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Abstract

The Schrodinger equation is examined for small r (i.e. one step beyond the limit
r — 0) for the cases V(r) — r*, (k> 0), and V(r) — r—* (0 < k < 2). In both
cases the solutions are related to appropriate Bessel functions. This result may be
used to obtain approximate functional relations involving Bessel functions. One
such relation is derived in detail and illustrated graphically.
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Consider first the Schrodinger equation for the attractive potential (or more generally
for any potential that goes as r* for small 7):

V(r)y=Ar* k>0: (1)
[—% (j—; - l(l;; 1)> + Ark] tnt(r) = Bt (r). @)

To get the r — 0 limit for the wavefunction u,;(r), the usual procedure [1] is to examine
only the first two terms of this equation, namely for r — 0

1 <d2 I(1+1)

dr? 72

5|5z~ > un(r) = (B — A?“k)unl(T) ~ 0 (3)

i.e.
Uny (1) ~ Fritt (4)

(rejecting the other solution Gr~! that blows up at the origin.)
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For the case k > 0 one can clearly go beyond this approximation to somewhat larger
r by also including the energy term, i.e:

1/ d? (1+1) &
[—5 (W R > — E] Uni (1) = —ArTun(r) ~ 0, (5)
which, when compared to the spherical Bessel equation for rj;(r)
d? (1+1)
- _ 1 ; —
(er r2 - > rilr) =0 (©)

is immediately seen to have the solution:

Uni(r) ~ Crj (\/ﬁr) = C7~1/2\/§J5+1/2 ( 2E7“) (7)

For r — 0 [2],

N 2 /2 7!
) = (21+1)!!{1_2l+3+"'}N 20+ 1)t ®

i.e., as required this more general result, eq. (7), reduces to eq. (4) in the limit » — 0.
It is of interest to observe eq. (7) that gives the form of the wavefunction for small
r (an expression that depends on E, though not on A or k), can also be used to obtain
approximate functional relations.
Thus, if k =2, A=1/2, eq. (2) involves the simple harmonic oscillator system with
n=0,1,.., E=2n+1+ 3/2, and exact solutions:

Uny(T) ~ 7““’16_’“2/21F1(—n; 143/2; r?) — P oasr — 0.

These oscillator wavefunctions can be related to the Bessel functions via eq. (7), i.e.
Uni(r) ~ Crji(v/4n + 21+ 3 r). To obtain the constant C in eq. (7) for this case, one
notes that for the simple harmonic oscillator wavefunction, t,;(r) —,—g r'*1 and using
eq. (8), asr — 0,

Cr(v2Er) | C_(Ql—i—l)!!
ROV ie. _7(@)5 :

Redefining vV2F r — r, and noting that for this potential E = 2n + [ + 3/2, one has:

un(r) — ' ~ Crji(V2Er) —

!
; T r —r?/(8n
Ji(r) = UngH/Q(T) ~ m@ [EnAA6) By (s L+ 3/2;0% )/ (4n + 20+ 3)) . (9)

This formula can also be obtained using an expression [3] for the Bessel function in terms
of Associate Laguerre functions. It is very accurate for small  as can be seen from figures
1 and 2. These figures were drawn using the Mathematica software [4].
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Ja(r)

Figure 1. Plot for n =5, and [ = 1, of

2 7’l+% —r2 /(8n+4146) 3. o
Jl+1/2(T) and \/;me 1F1(—n,l+§,r /(4n+2l+3))
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: : : AN
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Figure 2. Plot for n =4, and [ = 0, of

2 7’l+% —r2 /(8n+41+6) 3 o
Jl+1/2(T) and \/;me 1F1(—n,l+§,r /(4n+2l+3))

If both sides of eq. (9) are expanded in powers of r, one can easily verify that the
first two terms are equal.

If one examines the case k = 1, one can similarly relate the Bessel and Airy functions,
etc.
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This procedure (and hence eq. (7)) cannot be applied to potentials where k& < 0, (i.e.
when the potential goes as 7~¥I as r — 0) since the r.h.s. of eq. (5) is not small in
this limit. However, if one considers the three-dimensional Schréodinger equation for an

attractive potential that goes as r—*:

V(r) = —|Alr~* 0< k<2,
1 /d*> 1(l+1 _
[—5 (ﬁ_ (7,2 )> —|Alr k—E] uni(r) =0, (10)

and applies the transformation [5,6] r = p™, m = 2/(2 — k), this yields the “related”
Schrédinger equation:

1/ d (ki — 1)k —3) YA T o AE a
5 () O = e e,

where kn, = (41+6 —2k)/(2— k), un(r) = p™~1/2w™(p). For small p one can ignore
the term on the r.h.s. of eq. (11).

Thus, if K = (—V28_|:)|, y = Kp, for small p this equation becomes:

(dd? (k- z)y(fm =3, 1> w™(y) ~ 0, (12)

which one can again compare with the Bessel differential eq. (6).
Hence, in this case one obtains finally for small 7:

8|A
Uni(1) ~ Cri-s J a1tk (lel T(Q_k)/2> . (13)

This result is independent of E, but depends on |A|, and k. Additionally, as it should,
for r — 0 it too reduces to eq. (4).

Consider for example the Coulomb potential system (k = 1, m = 2, |A| = 1). For
small r eq. (13) implies one can also relate Coulomb and Bessel functions. For this case:

. ™
Unl(?“) ~ 07"3/4]2l+1/2 (\/grl/Q) = C\/;T1/4J2H_1 (\/§T1/2) . (14)

Conclusion

For potentials that go as Ar* (k > 0), or Ar=* (0 < k < 2), for small 7 the solutions of
the Schrodinger equation can be related to specific Bessel functions. In the former case the
relation( eq. (7)) involves E, and in the latter( eq. (13) ), A, and k. For the special cases
where the exact solutions are known analytically, this leads to approximate functional
relations between these solutions and appropriate Bessel functions. In particular this

178



MAVROMATIS

discussion explains why and how Bessel, and harmonic oscillator, Airy, Coulomb, etc.
functions are related for small r. The relation obtained for the harmonic oscillator case is
discussed in detail and illustrated graphically.

The author would like to acknowledge KFUPM support.

References
[1] E. Merzbacher, J. Wiley 2nd edition 1971 p. 201.
[2] Handbook of Mathematical Functions Eds Abramowitz & Stegun p. 437.
[3] Erdélyi, Higher Transcendental Functions v. 2, p. 199.
[4] S. Wolfram, Mathematica, (Addison-Wesley Publishing Company, 1988).

[5] H. A. Mavromatis, “Families of Interrelated Schrodinger Equations”, J. Phys. A 30, pp.
1685-1688 (1997).

[6] H. A. Mavromatis, “Transformations between Schrodinger Equations”, Am. J. Phys. 66
(1998) pp. 335-337.

179



