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Abstract

In this paper we have set up a path integral formalism for Feshbach-Villars equa-
tion by using the fermionic Schwinger model for Pauli matrices which describe an
isocharge symmetry. This choice is made in analogy with spin model and the coher-
ent state representation is then used. We have also given a general method of treat-
ing the problem of vanishing scalar potential by reducing it the to non-relativistic
case and then, via Foldy-Wouthuysen canonical transformation, an explicit solution
is constructed. The free case and constant magnetic field interaction are explicitly
exposed. In each cases the propagators are evaluated and the energy spectrum and
the corresponding wave functions are deduced.

P.A.C.S.03.65 Ca.Formalism
P.A.C.S.03.65 Db.Functional analytical methods
P.A.C.S.03.65 Pm.Relativistic wave equations
P.A.C.S.03.65 Ge.Solutions of wave equations: bound states.

1. Introduction

Relativistic wave mechanics could be considered the first of physical theories in which
there is an attempt to the principles of relativity and those of quantum theory. The
scheme has not yet been accomplished because of the meaninglessness of the single particle
in terms of its wave function. This ambiguity arries in the domain of large velocities
namely near the speed of light where the creation and annihilation of particles pairs are
inherent and can not, in principle, be ignored. Moreover, to correctly describe physical
phenomenons, relativistic wave mechanics should be completed by a relativistic quantum
field theory where the dynamics of these pairs is taken into account. But in spite of
these limitations, there exist many physical situations where relativistic wave mechanics
could be an acceptable approximation. That is, for example, the case of Dirac equation
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which describes particles of spin 1/2 and has, for A long time, been successfully applied
to concrete physical problems. Unfortunately, the same approach has been omitted for
Klein-Gordon equation which describes the spinless particles because of the presence of
the second time derivatives which generate difficulties as essentially the negative density
of probability. The Feshbach-Villars (F.V.) equation [1]-[3] is an attempt to avoid these
obstacles and at the same time give a solid probabilistic interpretation to spinless single
particle. The procedure consists mainly in reducing the second order derivatives by the
use of a two component wave function. Consequently, the equation would exhibit charge
symmetry which is, in principle, a requirement of the relativistic theory and thus giving
rise to negative energy solutions and their interpretation as “antiparticles ”.

In this paper, our purpose is to use this equation to describe spinless particles in
the path integral framework. This latter formalism has been, during the last decade, a
powerful tool in treating problems in non-relativistic quantum theory [4]. However, its ex-
tension to relativistic problems remains contestable because of the use of fifth parameter:
Schwinger proper time, or a “time” of evolution[5]-[8]. In F.V. formalism, this default is
overcome thanks to its Hamiltonian form by which the physical meaning is found again.
In section II, after giving some review on the F.V. equation, we formulate a path in-
tegral approach for this equation. The Pauli matrices describing the charge symmetry
are replaced by a fermionic Schwinger model [9] and an enlarged dynamics space is then
used[10]. It is obvious that this representation has naively been chosen in analogy with
spin system and at our knowledge there is no equivalent representation for the isospin
case. In section III, we expose the general formal method in treating the problems where
the scalar potential vanishes. The Foldy-Wouthuysen (F.W.) transformation[2] is used
to reduce the Hamiltonian to its diagonal and Hermitian form by which we could easily
perform the calculations. At last, the application of this method is explicitly constructed
in the case of free particle and magnetic interaction. Section IV is devoted to concluding
remarks.

2. Path integral formulation for relativistic spinless particle

A. Hamiltonian form for Klein-Gordon equation

As has previously mentioned, the Klein-Gordon equation has been rejected as a parti-
cle equation because it involues second time derivatives and that the density is not positive
definite. To rise above these connected difficulties, Feshbach and Villars[1] brought it into
an Hamiltonian form by using a two component wave function instead a scalar one. Ac-
cording to their method, we should write (for a spinless particle), the Schrodinger type
equation as

i
∂Ψ
∂t

= ĤΨ, (1)
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with Ψ as a two component wave function defined by

Ψ ≡
(

ϕ
χ

)
=

1√
2

(
Φ + i

m

(
∂
∂t + ieV

)
Φ

Φ− i
m

(
∂
∂t

+ ieV
)
Φ

)
(2)

where Φ is a solution of Klein-Gordon equation, and Ĥ is the Hamiltonian operator given
by

Ĥ = − 1
2m

(∇− ieA)2 (τ3 + iτ2) + mτ3 + eV. (3)

Here, (V, A) is the electromagnetic potential field and (τ1, τ2, τ3) are the Pauli matrices
describing the two degrees of freedom related to the charge and defined as

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (4)

Equation (1) is known as the Feshbach-Villars (F.V.) equation. This lets the fundamental
charge symmetry required by relativity to be apparent in the formalism and has various
advantages from which one can cite the uniqueness of two component wave function
determined from its initial value. Thus, the perturbation theory could be developed
similar to Schrodinger theory. The negative energy solutions still exist and are interpreted
as antiparticles. In effect, the density and current become

ρ = ΨΨ, (5)

j =
1

2im

[
Ψ(τ3 + iτ2)∇Ψ−∇Ψ(τ3 + iτ2)Ψ − e

m
A.Ψ(τ3 + iτ2)Ψ

]
, (6)

where

Ψ = Ψ†τ3. (7)

ρ is positive for positive energy and negative for negative energy and is interpreted,
respectively, as the charge density of the particle and the antiparticle. Let us also remark
that the positive solution and negative solution are connected one to each other by a
charge conjugaison transformation defined by

Ψ→ Ψc = τ1Ψ∗. (8)

Namely, if Ψ is a solution of the equation
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i
∂Ψ
∂t

= Ĥ(e)Ψ, (9)

Ψc will be a solution of the conjugated equation

i
∂Ψc

∂t
= Ĥ(−e)Ψc. (10)

where we have replaced charge (e) with (−e). Accordingly, the density-current vector
transforms through this charge conjugation like

ρ→ −ρc and j→ jc. (11)

Following this interpretation, we could say that if Ψ describes a particle (π+ meson) Ψc

should then describe an antiparticle (π− meson). In the case where Ψ = Ψc, we are
describing a neutral particle (π0 meson).

In what follows, our aim is to set up a path integral formalism for this F.V. equation.
We shall use an extended space to describe the evolution, namely in addition to the
dynamics of the exterior motion, we shall give a “dynamics” to the charge symmetry. A
simple and a direct way to do this is to replace the Pauli matrices describing this symmetry
by a fermionic Schwinger model. Finally, before elaborating the path integral propagator,
let us introduce some definitions and notations useful for further developments relative
to the fermionic operators and their corresponding coherent state representation.

Let (a, a+) be a pair of two fermion operators verifying the usual anticommutation
relations

[
a, a+

]
+

= 1, [a, a]+ =
[
a+, a+

]
+

= 0. (12)

The coherent state of fermionic oscillator algebra is defined as an eigenvector of the
annihilation operator

a | η >= η | η >, (13)

where η is a Grassmann variable.
These states can be generated from a vacuum state | 0 > by the relation

| η >= e−ηA
+
| 0 >, (14)

and have the following two main properties:
non orthogonality

< η|η′ >= exp[ηη′], (15)
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and resolution of unity

∫
dηdη exp[−ηη] | η >< η |= 1. (16)

Finally, if one furthers the calculations, one often encounters the integral of exponential
of quadratic forms. Then, one may find useful the following identity∫ n∏

j=1

dηjdηj exp[−ηMη + ηJ + Jη] = detM exp[JM−1J ]. (17)

B. Path integral for F.V. equation

Let us consider a spinless particle of mass m interacting with an electromagnetic
field. The Hamiltonian governing the evolution of the system is given by the formula (3).
By using the Schwinger model, this Hamiltonian will convert from matrix form to the
fermionic one as

Ĥ = − 1
2m

(∇− ieA)2
C† (τ3 + iτ2)C + mC†τ3C + eV, (18)

with

C =
(

c1

c2

)
and C† =

(
c†1, c

†
2

)
, (19)

and
(
c1, c

†
1

)
and

(
c2, c

†
2

)
are pairs of fermionic operators.

In order to describe the dynamics of this system, we choose the following extended

state | x; η〉, where x is an exterior coordinate and η =
(

η1

η2

)
is a pair of Grassmann

variables related to the symmetry of charge involved in the problem.
The propagator related to this system and governed by the Hamiltonian (18) is written

in the representation | x; η〉 as

K(f, i; T ) = 〈xf ; ηf | U(T ) | xi; ηi〉, (20)

where

U(T ) = TD exp

(
−i

∫ T

0

Hdt

)
, (21)

TD is Dyson time ordering symbol.
In order to get a path integral form for the propagator K(f, i; T ) we, divide, as usual,

the time interval T into (N + 1) equal parts ε = T
N+1

and take the limit N →∞. Hence,
we can easily get the following expression:
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K(f, i; T ) = lim
N→∞

〈xf ; ηf |
(
e−iεH

)N+1 | xi; ηi〉. (22)

Next, we introduce between each pair of the infinitesimal evolution operators the com-
pleteness relation (16) to obtain a discretized form of the propagator (22):

K(f, i; T ) = lim
N→∞

∫ N∏
j=1

dxj
N+1∏
j=1

dpj
(2π)3

N∏
j=1

dηjdηj exp[−ηjηj ]

N+1∏
j=1

exp
[
ηjηj−1 + +ipj∆xj − iεηjQ(j)ηj−1 − iεeV (xj)

]
, (23)

where ∆xj = xj − xj−1, xj = x(tj) with x0 = xa and xN+1 = xb, pj = p(tj), ηj =
η(tj), ηj = η(tj) with η0 = ηa and ηN+1 = ηb, and Q(j) is the Hamiltonian matrix
defined by

Q(j) =
1

2m
(pj − eAj)

2 (τ3 + iτ2) + mτ3. (24)

In continuous form the discretized expression (23) of propagator would be

K(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫
D3xD3pDηDη

exp

{
i

∫ T

0

dt

[
i

2

(
ηη̇−

.
η η
)

+ pẋ− ηQη − eV (x)
]}

. (25)

In next section, we are concerned by calculations of the propagators relative to the free
case and a constant magnetic interaction using this formalism. To this aim, we shall at
first expose the general method in treating the problems of vanishing scalar potential
(V = 0) via a canonical transformations analogous to the F.W. transformation.

3. Method and applications

A. General method via Foldy-Wouthuysen transformation

It is well known that F.W. transformation has been introduced to transform the
free Dirac equation into a form in which it is easy to associate operators with classical
dynamical variables. The F.V. equation displays the same peculiar properties and it is also
possible in this case to find an analogous canonical transformation by which the difficulties
related to the interpretation of the theory disappear[2]. Indeed, in this representation
F.V. Hamiltonian becomes Hermitian and the positive and negative energy solutions are
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completely decoupled. So, the conventional probability interpretation is restored. In the
following, we want to use this canonical transformation in path integral calculations of
the F.V. propagator where V = 0. Furthermore, to get a solution of this problem, we
should only suppose that the corresponding non-relativistic problem might be solvable.

Thus, replacing V = 0 and arranging the path integral integrations in the expression
(25) , one will get

K(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫
DηDη exp

{
i

∫ T

0

dt

[
i

2
(ηη̇ − ηη) −mητ3η

]}
K̃η(f, i; T ) (26)

where

K̃η(f, i; T ) =
∫
D3xD3p exp

{
i

∫ T

0

dt

[
pẋ− 1

2m
(p− eA)2η (τ3 + iτ2) η

]}
(27)

As previously mentioned if we suppose that this latter propagator, which is nothing
but the corresponding non-relativistic case, is solvable we could, in principle, write the
following result:

K̃η(f, i; T ) =
∞∑
n=0

Ψn(xf )Ψ∗n(xi)e−iEn
R T
0 dtη(τ3+iτ2)eiλη (28)

where En is the spectrum related to the problem and Ψn(x) is the corresponding wave
functions. We note that in the presence of the scattering states the method remains valid.

Now, at this level, we introduce the canonical transformation defined by

η → e−iS(En)ξ; η → ξeiS(En), (29)

such that

eiS(En)(En(τ3 + iτ2) + mτ3)e−iS(En) = τ3En ≡ H, (30)

where

En =
√

m2 + 2mEn. (31)

This equation represents the spectrum of the relativistic problem which is closely related
to the non-relativistic one.

Now, it is easy to show that

S(En) = τ1θ(En) (32)
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where

θ(p) = − i

2
tanh−1

(
En

En + m

)
. (33)

Inserting all these modifications in the expression (26) we get for the propagator the
following result

K(f, i; T ) =
∞∑
n=0

Ψn(xf )Ψ∗n(xi) exp(
ξbξb + ξaξa

2
)

∫
DξDξ exp

{
i

∫ T

0

dt

[
i

2

(
ξ
.

ξ −
.

ξ ξ

)
− Enξτ3ξ

]}
. (34)

It clear that the path integral present in Eq.(34) could be easily done due to the its
diagonal form. Hence, by projecting the result of integrations on the charge space, one
will obtain

K(f, i; T ) =
∞∑
n=0

Ψn(xf )Ψ∗n(xi)
[
e−iEnTu(En)u(En)− eiEnT v(En)v̄(En)

]
(35)

where

u(En) = 1
2(mEn)1/2

(
m + En
m− En

)
, (36a)

and

v(p) = 1
2(mEn)1/2

(
m− En
m + En

)
. (36b)

ū = u†τ3, v̄ = v†τ3.
The expression (35) is known as a spectral decomposition of F.V. propagator from

which we easily deduce a formal expression of the spectrum and corresponding wave
functions.

B. Applications

1. The free case

In this case we put V = 0 and A = 0 in the propagator given by Eq.(25)

K0(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫
D3xD3pDηDη

exp

{
i

∫ T

0

dt

[
i

2

(
ηη̇−

.
η η
)

+ pẋ− η

(
p2

2m
(τ3 + iτ2) + mτ3

)
η

]}
. (37)
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The path integration over D3x is straightforward and gives the impulse p as a constant
of motion. Then, the propagator reduces to

K0(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫

d3p

(2π)3 eip(xf−xi)

∫
DηDη

exp

{
i

∫ T

0

dt

[
i

2

(
ηη̇−

.
η η
)
− η

(
p2

2m
(τ3 + iτ2) + mτ3

)]
η

}
. (38)

At this stage, we introduce the canonical transformation defined by

η → e−iS(p)ξ η → ξeiS(p),

such that

eiS(p)Qe−iS(p) = τ3Ep ≡ H (39)

where

Q(p) = (p2/2m)(τ3 + iτ2) + mτ3andEp =
√

p2 + m2. (40)

It is easy to show that

S(p) = τ1θ(p), (41)

where

θ(p) = − i

2
tanh−1

(
p2/2m

p2/2m + m

)
. (42)

Inserting this canonical transformation in Eq.(38), it is seen that the integration over(
ξ, ξ
)

becomes easy since the Hermitian Hamiltonian H is diagonal. Thus, the result will
be

K̃0(f, i; T ) =
∫

d3p
(2π)3 .eip(xf−xi) exp

(
ξf e
−iτ3EpT ξi

)
. (43)

By returning to the old representation, we shall get

K0(f, i; T ) =
∫

d3p
(2π)3 eip(xf−xi) exp(

ηbηb + ηaηa
2

) exp
(
ηf e
−iS(p)e−iτ3EpT eiS(p)ηi

)
. (44)

Projecting this result on the isocharge space, we obtain the matrix representation of the
free F.V. propagator:

K0(xf , xi; T ) =
∫

d3p

(2π)3 eip(xf−xi)
[
e−iEpTu(p)ū(p)− eiEpT v(p)v̄(p)

]
, (45)
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where Ep =
√

p2 + m2 and ū = u†τ3, v̄ = v†τ3

with

u(p) = 1
2(mEp)1/2

(
m + Ep

m− Ep

)
, (46a)

and

v(p) = 1
2(mEp)1/2

(
m−Ep

m + Ep

)
. (46b)

Expression (45) is known as the spectral decomposition of the F.V. propagator from which
one identifies the spectrum and corresponding wave functions of the free case:

positive energies E = Ep =
√

p2 + m2

Ψ(+)
p (x) =

1
(2π)3/2

eipxu(p), (47a)

and negative energies E = −Ep = −
√

p2 + m2

Ψ(−)
p (x) =

1
(2π)3/2

e−ipxv(p). (47b)

According to F.V. formalism, these two solutions are connected by the charge conjugaison
transformation (5). These results coincide exactly with those of the literature[1].

Let us now turn to the related Green’s function which plays an important role in
physics. It can be deduced from this propagator via the Fourier transformation

G0(xf , xi; E) =
∫ +∞

0

dTK0(xf , xi; E)eiET , (48)

where we point out that the integration over T variable goes from 0 to infinity. In
fact, this means that the propagation backward in time has been omitted, namely, in
F.V formalism the θ(−T ) is replaced by the sign (-) of the matrix τ3, introduced for an
isocharge symmetry.

It is easy to show that the result of integration over T in Eq.(48) yields

G0(xf , xi; E) = iτ(E)
∫

d3p

(2π)3
exp [ip(xf − xi)] 1

E2−(p2+m2)

− i

2m
δ (xf − xi) (τ3 + iτ2) , (49)

168



MERAD, BOUDJEDAA, CHETOUANI

where

τ (E) = E +
E2 + m2

2m
τ3 + i

E2 −m2

2m
τ2. (50)

Integrating out the impulse variables, one obtains the following result, according to energy
value,

a) for E > m :

G0(xf , xi; E) = − i

4π

ei
√
E2−m2|xf−xi|

| xf − xi |
τ (E)− i

2m
δ (xf − xi) (τ3 + iτ2) , (51a)

b) for −m < E < m :

G0(xf , xi; E) = − 1
4π

e−
√
m2−E2|xf−xi|

| xf − xi |
τ (E)− i

2m
δ (xf − xi) (τ3 + iτ2) , (51b)

c) for E < −m :

G0(xf , xi; E) =
i

4π

e−i
√
E2−m2|xf−xi|

| xf − xi |
τ (E) − i

2m
δ (xf − xi) (τ3 + iτ2) . (51c)

Let us remark that Green’s function contains two parts, one regular times an idem-
potent matrix τ (E) and the other irregular δ (xf − xi) times a nilpotent matrix (τ3 + iτ2).
Incidentally, the two parts are essential in the calculations where the potential is present[11]-
[?]. Now, we go to extract from this 3-dimension Green’s function, its radial part which
could be useful for applications relative to central potential. For example, it is readily
shown that for E > m.

Gl0(rf , ri; E) = π
2
√
rf ri

Jl+ 1
2

(√
E2 −m2r<

)
H

(1)

l+ 1
2

(√
E2 −m2r>

)
τ (E)

− i

2m

1
rfri

δ (rf − ri) (τ3 + iτ2) , (52)

where r> = max(rf , ri), and r< = min(rf , ri),and, Jν(x) and H
(1)
ν (x) are respectively

the Bessel and Hankel functions of order ν.
In obtaining the expression (52), we have used the following relations[13],

eikR

R
=

iπ

2
√

r<r>

∞∑
l=0

(2l + 1)Jl+ 1
2

(kr<)H
(1)

l+ 1
2

(kr>)Pl(cos Θ), (53)

where R =| xf − xi | and Θ is the angle between xf and xi, and with
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Pl(cos Θ) =
4π

2l + 1

∞∑
l=0

+l∑
m=−l

Y m
l (θf , ϕf)Y m∗

l (θi, ϕi) (54)

δ (xf − xi) =
1

rf ri
δ (rf − ri)

∞∑
l=0

+l∑
m=−l

Y m
l (θf , ϕf)Y m∗

l (θi, ϕi). (55)

C. Constant magnetic field

For simplicity, we choose the direction of magnetic field along the z axis and the gauge
is fixed as

A = (0, Bx, 0) , (56)

where B is the strength of the field.
Thus, the related propagator is given by

KB(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫
D3xD3pDηDη

exp

{
i

∫ T

0

dt

[
i

2

(
ηη̇−

.
η η
)

+ pẋ− η
(

(p−eA)2

2m (τ3 + iτ2) + mτ3

)
η

]}
. (57)

Fixing the paths (η, η), this expression can be rearranged as follows

KB(f, i; T ) = exp(
ηbηb + ηaηa

2
)
∫
DηDη exp

{
i

∫ T

0

dt

[
exp i

∫ T

0

dt
i

2

(
ηη̇−

.
η η
)

+pẋ −mητ3η]}Kη(xf , xi; T ), (58)

where the kernel Kη(f, i; T ) corresponds to the form of the non-relativistic propagator of
the magnetic field problem and is given as

Kη(xf , xi; T ) =
∫
D3xD3p exp

{
i

∫ T

0

dt
[
pẋ− η

(
(p−eA)2

2m
(τ3 + iτ2)

)
η
]}

. (59)

The expression of this latter propagator could be easily evaluated and the result is given
as

Kη(f, i; T ) =
∫

dpz
2π

dpy
2π

eipz(zf−zi)+ipy(yf−yi)

170



MERAD, BOUDJEDAA, CHETOUANI

×
[ ∞∑
n=0

Φn(xf − py/mω)Φ∗n(xi − py/mω)e−iEn
R T
0 dtη†(τ3+iτ2)eiλη

]
, (60)

where

En =
p2
z

2m
+
(

n +
1
2

)
ω; ω =

eB

m
, (61)

and Φn(x) are the oscillator wave functions

Φn(x) =
(

1
2nn!

√
π

)1/2 (
mω
4

)1/2
e−

mω
2 x2

Hn

(√
mωx

)
, (62)

Hn(x) are Hermite polynomials.
At this level, it remains the evaluation of path integrals over (η, η) variables. This

could be done using the previous canonical transformation of the free case in which the
following modifications occur:

p2

2m
→ p2

z

2m
+
(

n +
1
2

)
ω = En (63a)

S(p)→ S(n, pz) = τ1θ(n, pz), (63b)

with

θ(n, pz) = − i

2
tanh−1

(
En

En + m

)
. (64)

Therefore, the corresponding Hermitian Hamiltonian gets the following diagonal form:

H(n, pz)=τ3

√
p2
z + m2 + 2m(n + 1/2)ω. (65)

Proceeding as previously, one obtains the final form of the F.V. propagator of magnetic
field problem

KB(f, i; T ) =
∫

dpz
2π

dpy
2π

eipz(zf−zi)+ipy(yf−yi)
∞∑
n=0

Φn(xf − py/mω)Φ∗n(xi − py/mω)

×
[
e−iEnT un(pz)ūn(pz)− eiEnT vn(pz)v̄n(pz)

]
, (66)

where

En =
√

p2
z + m2 + 2m(n + 1/2)ω (67)
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un(pz) = 1
2(mEn)1/2

(
m + En
m− En

)
(68a)

vn(pz) = 1
2(mEn)1/2

(
m− En
m + En

)
, (68b)

and the functions Φn(x) are given by expression (62) .
Accordingly, one will identify the positive and negative solutions as
positive solutions: E = En =

√
p2
z + m2 + 2m(n + 1/2)ω

Ψ(+)
n,py,pz

(x) =
1
2π

eipyy+ipzz ·Φn(x− py/mω) · un(pz), (69a)

negative solutions: E = −En = −
√

p2
z + m2 + 2m(n + 1/2)ω

Ψ(−)
n,py,pz(x) =

1
2π

e−ipyy−ipzz · Φn(x + py/mω) · vn(pz). (69b)

We also notice in this case that these solutions are connected by charge conjugation
transformation as required by the F.V. formalism, and accordingly the center of the
motion has been inverted due to this conjugation of the charge. These results coincide
exactly with those of literature[14].

4. Conclusion

In this paper, we have constructed a path integral formalism for Feshbach-Villars
equation. The description of charge symmetry has naively been copied from the fermionic
Schwinger model of the spin. The propagator is then expressed in an enlarged space. The
exact calculations have been done in the cases of free particle and magnetic field interac-
tion with the help of the well-known Flody-Wouthuysen transformation. In the case of
free particle, we have also given the related Green’s function and a polar decomposition
is then deduced. It has been noticed that the F.V. Green’s function is equal to Klein-
Gordon Green’s function times a matrix containing the potential plus a singular part.
This latter fact is the feature of the F.V. Green’s function in general case. In all cases we
have extracted from the spectral decomposition of the propagator the energy spectrum
and the normalized wave functions and verify that the positive and negative solutions are
connected by charge conjugation transformation

Finally, let us signal that the same problems in the case of Feshbach-Villars equation
for spin 1

2 are under consideration.
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