2

γ =
c6hπ2

G2(21120)

 . (2.14)

Integrating Eq. (2.14) gives

M3

3
− M3

0

3
= −γt
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or

M = M0

1− 3γt
M3

0

 1
3

. (2.15)

For small t

M = M0 −
γ

M2
0

t. (2.16)

Comparing Eq. (2.9) and Eq. (2.16) we find

γ

M2
0

=
1
c2

N0∑
n>1

|cn|2g(n)En(En − E0)2τ

h̄2

or

τ =
c2h̄2γ

M2
0

N0∑
n>1

|Cn|2g(n)En(En − E0)2

(2.17)

where

M0 =

N0∑
1

|Cn|2g(n)En

c2
.

We note in Eq. (2.17) that we have calculated the “discrete time interval” in terms of
the fundamental constants, c, h, G and the quantum states of the black hole En. If the
states of a black hole were specified by the string or D-brane excitations then τ would
be calculated in terms of c, h, G and the excited states of the string or D brane. We also
note that Eq. (2.17) is just valid for small time intervals and if 1 excitation dominates,
that is, very energetic compared to n = 1, we have

τ ' c2h̄2γ

M5
0 c

6
' h̄2γ2

M5
0 c

4
.

If M0 is initially in equilibrium with the environment then M0 ∝ 1
T0

, and τ ∝ T 5
0 (T0 =

absolute temperature of environment). This would lead us to conclude that the discrete
time interval depends on the fifth power of the temperature of the environment. Actually,
Marsh et. al. [24] have suggested that in a symmetric discrete lattice quantum theory
the discrete time interval will vary inversely as the temperature; however, factors in the
environment such as its composition could play a vital role in determining the dependence
of τ on the temperature for a specific composition [25,26].
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3. Conclusion

We have constructed a model for black hole decay in terms of a retarded version of
the Schrodinger equation and have given a provisional way of determining the discrete
time interval in the theory. Although our calculation of τ holds only for a short time
it still demonstrates that environmental quantum dissipation can be described by the
fundamental constants h, c, G, and the parameters of the system. Because much of the
gravitational physics and quantum physics at the horizon is not understood our approach
offers a fresh approach to the decay of quantum systems wherein all the uncertainty at the
horizon can be lumped into dissipative environmental interactions specified by discrete
time parameter τ . What is needed is a knowledge of the quantum state of the system
which, in our case, was given to us by the work of Kastrup (Ref. [12]) through the method
of Bohr Sommerfeld quantization. It’s a curious fact that the continuum of space time,
which normally plays the sterile role of the “arena”, can act in a retarded manner to
generate the decay of systems not understood using the conventional laws of physics. It
once more lends evidence to the fact that space, time, and matter are inseparable and
questions such as CP and T violation might only be understandable when we understand
how matter is truly intertwined with geometry through perhaps string theory [27] or
perhaps a theory of gravitation beyond the structure of general relativity.
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