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Abstract

The Author summarizes the evidence that his quantum theory of the electric
charge depends in a nontrivial way on the numerical value of the fine structure
constant.

1. Introduction

The quantum theory of the electric charge formulated by the Author in Ref.[1] does
explain the universality of the electric charge i.e. its quantization in terms of a single
universal constant. The natural question arises if this theory says something about the
numerical value of this constant. I present below the evidence that this is indeed the case.

2. The inequality of Berestetsky, Lifshitz, and Pitaevsky

Berestetsky, Lifshitz, and Pitaevsky [2] say that the electromagnetic field Fµν is ap-
proximately classical if (~ = 1 = c)√

F 2
01 + F 2

02 + F 2
03 (∆x0)2 � 1, (1)

where ∆x0 is the observation time over which the field can be averaged without being
significantly changed. For a static field this time is obviously infinite and therefore,
conclude B.L.P., a static field is always classical. This conclusion, if applicable to the
Coulomb field, would make the phenomenon of charge quantization even more mysterious.
Fortunately, the B.L.P. inequality is not inconsistent with the phenomenon of charge
quantization. The total electric charge is determined from the Gauss law as an integral
over a sphere r = const at the spatial infinity, r =

√
(x1)2 + (x2)2 + (x3)2 → ∞. At
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the spatial infinity the total available time is limited by the opening of the light cone,
| ∆x0 |≤ 2r. Therefore the B.L.P. inequality takes on the form

| Q |
r2

(2r)2 � 1 i.e. | Q |� 1
4
, (2)

where Q is the total charge. In the natural units ~ = c = 1 e =
1√
137

and therefore

| Q |� 1
4

√
137e = 2.93 e. (3)

The total electric charge is approximately classical if it is substantially larger than three
elementary charges. This eminently sensible result follows from the observed value of the
fine structure constant and from the limitation of available time implicit in the notion of
space-like infinity. The limitation is relevant since the total charge ”lives” at the spatial
infinity.

3. Critical values of the fine structure constant

The theory described in Ref.[1] is a closed mathematical scheme akin to the theory of
angular momentum, but with infinite number of degrees of freedom. It predicts a number

of critical values for the parameter
e2

π~c
, where

e2

~c
is the fine structure constant in the

unrationalized Gaussian units. By a critical value I mean a value which separates two
qualitatively distinct regimes of the theory. In the following ~ = c = 1.

(a)
e2

π
= 1. This value appears in the theorem proved in [3]. The quantum Coulomb

field, when decomposed into unitary irreducible representations of the proper, orthochronous

Lorentz group, contains only the main series for
e2

π
> 1; for 0 <

e2

π
< 1 it contains the

main series and a single representation from the supplementary series corresponding to
the special value of the Casimir operator

C1 = −1
2
MµνM

µν =
e2

π
(2− e2

π
) < 1. (4)

This theorem seems to be of fundamental importance since it establishes a functional
relation between the fine structure constant and the parameter z, 0 < z < 1, which
selects a single representation from the supplementary series.

(b)
e2

π
=

1
2
. This value appears in a theorem to be published soon. The probability

distribution for the observable M01 + M12 in the quantum Coulomb field is regular at

the origin for
1
2
<
e2

π
< 1 but singular for 0 <

e2

π
<

1
2
. The operator M01 +M12 gener-

ates parabolic Lorentz transformations which can be geometrically characterized as those
which preserve a null plane in space-time.

(c)
e2

π
=

1
4
. The two previous values are critical in the sense stated above. They
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separate two regimes in which certain observables associated with the quantum Coulomb

field behave in a qualitatively different way. The case of
e2

π
=

1
4

is different and not
yet fully understood: certain matrix elements which involve the quantum Coulomb field

are given by integrals convergent for
1
4
<
e2

π
< 1 and divergent for 0 <

e2

π
<

1
4
. It is

not clear at present if this analytical fact has some observable consequences because
the divergent integrals can be evaluated by analytical continuation from the segment
1
4
<
e2

π
< 1, apparently without violating anything of importance.

(d) Any of the above values divided by n2, n = 2, 3, 4, ... . The quantum theory of the
electric charge described in [1] allows to construct the quantum Coulomb field with the
charge Q = ne, n = ±1,±2, ... . This clearly amounts to multiplying the fine structure
constant by n2 or to dividing each critical value by n2.
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