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Abstract

A new way of computing overlap, kinetic and nuclear attraction integrals over
Slater functions by means of optimized Gaussian expansion is proposed. This article
is concerned with the construction of the general algorithm for evaluating the three
integrals. These integral formulae presented in the form of a series whose terms
are the analytical function of inter-atomic distances. In the present method, unlike
many other popular methods, the numerical integration procedure is unnecessary
since it does not contain the incomplete gamma function. The present scheme has
been programmed in standard Fortran-77 and tested for various orbitals. The result
of the calculation are compared with the literature data.

1. Introduction

Due to rapid advances in computer technology, there has been an increasingly wide-
spread use of numerical electronic structure calculations. On the other hand, while there
exist a number of highly accurate, computationally efficient and user friendly computer
packages, many molecules are so large that only a semiempirical treatment is feasible. In
view of the rapid progress of computer capability, it is very desirable to have a reliable
assessment of the usefulness of a Gaussian-type orbital (GTO) as a basis function for
large-scale molecular calculation. The advent of high-speed computers has encouraged
researchers to launch a major programming effort on quantum-mechanical calculations of
polyatomic systems. The ease of evaluating molecular integrals over Gaussian functions
in contrast with Slater-type orbitals was originally reported by Boys [1] . With the advent
of high-speed computers, considerable exploration work on the use of Gaussian functions
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for molecular calculations has been undertaken. Huzinaga [2] explored the same matter in
greater detail and with much larger GTO basis set functions. In the same work, Huzinaga
developed GTO expansions for approximate Hartree-Fock solutions of first-row atoms.

The method of least squares for Gaussian expansions has been employed by a variety of
workers [3-6]. Boys and Shavitt [3] used a least-squares method whereby the exponential
coefficients and the expansion coefficients were adjusted in blocks, but not simultaneously
in a full matrix method, to arrive at a minimum error. Reeaves and Flecther [4] used linear
least squares for determination of the expansion coefficients and adjusted the exponential
variables by finite differencing method. Expansion of Clementi [7] STO SCF AOs for
some first-row atoms with GTOs have been obtained by the method of least squares.

Under these circumstances, it is still important to obtain simpler and compact expres-
sion for evaluation of multi-center one-electron integrals permitting one to more easily to
generate the associate computer-based solutions [8-11]. In the present work, a computer
algorithm is proposed for computation of overlap, kinetic and nuclear attraction integrals
over Gaussian basis set functions for the region of moderate overlap. Unlike many other
popular methods, our method does not ascertain the incomplete gamma function which
needs many numerical integration procedures.

2. Mathematical Analysis

In this section we give the analytical solutions for the molecular integrals needed in
the SCF computation. In Cartesian coordinates a GTO centered at A is written as

χ(A, α, l, m, n) = (x−Ax)l(y −Ay)m(z − Az)n exp(−αr2
A)

= xlAymA znA exp(−αr2
A). (2.1)

Here, xA, yA and zA are the components of position vector rA relative to A, i.e., rA =
r−A; and l, m and n are quantum numbers. The normalization factor for the Gaussian
function (2.1) is

Nα =
[
(
2α

π
)1/2 22(l+m+n)αl+m+n

(2l− 1)!!(2m− 1)!!(2n− 1)!!

]1/2

, (2.2)

where (2l− 1)!! = 1.3.5 . . .(2l − 1).
In the following formulae all coordinate systems are parallel and right-handed. The

GTO function has the following characteristic property: Suppose that there are two 1s
GTOs, exp(-α1r

2
A) and exp(-α2r

2
B), centered at A and B, respectively (Figure 1). Thus,

we have

S = χ(A, α1, l1, m1, n1)χ(B, α2, l2, m2, n2)
= Nα1Nα2x

l1
Axl2Bym1

A ym2
B zn1

A zn2
B exp(−α1r

2
A)exp(−α2r

2
B). (2.3)
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Figure 1. Coordinate system.

The following formula is the center of the new Gaussian function, the product of the
Gaussians on A and B:

Di =
α1Ai + α2Bi

α1 + α2
, (i = x, y, z).

Thus we have

Nα1Nα2x
l1
Axl2Bym1

A ym2
B zn1

A zn2
B exp(−αDr2

D)exp(−α1α2

αD
r2
AB), (2.4)

where αD = α1 + α2.

The Overlap Integral

The use of the formula (2.4) immediately gives the following expression for the overlap
integral

O =
〈

χ(A, α1, l1, m1, n1)χ(B, α2, l2, m2, n2)
〉

=
∫ ∫ ∫

Nα1x
l1
Aym1

A zn1
A exp(−α1r

2
A)Nα2x

l2
Bym2

B zn2
B exp(−α2r

2
B)dxdydz

= Nα1Nα2exp(− α1α2

α1 + α2
r2
AB)OxOyOz, (2.5)
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where

Ox =

∞∫
−∞

xl1Axl2Bexp(−αDx2
D)dx. (2.6)

In defining the integrals over Gaussian functions (2.6), the following auxiliary functions
are used:

(a + b)n =
n∑
j=0

Cj
na

n−jbj, n = 1, 2, 3 . . . ; (2.7)

Cj
n =

(
n
j

)
=

n!
j!(n− j)!

, (j = 0, 1, 2, . . .≤ n = 0, 1, 2, . . .); (2.8)

∞∫
−∞

xnexp(−px2 + 2qx)dx = n!exp(q2/p)
√

π

p
(
q

p
)n

int(n/2)∑
k=0

1
(n− 2k)!k!

(
p

4q2
)k (2.9)

using the formulae (2.7), (2.8) and (2.9), we have

Ox =
l1∑

k1=0

l2∑
k2=0

(
l1
k1

)(
l2
k2

)
(XD −XA)l1−k1(XD −XB)l2−k2SART, (2.10)

where

SART =


(k1+k2−1)!!

(2αD)k1+k2)/2
√

π
αD

if k1 + k2 is odd

0 if k1 + k2 is even
(2.11)

The Kinetic Energy Integral
The kinetic energy integral is defined by

KI =
〈

χ(A, α1, l1, m1, n1)
∣∣∣∣−1

2
∇2

∣∣∣∣χ(B, α2, l2, m2, n2)
〉

= Nα1Nα2 [α2{2(l2 + m2 + n2) + 3}〈(A, α1, l1, m1, n1)(B, α2, l2, m2, n2)〉
− 2α2

2{〈(A, α1, l1, m1, n1)(B, α2, l2 + 2, m2, n2)〉
+ 〈(A, α1, l1, m1, n1)(B, α2, l2, m2 + 2, n2)〉
+ 〈(A, α1, l1, m1, n1)(B, α2, l2, m2, n2 + 2)〉}

− 1
2
l2(l2 − 1)〈(A, α1, l1, m1, n1)(B, α2, l2 − 2, m2, n2)〉
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− 1
2
m2(m2 − 1)〈(A, α1, l1, m1, n1)(B, α2, l2, m2 − 2, n2)〉

− 1
2
n2(n2 − 1)〈(A, α1, l1, m1, n1)(B, α2, l2, m2, n2 − 2)〉]. (2.12)

The Nuclear Attraction Integrals
The two-center nuclear attraction integral is defined by

NI2 = 〈χ(C, α1, l1, m1, n1)
∣∣∣∣ 1
rA

∣∣∣∣χ(C, α2, l2, m2, n2)〉, (2.13)

where

∣∣∣∣ 1
rA

∣∣∣∣ =
4π

R

∞∑
l=0

l∑
m=1

(−1)l(
rD
R

)l
Y m
l (θD , ϕD)Y m

l (θR, ϕR)
2l + 1

=
1
R

∞∑
l=0

(−1)l(
rD
R

)l[
Pl(cos θD)Pl(cos θR) + 2

l∑
m=1

(l −m)!
(l + m)!

Pm
l (cos θD)Pm

l (cos θR) cos m(ϕD − ϕR)

]
.

(2.14)

Putting this expression back into Eqn. (2.13), we obtain

NI2 = Nα1Nα2

∞∑
l=0

(−1)l
1

Rl+1
I(r)I(θR , ϕR, θD, ϕD), (2.15)

where

I(r) =

∞∫
0

rl1+l2+m1+m2+n1+n2+2+l
D exp(−(α1 + α2)r2)drD

I(θR, ϕR, θD, ϕD) = I(θD , ϕD, Pl) + 2
l∑

m=1

(l −m)!
(l + m)!

I(θD , ϕD, Pm
l ),

where

I(θD , ϕD, Pl) =

 2π∫
0

(sin ϕD)m1+m2 (cos ϕD)l1+l2dϕD

.

π∫
0

(sin θD)l1+l2+m1+m2+1(cos θD)n1+n2Pl(cos θD)dθD

Pl(cos θR)
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I(θD , ϕD, Pm
l ) =

 2π∫
0

(sin ϕD)m1+m2 (cos ϕD)l1+l2 cos(mϕD)dϕD

π∫
0

(sin θD)l1+l2+m1+m2+1(cos θD)n1+n2Pm
l (cos θD)dθD

 cos(mϕR)Pm
l (cos θR)

+

 2π∫
0

(sin ϕD)m1+m2 (cosϕD)l1+l2 sin(mϕD)dϕD

.

π∫
0

(sin θD)l1+l2+m1+m2+1(cos θD)n1+n2Pm
l (cos θD)dθD sin(mϕR)Pm

l (cos θR)

 ,

and where

Pm
l (x) = (1− x2)m/22−l

(l−m)/2∑
k=0

(−1)k
(2l− 2k)!

k!(l−m− 2k)!(l− k)!

RAC =
√

(XC −XA)2 + (YC − YA)2 + (ZC − ZA)2

θR = arctan[(ZC − ZA)/RAC]
ϕR = arctan[(YC − YA)/(XC −XA)]

The three-center nuclear attraction integral is defined by

NI3 =
〈

χ(A, α1, l1, m1, n1)
∣∣∣∣ 1
rC

∣∣∣∣χ(B, α2, l2, m2, n2)
〉

= Nα1Nα2exp(− α1α2

α1 + α2
R2
AB)

l1∑
k1=0

m1∑
k2=0

n1∑
k3=0

l2∑
k4=0

m2∑
k5=0

n2∑
k6=0

(
l1
k1

)(
m1

k2

)(
n1

k3

)
(

l2
k4

)(
m2

k5

)(
n2

k6

)
Xl1−k1
DA Y m1−k2

DA Zn1−k3
DA Xl2−k4

DB Y m2−k5
DB Zn2−k6

DB I(rD, θD, ϕD),

(2.16)

where

I(rD , θD, ϕD) =
∞∑
l=0

(−1)l
1

Rl+1

∞∫
0

rl+k1+k2+k3+k4+k5+k6+2
D exp(−αDr2

D)drD

π∫
0

2π∫
0

(sin θD)k1+k2+k4+k5+1(cos θD)k3+k6 (sin ϕD)k2+k5(cos ϕD)k1+k4
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[
Pl(cos θD)Pl(cos θR) + 2

l∑
m=1

(l −m)!
(l + m)!

Pm
l (cos θD)Pm

l (cos θR) cos m(ϕD − ϕR)

]
dθDdϕD.

Hear,

R =
√

(Xnuc −XD)2 + (Ynuc − YD)2 + (Znuc + ZD)2

θR = arctan[(ZD − Znuc)2/R]
ϕR = arctan[(YD − Ynuc)/(XD −Xnuc)]

J
Dİ = JD − Jİ, J = X, Y, Z; İ = A, B.

3. Computer Details

In this section we shall briefly outline the organization of the computer program [12-
13]. All the numerical calculations were performed on a Pentium 200 processor. All the
programs were written using the Fortran 77 language with double precision (about 11-
12 digits accuracy). The computation is over all the possible combinations of Gaussian
functions. It is not very hard to code these formulae quite generally, but our coding is
limited to the cases in which the sum of the quantum numbers of a GTO apperaring in
the integral does not exceed 2(l + m + n ≤ 2). This restriction makes it possible to get
an efficient program.

For the overlap integral,
i) in the Eqn.(2.5); l, m and n are integer quantum numbers and are zeros or positive.
Thus, Nα is written as,

Nα,i =
22i

(2i− 1)!!

√
2α

π
, i = l, m, n

Nα =
√

Nα,lNα,mNα,n.

ii) In Eqn.(2.11); in the term of SART, if XA and XB are zeros, k1 + k2 must be equal
to l1 + l2.

To calculate the kinetic energy integral, it is enough to solve the overlap integrals.
According to quantum number being linked to only subprogram, the integrals in the
Eqn.(2.12) are separately calculated.

To calculate the nuclear attraction integrals, our task is to code the above formulae
(Eqns.2.15 and 2.16 ) for the computer. For this purpose, we should solve the following
integrals:

1) I(r) =
∞∫
0

rnexp(−pr2)dr; p = α1 + α2

and is solved as,
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if n is even I(r) =
(2n− 1)!!
2n+1pn

√
π

p
; |p > 0|

if n is odd I(r) =
n!

2pn+1
; |p > 0| ;

2) I(ϕ) =
2π∫
0

(sin ϕ)p(cos ϕ)qdϕ

If p and q are simultaneously even, the nonzero solutions of this integral can be
possible.

This quantity is computed in our program using the following explicit expressions:

I(ϕ) =

2π∫
0

(sin ϕ)2m(cos ϕ)2ldϕ =
(2l − 1)!!(2m− 1)!!

[(2l + 2m)(2l + 2m− 2) . . . (2m + 2)]
2π

2mm!

3) I(θ) =
π∫
0

(cos θ)p(sin θ)qdθ.

With q always even (q = 2n), this integral is solved for the following two condition of
p : (a) if p is even (p = 2l),

I(θ) =

π∫
0

(cos θ)2n(sin θ)2ldθ =
(2n− 1)!!

[(2n + 2l)(2n + 2l− 2) . . . (2l + 2)]
(2l− 1)!!

2ll!
π;

(b) if p is odd (p = 2l + 1),

I(θ) =

π∫
0

(cos θ)2n(sin θ)2l+1dθ =
(2n− 1)!!

[(2n + 2l + 1)(2n + 2l − 1) . . . (2l + 3)]
22l+1(l!)2

(2l + 1)!
.

4)
π∫
0

(sin θ)l(cos θ)mP k
s (cos θ)dθ = (2s−1)!!

(s−k)!

 π∫
0

(sin θ)l+k(cos θ)m+s−kdθ +
∑
j=1

π∫
0

(sin θ)l+k(cos θ)s−k−2jdθ

j∏
p=1

(α + p− 1)(β + p − 1)
(γ + p− 1)p

 ,

where P k
s (cos θ) is the associated Legendre polynomial, and

α =
k − s

2
, β =

k − s + 1
2

, γ =
1
2
− s.
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5)

2π∫
0

(cosϕ)l(sin ϕ)m cos kϕdϕ = 2k−1

2π∫
0

(cos ϕ)l+k(sin ϕ)mdϕ

+
k/2∑
d=1

(−1)d
k

d

(
k − (d + 1)

d− 1

)
2k−(2d+1)

2π∫
0

(cosϕ)l+k−2d(sin ϕ)mdϕ.

6)

2π∫
0

(cosϕ)l(sin ϕ)m sin kϕdϕ =
k/2∑
d=1

(−1)d
(

k − (d + 1)
d

)
2k−(2d+1)

2π∫
0

(cosϕ)l+k−(2d+1)(sin ϕ)m+1dϕ.

Two- and three-center nuclear attraction integrals given in Eqns.(2.15 and 2.16) are
easily calculated by means of the integrals given in (1)-(6).

4. Results and Discussion

The values of multi-center one electron integrals (overlap, kinetic and nuclear attrac-
tion) for 1s, 3p and 3d atomic orbitals are computed over the 1s Slater function by using
the approximate GTO expansions. We choose various shells and subshells (1s, 3p and 3d)
to verify the presented method. The results of the calculations are comparetivelly given
with the literature data in Tables I and II. In these calculations, we used the values of di
and αi given by Taketa et. al [14]. The overlapping of the orbitals centered on A(0,0,0),
B(R,0,0), C(0,R,0) and D(0,0,R) depend on R (Figure 2).

x
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z

2(R,0,0)

1(0,0,0) 3(0,R,0)

4(0,0,R)

z2

x2

y2

z3z1

y1

x1

y3

x3

Figure 2. Used Model system.
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Table 1. The Overlap and Kinetic Energy Integrals: 1s, 3pπ and 3dπ

Present Work Literature value[14]
R 1S-4G 1S-8G 1S-4G 1S-8G Analytical[15]
4 0.189074 0.1892667 0.189074 0.189267 0.1892616

Overlap 8 0.009785914 0.01021712 0.009786 0.010217 0.0111757
for 1s 12 0.000102757 0.00035429 0.000103 0.000354 0.000374797

16 3.36864E-07 7.54556E-06 0.0000003 0.000008 1.15161E-05
4 -0.00257877 -0.003045098 -0.002579 -0.003048

Kinetic 8 -0.002309783 -0.002049277 -0.00231 -0.002049 -
for 1s 12 -6.45325E-05 -0.000111485 0.000065 -0.000111

16 -3.93411E-07 -3.33865E-06 -0.0000004 -0.000003
4 0.4931019 0.4931038 0.493102 0.493104

Overlap 8 0.08129859 0.08134646 0.081299 0.081346 -
for 3pπ 12 0.007042267 0.007181212 0.007042 0.007181

16 0.000378117 0.00045748 0.000378 0.000457
4 0.07198013 0.07197791 0.07198 0.071978

Kinetic 8 0.00057553 0.000569408 0.000576 0.000569 -
for 3pπ 12 -0.000701426 -0.000695286 -0.000701 -0.000695

16 -7.50065E-05 -7.29553E-05 -0.000075 -0.000073
4 -0.2763853 -0.2823668 -0.282754 -0.282409

Overlap 8 -0.1707508 -0.1691214 -0.171105 -0.16913 -
for 3dπ 12 -0.01945192 -0.02079979 -0.019459 -0.0208

16 -0.000854101 -0.001480048 -0.000854 -0.001484
4 -0.1739189 -0.1774697 -0.177519 -0.177497

Kinetic 8 -0.0232008 -0.0226 -0.023193 -0.0226 -
for 3dπ 12 0.001003907 0.000743542 0.001007 0.000744

16 0.00020677 0.000198189 0.000207 0.000198

Table 2. The Two- and Three-center Nuclear Attraction (N.A.) Integrals: 1s, 3p and 3d.

Two-center Nuclear attraction Three-center Nuclear Attraction Analytical for
R N 1S-4G 1S-8G 1S-4G 1S-8G Two-center N.A.[15]

2 -0.2500005 -0.2500001 -0.0419334 -0.0419585
4 4 -0.2500005 -0.2500001 -0.0419334 -0.0419585 -0.249587

9 -0.2500005 -0.2500001 -0.0419334 -0.0419585
2 -0.1250003 -0.1250001 -0.0008895 -0.0011324

8 4 -0.1250003 -0.1250001 -0.0008895 -0.0011324 -0.1249999
9 -0.1250003 -0.1250001 -0.0008895 -0.0011324

1s 2 -0.0833335 -0.0833334 -7.655E-06 -2.623E-05
12 4 -0.0833335 -0.0833334 -7.655E-06 -2.623E-05 -0.0833333

9 -0.0833335 -0.0833334 -7.655E-06 -2.623E-05
2 -0.0625001 -0.0625 -1.883E-08 -4.207E-07

16 4 -0.0625001 -0.0625 -1.883E-08 -4.207E-07 -0.625
9 -0.0625001 -0.0625 -1.883E-08 -4.207E-07
2 -0.1332028 -0.1332032 -0.002768 -0.002768

8 4 -0.1305002 -0.1304995 -0.002768 -0.002768 –
9 -0.1297164 -0.1296908 -0.002768 -0.002768
2 -0.0857638 -0.085764 -0.0001316 -0.000133

3p 12 4 -0.0854079 -0.0854079 -0.0001316 -0.000133 –
9 -0.0854566 -0.0854562 -0.0001316 -0.000133
2 -0.0635253 -0.0635254 -4.504E-06 -5.275E-06

16 4 -0.0634409 -0.0634409 -4.504E-06 -5.275E-06 –
9 -0.0634518 -0.0634518 -4.504E-06 -5.275E-06
2 -0.1409152 -0.1445161 -0.0007119 -0.0007518

8 4 -0.1339476 -0.1375069 -0.0007119 -0.0007518 –
9 -0.1340079 -0.1373775 -0.0007119 -0.0007518
2 -0.0867477 -0.0891108 -1.58E-05 -1.844E-05

3d 12 4 -0.0858302 -0.0881878 -1.58E-05 -1.844E-05 –
9 -0.0859485 -0.088304 -1.58E-05 -1.844E-05
2 -0.0631719 -0.0649344 -2.191E-07 -4.369E-07

16 4 -0.0629542 -0.0647154 -2.191E-07 -4.369E-07 –
9 -0.0629753 -0.0647366 -2.191E-07 -4.369E-07
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1S-4G and 1S-8G representations in Tables I and II are the approximate values of in-
tegrals computed by using the 4-term and the 8-term GTO expansion of 1s STO, respec-
tively. The 4-term observes rather poor approximate values while the 8-term expansion
seems to yield values good enough for most purposes.

The calculated results for the various orbital for different N, M (1S-4G and 1S-8G)
and R values show that the series contained in the integrals converge very rapidly in the
region where overlapping is moderate or weak (Tables I and II). As seen from Table II,
the accuracy of 12 significant figures is achieved for very good convergence of the present
proposed method. We may conclude that the series converge very rapidly at N=2 or 4
in the present method. The series also converges at the various value of R depending on
the main atomic orbital radius, as expected. In the same way, convergence analysis of
the series provides us a method to find the starting point for the convergency of various
atomic orbitals.

Summary

A general expansion is derived for multi-center nuclear attraction integrals in the form
of a series giving sufficiently accurate values, each containing only two or three terms.
With the method described in this manuscript one can obtain a sufficiently accurate and
fast algorithm for the calculation of non valence intra- and inter-molecular interaction
energies in polyatomic systems, in which the computation time is not unreasonable in
relation to the information obtained.
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