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Abstract

Old Weyl!’s the idea of scale recalibration freedom and Infeld’s and van der Waer-
den’s (IW) ideas concerning geometrical interpretation of natural spinor phase gauge
symmetry are discussed in the context of modern models of fundamental particle
interactions. It is argued that (IW) gauge symmetry can be naturaly identified with
the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no
serious reasons to reject Weyl’s gauge theory from consideration. Its inclusion en-
riches the original Weinberg-Salam theory and leads to prediction of new phenomena
that do not contradict experiments.

1. Introduction

Gauge theories are fundamental tools in the contemporary physics of particles and
their interactions. The standard Model of fundamental interactions (SM) reasonably
describes particle physics at present accelerator energies via quantum gauge theory of
U(1) x SU(2) x SU(3) symmetry group of electroweak and strong forces. The model leads
to cosmological scenarios that seems to be consistent with observational astrophysics.
There are many extensions and modifications of SM. A gauge theory schema is at the
base of all of them. These gauge theories are in fact gauge theories of generalized phase
of spinorial field multiplets. All of them are formulated in flat space time but are argued
(and sometimes proved) to be generalizable (at least locally) to an arbitrary Riemann
space.

The first consistent formulation of U(1) gauge theory of spinor phase in curved space
was given soon after Dirac’s theory was proposed. This model is reviewed shortly in
section 2. The notion of gauge symmetry is even older. It was introduced by Weyl before
the notion of spinors had been defined. Today we can call this theory a gauge theory
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of scale. A short review is presented in section 3. Both early gauge theories of phase
and scale were based on abelian gauge groups and was to incorporate electromagnetism
into the geometrical scheme of general relativity. Those attempts were admitted to be
unsuccessful. The reasons and arguments for that are shortly reviewed in section 4 where
a critical discussion of those arguments is also given. In section 5 a general model with
scale and phase gauge symmetry is described. Its features and physical consequences are
discussed in section 6.

2. Gauge theory of phase in Infeld and van der Waerden formulation.

Soon after the appearance of Dirac’s theory of quantum relativistic electron in the flat
space [1] the general relativistic extension of Dirac’s theory was also proposed [2, 3, 4]. A
canvas for such description is a four dimensional manifold M. A copy of two dimensional
complex vector field F,M is attached to every point p of M. In principle, independent
pairs of affine and metric structures can be implemented on M. The tangent boundle T'M
can be equipped with an affine connection I" and the field of metric g. Independently,
a connection 7 can be defined in the bundle F M. For generic two dimensional complex
vector space there is a natural class of antisymmetric Levi-Civita metrics that differ by a
complex factor. Thus arbitrary field ¢ of Levi-Civita mertic can be chosen at FM. The
important observation is that the Levi-Civita metric ¢ induces Lorentz metric € ® € at
every fiber of FM ® FM (see e.g. [5] for definition of complex conjugation structure and
for further details). Thus the real part of FM ® FM (which is a four dimensional real
vector bundle which we denote as F.FM) can be naturally related with TM, the tangent
vector bundle of M.

In Einstein’s general relativity theory the affine and metric structures of TM are
related by the metricity condition

Vg =0, (1)

and the torsion free condition

F;);u - Fl)/\;t = j—ﬁ\l/ =0. (2)

Keeping those restrictions and relating TM with FFM, Infeld and van der Waerden

[4] found that the metric structure € of FM is given by the metric structure g of TM

up to an arbitrary phase factor, while the affine structure v of FFM is given by the

affine structure I of T M up to an arbitrary vector field. It is clear that this new field is a

compensating potential for the U(1) local symmetry group of phase transformations of all

Dirac fields in the theory. The authors have identified this new field with electromagnetic
potential.

3. Gauge theory of scale: conformal Weyl’s model.

The Infeld and van der Waerden model was not the first example of gauge theory.
The idea and notion of gauge invariance was introduced by Weyl [6] as a consequence of
natural generalization of Riemann geometry. Weyl assumed that the metricity condition
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(1) can be replaced by a less restrictive condition

vy;w ~ Guv- (3)

Thus he supposed that, for a vector transported around a closed loop by parallel dis-
placement although the direction and the length change, the angle between two parallelly
transported vectors must be conserved.

If Einstein’s torsion free condition (2) is kept, then again there is a renewed rela-
tion between the metric and the affine structures of T'M, however the connection is not
uniguely given by the Christophel symbol. It depends also on an arbitrary vector field.
This field is the compensating potential for the local gauge group of length changes for
all dimensional fields in the theory. Originally Weyl interpreted this new field as an
electromagnetic vector potential. He soon abandoned both the electromagnetic interpre-
tation and the whole idea that his new symmetry (called the conformal symmetry, as it
conserves angles) plays any role in physics.

4. Abandoned models.

Both models - the Weyl’s gauge theory of scale and the Infeld and van der Waerden
gauge theory of phase - despite their geometrical beauty, were abandoned for physical
reasons.

Weyl’s theory that in which there is freedom for the space-time dependent choice of
length standards was rejected on the argument that it clashes with quantum phenomena
that provide an absolute standard of length. Thus, at least, there is no need for the
arbitrary metric standards of Weyl’s theory. On the other hand, the electromagnetic
interpretation of this theory seemed not to be satisfactory by itself (see, however, [7]).

The physical reasons for rejection of Infeld and van der Waerden interpretation of
their vector potential as a medium for electromagnetic interaction was the fact that the
obtained potential couples universally to all fermions. Thus it should also couple to neutri-
nos that are electrically neutral Dirac particles. Consequently the U(1) gauge symmetry
of fermion phase should be considered as a possibly new independent gauge symmetry.
As there is no other long range interactions observed in nature except electromagnetism
and gravity, it is assumed that such a gauge interaction is not realized or is extremely
small.

Let us critically revise all the arguments mentioned above.

There were two kinds of arguments against Weyl’s theory. The first laid a contradic-
tion between the theory and quantum phenomena. Those convictions are mostly based
on a misunderstanding or misinterpretation of Weyl’s gauge symmetry. In fact, the free-
dom to set arbitrary length standards along an atomic path does not mean that atomic
frequencies will depend on the atomic histories, was the most popular argument in early
literature. In Weyl’s theory atomic frequency depends on the length standard at a given
point but simultaneously all other dimensional quantities measured at this point depend
on this standard in the same way. There is no contradiction with experiment as dimen-
sionless ratios are standard and of course do not depend on the history of a particular
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atom.

More serious arguments against Weyl’s theory were based on the reasonable claim that,
any acceptable theory should not introduce needles objects and notions. If atomic clocks
measure time in an absolute way and velocity of light is an absolute (or at least definite)
physical quantity then the relativism of length is unnatural and redundant. Argument
is very reasonable except one subtle question: Which atomic clock provides the absolute
time and length standard? The fast answer is: ALL! But here, further problems begin.
We know form our ”almost flat” experience that ”free atomic clock” frequency ratios
are external independent conditions; should we really extrapolate those experience to
all conditions and times? A naive extrapolation could be evidently wrong as we know
from solid state physics. We can imagine very strong sources of gravity producing such
extremal conditions that neither known atomic nor quantum clocks will exist there. And
what about the radiation age of Universe when there was no matter at all? Observe
that neither so called ”distant” nor ”isolated” standards are helpful in the case of gravity
as there is no screening of interactions. Of course we are free to assume that - roughly
speaking - the ratios of electron mass to proton mass and to other quantum standards are
always and everywhere the same, but we should remember (especially when we interpret
such effects like red shift or other distant signals) that this is only our assumption and
it could be and it should be a subject to experimental verification. Weyl’s theory does
have room to relax from such, if not definitely confirmed, suppositions. Can we judge a
priori that it is really needless?

The arguments formulated against Infeld’s and van der Waerden’s interpretation of a
vector gauge potential (the potential that arises when the affine structure of a tangent
bundle is extended to spinor bundle) are based on the fact that neutrinos are chargeless.
Those arguments were important before Weinberg-Salam theory (WS) had been proposed.
WS predicts that all fermions couple to U(1) gauge field. There is a second nonabelian
gauge group SU(2) in the theory acting only on left components of Dirac bispinors. Due
to the structure of couplings and the effective mass matrix for gauge bosons the massless
field - naturally identified with photon - is a combination of original U(1) and SU(2)
bosons. It does not couple to neutrinos despite the fact that the original abelian vector
potential does. Thus we are free to identify the Infeld - van der Waerden potential
with U(1) gauge group potential of the WS model without any conflict with theory and
experiment.

We see that the arguments raised against Weyl’s and Infeld - van der Waerden models
are not ultimately and definitively convicting. On the other hand both theories realize in a
sense an old and beautiful idea that physical interactions should be ascribed to geometrical
properties of space itself, instead of being merely something embedded in space. Observe
that both these theories are complementary and correlated. The Weyl potential can be
raised to spinorial level according to Infeld and van der Waerden prescription. Then it can
be collected (together with the derivative of log|dete|) to be the real part of a complex
vector potential that has an imaginary part found by Infeld and van der Waerden [8].
The Infeld - van der Waerden correlation between geometrical structures of TM and FM
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leads immediately to Weyl’s conformal metricity condition (3). This result is independent
of any assumption about relation between metrical and affine structures of TM (e.g. is
independent of (2)) and follows only from the fact that metric g is related to spinorial
metric € by an arbitrary Infeld - van der Waerden relation which, for selfconsistency of
the model, must be covariantly constant. Thus the correlations between gauge theories
of phase and scale are rich and universal.

5. Classical gauge theory model of phase and scale.

Despite the controversies around the geometrical origin of U(1) gauge theory of
fermion phase, its role in physics is not disputed. The conformal gauge theory of scale
is less lucky but many authors none the less return to Weyl’s original ideas in various
contexts (see.g. [9] and also [7, 10, 11, 12]). Let us write down a general model respecting
both those symmetries. But first let us fix the notation.

Weyl’s potential will be denoted by S,,. Then, if torsion free condition (2) is assumed,
the connection is given by

Ffu/ = ZJ/} + f(Sltgll/) + Sugz - Spg;tu)a (4)

where f is an arbitrary coupling constant. (In principle it could be absorbed at this
level by redefinition of S, but it is convenient to keep it here and set its value later.)
Consequently,

Vug=—2fS.4. (5)
Equations (4) and (5) are invariant with respect to Weyl transformations
Juv — QQg;U/ = GQAQ;W (6)
1
Sy — Sy — ?é),t)\. (7)

Thus the metric tensor is covariant with respect to Weyl transformations with degree 2.
The Riemann and Ricci tensors constructed from (4) are conformally invariant objects but
the scalar curvature R is not. R can enter linearly to a conformally invariant expression
of dimension of action if it is combined with a scalar field ¢ which transforms according
to

¢ — e 9. (8)
Then the combination ¢?R is conformally invariant. The conformal covariant derivative
of ¢ is given by
v;t¢ = (8;t - fS;t)¢ (9)
and it transforms according to (8).

The most general conformally invariant Lagrangian that leads to second order equa-
tions of motion for the metric-Weyl-scalar system reads [10]:

A
T (10)

! a2 L a3 "
Lg = _E(bQR + ?v”(bvl ¢ - ZH;U/Hl -
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where
H,, =0,5, —0,5,. (11)

The coupling constants a1, as and «j are arbitrary but the last two can be absorbed in
¢ and S, by a suitable redefinition of the fields. Observe however, that we are not able
to absorb simultaneously a3 and f. Thus the last coupling remains arbitrary and has to
be fixed by experiment.

Now we can include fermions. First we should recall [8] that Weyl’s vector potential
S, do not couple directly to Dirac fermions if they transform according to the rule

U e 20 (12)

If we want to fit to the SM prescription we must admit that except for the U(1) gauge
symmetry group of fermion phase (for which we shall denote the gauge potentiaby B,)
other internal nonabelian gauge symmetry groups are also present in the model. The
scalar field ¢ that had been introduced in (10) can be extended to a complex scalar
multiplet. The ordinary derivative in (9) must be replaced by D, =V, —ieB,, +... being
the convariant derivative with respect to U(1) (we assume that it couples universally to
the phase of ¢) and with respect to some other internal symmetry groups:

Vud = (D;t - fS;t)¢- (13)
Thus the curvilinear versions of Dirac Lagrangian Ly and Yukawa Lagrangian Ly can be
easily written. We can also select Maxwell Lagrangian Lp = —iF w FH for U(1) vector

potential and a general Yang-Mills lagrangian Ly for other gauge potentials. As there
are two abelian gauge groups in the model the mixed term

LSB = Oé4HM,/Fl“/ (14)

obeys all symmetries and must be admitted. The total Lagrangiam can be written as a
sum of these terms:

Lp=Ly+Ly+Ly+Lp+ Ly + Lgsp. (15)

6. Discussion.

The theory given by (15) has interesting properties that depend on the value of cou-
pling constants a;. But its special property is its conformal gauge invariance. If a gauge
theory is to be solved, some additional gauge fixing conditions must also be supposed in
order to make the evolution definite. This choice is arbitrary within the whole class of
gauge equivalent conditions. The physical results are gauge independent. There are cus-
tomary procedures to handle this freedom in the case of gauge symmetry of generalized
phase. Theary case of scale gauge symmetry is specially interesting. The dimensional
scale reference can be chosen arbitrary but it is reasonable to choose it in a way that
is most practical and convenient. If we are focused on laboratory phenomena where
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gravitational effects are negligible then there is no reason to doubt the universality of
length standards provided by the whole class of quantum phenomena (please recall the
discussion of section 4). We are free to chose the length standards that lead to constant,
space independent particle masses. If theory (15) is a conformal modification of SM then
the conformal gauge fixing condition that provides correspondence with the ordinary
description is the condition [11, 12]

|| = v? = (246GeV)?. (16)

It leads to a mass spectrum that is the same as obtained from the mechanism of sponta-
neous symmetry breaking in WS, but those mechanism is absent in the minimal version
of conformal theory. As a result Weyl’s vector field S, acquires mass

mg = %f(om — an)v? (17)

which is equal zero only in the special case when ay = 3 and an additional symmetry is
realized in the model.

The striking feature of the described theory is the lack of ordinary Einstein term in
(15). Observe however, that with condition (16) this term can be easily reproduced [11].
It is sufficient to demand that

x1 o 1
2= = 18
12"~ &G (18)
It leads to the Weyl vector mass
ms =0.5-10"f - GeV. (19)
It was already mentioned that in the case as = a3 the model has an additional

symmetry. The Weyl potential decouples from scalar field and, if ay = 0, it is coupled
only to gravity. Transformations (6), (8) and (12) are the symmetries of the theory
independent of (7). We get Penrose-Chernikov-Tagirov teory of scalar field conformally
coupled to gravity [13]. We are free to further include other terms in (15) that respects
the new symmetry. Thus, despite the fact that the coefficient in front of R in the original
Lagrangian is negative we are able to reproduce the appropriate Newtonian limit for the
whole theory [12, 14].

The very new feature of Lagrangian (15) is the mixed term (14) that leads to inter-
action of Weyl and U(1) vector potentials. At quantum level it would result in a mixing
of Weyl boson with photon and weak bosons - the effect in a sense similar to the known
v — Z mixing. As the mass of S, and the coupling a4 is not predicted by the theory
the strength of the mixing effect could be small as well as very large. Also, the mass mg
cannot easily be estimated from known data as there is no interaction of fermions with
the Weyl potential. Thus definite answers concerning the presence and interactions of
Weyl potential should be examined in experiments.
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