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Abstract

We have reanalyzed the age of the universe problem under the assumption that
the lower limit on the age of the globular clusters is ∼11 Gyr, as predicted by the
recent Hipparcos data. We find that the globular cluster and the expansion ages in
a standard λ = 0 universe are consistent only if the present value H0 of the Hubble
constant is≤ 60kms−1Mpc−1. IfH0 > 60kms−1Mpc−1 some kind of modification of
the standard λ = 0 model is required. Invoking a (time-independent) cosmological
term λ in the Einstein field equations, as has been done frequently before, we have
found that due to the gravitational lensing restrictions a flat universe with the
present matter density parameter ΩM < 0.5 is not problem-free. A nonflat universe
with ΩM ≤ 1 does not suffer from the age problem if H0 ≤ 75kms−1Mpc−1.

1. Introduction

A lower limit on the present age t0 of the universe is determined by estimating the
age of the oldest objects in our galaxy, the globular clusters (hereafter GC).1 These are
stellar systems that contain about 105 stars in the halo surrounding the galactic disk.
The key element in estimating the age of a typical GC is the determination of its distance
from us. To this end, the primary observational technique is main-sequence fitting against
subdwarfs with well known parallaxes. The distance obtained this way or otherwise is used
to convert the measured apparent magnitude of a GC to the absolute magnitude. The

1The age of the universe is actually the GC age plus the time it took for the formation of GCs. The
formation time is estimated to be between 0.1-2 Gyr [1]. The lower value of 0.1 Gyr is chosen for the
lower limit on the age of the universe [1]. Since this difference of 0.1 Gyr in the lower limits on the ages
is not significant, we will use the ‘age of the universe’ and the ‘GC age’ interchangeably, as is usually
done in the literature.
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age is then estimated by applying a stellar evolution model. The estimates obtained by
different astronomers agree rather well. For example, Bolte and Hogan [2] find 15.8± 2.1
Gyr, Chaboyer et al. [3] find 14.6± 1.7 Gyr, and Sandquist et al. [4] find 13.5± 1 Gyr.
These time scales are to be compared with the expansion age of the universe predicted
by the standard model of cosmology (hereafter SM)2 which requires the knowledge of
the present value H0 of the Hubble constant. Even though estimates of t0 from GCs are
based on the stellar evolution models, which are essentially the same, the situation is not
the same for the H0 estimates. There are a number of different techniques (see the review
by Trimble [8]) which give values that differ substantially from each other. We present
the most quoted estimates: H0 = 50−55kms−1Mpc−1 [9] and H0 = 73±10kms−1Mpc−1

[10] 3. In a SM flat universe t0 would be 13 Gyr and 8.2 Gyr if H0 were 50kms−1Mpc−1

and 80kms−1Mpc−1, respectively, whereas in a SM open universe with ΩM = 0.1, ΩM
being the present nonrelativistic matter density parameter, the ages would be 17.6 Gyr
and 11 Gyr for the same H0 values as above. Thus researchers were rightfully led to
think that, if H0 has as large a value as determined by Freedman et al. [10] then, the
expansion age and the GC age of the universe are in conflict with each other.

An immediate solution to this so called age of the universe problem was suggested
by including a time-independent cosmological constant λ in the Einstein field equations
[11-13]. The gravitational lensing studies, however, have shown that the cosmological
constant cannot be as large as one desires to increase the expansion age to the level of GC
age lest too many lensing events are predicted [14-16]. Recently, the supernova magnitude-
redshift approach of Perlmutter et al. [17] has given ΩΛ < 0.51 (95% confidence level) for
a flat universe which is significantly lower than the gravitational upper limit ΩΛ < 0.66
of Kochanek [15]. Thus it had been concluded that the apparent contradiction between
the GC age and the axpansion age could not be reconciled in a flat universe by invoking
a time-independent cosmological constant. This was the status of the age of the universe
problem before Hipparcos. The lower limit on the age of the oldest GCs implied by the
Hipparcos data is ∼ 11 Gyr [18, 19]. The purpose of this paper is to reexamine the age
problem in the light of this lower limit of 11 Gyr put by the Hipparcos data [18, 19].

2. The Age of the Universe Problem

The relation between the present value H0 of the Hubble constant H = ȧ/a, where a
is the scale factor of the universe and ȧ = da/dt, and the present age t0 is given by [20] 4

2Felten and Isaacman[5] call the models with λ = 0 ‘standard models’. However, we follow the general
trend in the literature and call the totality of them the ‘standard model’and refer to each case by its k
value (see, for example, Misner, Thorne and Wheeler [6]; Weinberg [7].) The SM with k = 0 is called the
Einstein-de Sitter model [5]).

3Reid [18] has argued that this Freedman et al. [10] value ofH0 is reduces to H0 = 68±9kms−1Mpc−1

because the Hipparcos data reveal a 7% increase in the distances inferred from previous ground-based
data.

4Equations (1a) and (1c) agree numerically with those given in Weinberg [7] where a different but
equivalent functional form is used.
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H0t0 =
1

(1− ΩM)

[
1− ΩM

(1− ΩM)1/2
sinh−1(Ω−1

M − 1)1/2

]
, k = −1 (1a)

= 2/3 , k = 0 (1b)

=
1

(ΩM − 1)

[
ΩM

(ΩM − 1)1/2
sin−1(1−Ω−1

M )1/2 − 1
]
, k = 1. (1c)

Here, ΩM is the present value of the nonrelativistic matter density parameter defined
as the ratio of the present nonrelativistic matter density to the present critical energy
density

ΩM =
ρM
ρc

=
ρM

3H2
0/8πG

. (2)

Expressing the Hubble constant as H0 = 100hkms−1Mpc−1, the age in billion years is
given by t0(Gyr) = 9.78(H0t0)/h, where (H0t0) is given in Eq.(1) and h is a parameter
assumed to be between 0.5 and 1. In Figure 1, we depict t0 against ΩM and h in the SM.
It is seen that t0 is below the Hipparcos lower limit of 11 Gyr for large values of h. Thus
it can be stated safely that the age of the universe problem still survives if h is large.
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Figure 1. The age of the universe in the SM for k = −1 (solid lines), k = 0 (dots) and k = 1

(dashed lines) versus the present value of the matter density parameter ΩM .

In Table 1, we display the maximum values of h for which t0 = 11Gyr against ΩM .
Note that the maximum h values in Table 1 almost fall in the lower and upper limits of
Freedman et al. [9]. Thus for each ΩM , if h is greater than those given in Table 1, there is
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an age problem. For example, if ΩM = 0.5 and h > 0.67 or ΩM = 1 and h > 0.593 the age
problem survives. Now the problem is, however, milder in the sense that before Hipparcos
the age problem was thought to exist even for moderate values of h whereas it now exists
for large values of h. Emphatically, the SM has no age problem if h < 0.593 ≈ 0.6.

Table 1. Maximum values of h in the SM for which t0 = 11 Gyra

ΩM 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
hmax 0.799 0.753 0.719 0.692 0.67 0.651 0.634 0.619 0.605 0.593
aNote that if h = hmax then t0 = 11 Gyr, if h > hmax then t0 < 11 Gyr and if h < hmax

then t0 > 11 Gyr.

Supposing that there is an age problem, one line of attack, as in the pre Hipparcos era,
is to invoke a (time-independent) cosmological constant λ in the Einstein field equations
[11-13]

Rµν −
1
2
gµνR− λgµν = −8πGTµν , (3)

where R = Rαα and Tµν is the energy-momentum tensor. For a homogeneous and isotropic
universe described by the Robertson-Walker metric

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(4)

the energy-momentum tensor is assumed to have the perfect fluid form

Tµν = diag(ρ, p, p, p), (5)

where p is the pressue of the matter described by ρ. Equations (3) and (4) give (with c,
the speed of light, set to 1)

H2 =
(
ȧ

a

)2

=
8πG

3
ρ(t) +

λ

3
− k

a2
, (6)

where k = −1, 0, 1 for a spatially open, flat and closed universe, respectively. At present,
the universe is believed to be dominated by nonrelativistic massive matter rather than rel-
ativistic matter (radiation). It proves to be very usefull to define the current cosmological
constant density parameter

ΩΛ =
ρΛ

ρc
=
λ/8πG
ρc

=
λ

3H2
0

, (7)

and the current curvature density parameter

Ωk = −ρk
ρc

= − k

H2
0a

2
0

, (8)
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where a0 is the current value of the scale factor a of the universe. When written in terms
of the present values, Equation (6) gives the constraint

ΩM + ΩΛ + Ωk = 1, (9)

Equations (3) and (5) under (4) give the energy conservation equation in the matter
dominated era as

d[ρM(t)a3 +
λ

8πG
a3] + [pM (t)− λ

8πG
]da3 = 0, (10)

where the pressure pM of nonrelativistic matter is negligible. Thus it follows from Eq.(10)
that ρM (t) = ρMa

3
0/a

3 and the relation between H0 and t0 is

H0t0 =
∫ 1

0

y1/2[ΩM(1− y) + ΩΛ(y3 − y) + y]−1/2dy, (11)

where Ωk has been eliminated by using Eq.(9) and y = a/a0. Now, a flat universe with
ΩM < 1 is rendered possible by postulating the existence of the cosmological term λ such
that ΩM + ΩΛ = 1. With t value of k not fixed a priori, a numerical investigation of
Eq.(11) reveals that it is always possible to find a set of three parameters (ΩM ,ΩΛ, hmax)
for which t0 = 11Gyr.

However, the achievement of a cosmological constant to solve the age problem and
to have a flat universe with ΩM < 1 may be illusory. The magnitude of ΩΛ required
to solve the age problem may turn out to be too large to predict plausible number of
gravitational lensing events. Therefore, each such set of parameters (ΩM ,ΩΛ, hmax) need
to be confronted with the gravitational lensing statistics, which we address ourselves next.

3. The Gravitational Lensing Statistics

The integrated probability, the so-called optical depth, for lensing by a population
of singular isothermal spheres of constant comoving density relative to the Einstein-de
Sitter model, is [21]

Plens =
15
4

[
1− 1

(1 + zs)1/2

]−3 ∫ zs

0

(1 + z)2

E(z)

[
d(0, z)d(z, zs)

d(0, zs)

]2

dz, (12)

where

E(z)2 = (1 + z)2(1 + zΩM )− z(z + 2)ΩΛ (13)

and is defined by [22] (
ȧ

a

)2

= H2
0E(z)2. (14)

Note that Plens = 1 for the Einstein-de-Sitter model (in which Ωk = 0, ΩM = 1 and
ΩΛ = 0). z = (a0/a)− 1 is the redshift and zs is the redshift of the source (quasar). The
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angular diameter distance from redshift z1 to redshift z2 is

d(z1, z2) =
1

(1 + z2) | Ωk |1/2
sinn

[
| Ωk |1/2

∫ z2

z1

dz

E(z)

]
(15)

where

sinn = sinh, if Ωk > 0,
= 1, if Ωk = 0,
= sin, if Ωk < 0. (16)

To determine how much of Plens is permissible, we refer to the work of the Supernova
Cosmology Project [17]. Using the initial seven of more than 28 supernovae discovered,
Perlmutter et al. [17] have recently measured ΩM and ΩΛ. For ΩM < 1, they find
ΩΛ < 0.51 at the 95% confidence level for a flat universe, and ΩΛ < 1.1 for the more
general case ΩM + ΩΛ unconstrained5. In Table 2 we present Plens against ΩM and ΩΛ

for a typical source redshift of zs=2. Table 2 helps us to determine the maximum allowed
value of Plens. It is seen that for ΩΛ = 0.5, which is the maximum allowed value according
to Perlmutter et al. [17], the corresponding Plens is 1.92. Thus we shall assume that Plens

cannot be much larger than 2. Having determined the upper limit on Plens, we depict in
Table 3 the three parameters ΩM , ΩΛ and hmax in a flat universe and the corresponding
gravitational lensing prediction for t0 = 11Gyr. In preaparing Table 3, we have first
fixed ΩM and calculated H0t0 from Eq.(11) with ΩΛ = 1−ΩM , and finally obtained the
maximum value of h from hmax = 9.78(H0t0)/11.

Table 2. Normalized optical depths.

ΩM ΩΛ Plens

0 1.0 13.25
0.1 0.9 5.98
0.2 0.8 3.94
0.3 0.7 2.93
0.4 0.6 2.33
0.5 0.5 1.92
0.6 0.4 1.63
0.7 0.3 1.42
0.8 0.2 1.25
0.9 0.1 1.11
1.0 0 1.00
1.0 1.1 1.61
0.8 1.1 1.99
0.6 1.1 2.57
0.4 1.1 3.61
0.2 1.1 6.05

5But of course ΩM + ΩΛ + Ωk = 1
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Discarding those set of parameters which yield Plens > 2 or have ΩΛ > 0.5, first we
confirm, from Table 3, the previous conclusions that a cosmological constant cannot solve
the age problem in a flat universe with ΩM < 0.5 due to too many lensing predictions.
Next, we see that the maximum allowed value of h in a flat universe is about 0.74-0.75.
This is to be compared with the pre Hipparcos lower limits for the age. For t0 = 13 and
14 Gyr the hmax values are 0.64 and 0.60 in a flat universe, respectively.

Table 3. Maximum values of h in a flat universe for which t0 = 11 Gyr.

ΩM ΩΛ hmax P alens

0.1 0.9 1.14 5.98
0.2 0.8 0.96 3.94
0.3 0.7 0.86 2.93
0.4 0.6 0.79 2.33
0.45 0.55 0.76 2.11
0.5 0.5 0.74 1.92
0.6 0.4 0.70 1.63
0.7 0.3 0.67 1.42
0.8 0.2 0.64 1.25
0.9 0.1 0.61 1.11
1.0 0 0.59 1.00

a Recall that Plens is independent of h (see equations (12)-(15)).

As for a nonflat universe, one may either fix ΩM and ΩΛ first and then calculate hmax

to give t0 = 11 Gyr, or one may fix ΩM and hmax first and then calculate the ΩΛ value
from Eq.(11) by trial and error to give again t0 = 11 Gyr. We have chosen the second
option and constructed Figures 2 and 3, which are contour diagrams of hmax (for t0 = 11
Gyr) in the (ΩM ,ΩΛ) and (ΩM , Plens) planes.
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Figure 2. Contours of hmax for which t0 = 11 Gyr in the (ΩM ,ΩΛ) plane.
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It is seen that for each contour there is a minimum value of ΩM before which the age
is greater or equal to 11 Gyr for ΩΛ = 0. In drawing Figures 2 and 3, we have assumed
that the maximum allowed value of ΩΛ is about 1.1, in accordance with the findings of
Perlmutter et al. [17]. The age problem is seen to survive for ΩM ≥ 0.3 only if h is as
large as 0.8 for which lensing predictions are larger than 2. There is no age problem in a
non-flat universe provided h ≤ 0.75 for all ΩM ≤ 1.
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Figure 3. Contours of hmax for which t0 = 11 Gyr in the (ΩM , Plens) plane.

Conclusions

That the Hipparcos data [18, 19] implies that GCs may be as young as ∼11 Gyr has
raised hopes to reconcile the age of GCs and the expansion age of the universe. We have
studied this matter in this work. As is well known, and as born out by our results, the
realization of this hope depends solely on the value of H0. If H0 is as large as the upper
limit of the Freedman et al. [10] value, the age of the universe problem continues to
exist in the SM. The problem, however, is now milder than it had been before Hipparcos.
Previously, it was thought to exist even for moderate values of h, whereas it seems to
exist for large values of h now. If, however, H0 is as low as favored by Tammann and
Sandage [9] then the GC and the expansion ages of the universe are consistent with each
other in the SM.

Assuming thatH0 is high and hence modifying the SM by invoking a (time-independent)
cosmological term in the Einstein field equations, as has been done before [11-13], we
have confirmed the conclusion of previous workers that, due to lensing restrictions, the
age problem still survives in a flat universe for ΩM < 0.5, and at the same time conclude
that h cannot be larger than about 0.75. As for a nonflat universe, we have shown that
the age problem does not exist for all ΩM ≤ 1 provided h ≤ 0.75.
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The above mentioned hope is realized in the SM only if h ≤ 0.6 (see Table 1). Other-
wise, some kind of modification of the SM is called for. One such– and the most-studied–
attempt is the inclusion of a cosmological term in the field equations. With such a term,
the age problem has a better standing in a nonflat (open or closed) universe with ΩM ≤ 1.
It should be noted, in the light of recent works, that such a cosmological term need not
be a pure time-independent constant. Scalar fields, cosmic strings or some kind of stable
textures with an energy density varying as a−2 lead to viable cosmological models that
stand as alternatives to the SM [23-25].
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