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Abstract
This study gives a mean field model with two order parameters for three-phase
coexistence near the multicritical point. The critical exponents calculated from
our model are the tricritical exponents for the order parameters, susceptibility and
the specific heat. Hence, our mean field model describes adequately the tricritical
behaviour of a system in the region of three-phase coexistence.

1. Introduction

The mean field theory of symmetrical and unsymmetrical tricritical points with one
order parameter for three-phase coexistence has been studied by Griffiths [1]. He applied
his theory to fluid mixtures [1] and liquid mixtures [2]. Similar treatment with one order
parameter has been applied to liquid crystals for the nematic-smectic A tricritical phase
transition [3,5].

It has been suggested in the literature that one can study a system exhibiting three dif-
ferent phases with two order parameters. Those systems are, for example, liquid crystals
with the nematic, smectic A and smectic C phases near the NAC point [6-9]; a ferroelec-
tric system such as sodium nitrite with the paraelectric, incommensurate and ferroelectric
phases [10]; ferroelectric liquid crystals with the paraelectric and anti-ferroelectric phases
[11], and the ammonium halides with the disordered 3, anti-ferroordered y and ferro-
ordered ¢ phases [12].

In this study we have extended Griffiths theory with one order parameter to a mean
field model with two order parameters for three-phase coexistence near the multicritical
point. The free energy we give in this study has the most general form that one can obtain
from a system with three different phases. From this form of free energy we calculate the
critical exponents for the order parameters, susceptibility and the specific heat. It turns
out that these critical exponents are the tricritical exponents. In Section 2 we give the
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form of the free energy of our model and we calculate the critical exponents. In Section 3
we give a brief discussion of our calculations. Finally in Section 4 we give our conclusions.

2. Theory

In this section we study a mean field model for three-phase coexistence near the
multicritical point. We assume that the system is characterized with two order parameters
¥ and 7.

The free energy of our model has three components. The contribution due to the first
order parameter U is given by

=

S|
|

(W~ W) (¥ — W) (¥ — 0, )
(T - W) (- W) (T - )P
(T - W) (- W) (T - )
(T - W) (T - W) (T - )
(T~ W)X W) (T - 0P
T - W) (WA )
(T - W)X W) - )
(T~ W)Y ) (T - )
(T - W )H W - W2 - )
(T - W)W ) (T - ) (1a)

Fy=(n—na)(n—ng)(n—ny)*
+ (= 1a)(n —ng)*(n — 1y)°
+ (1= na)(n —np)*(n — n4)?
+ (n—na)(n —np)*(n—ny)
+ (1= 1a)*(n—np)(n —1y)°
+ (= 1a)*(n—1p)*(n = n4)>
+ (1= na)*(m—ns)*(n —ny)
+ (1= 1a)*(n—np)(n —1y)?
+ (1= na)*(m—np)%(n — 1)
+ (1= na)*(n—np)(n — 1) (1b)

The third contribution to the free energy due to the coupling between two order param-
eters U and 7 is given by

Fy = (W = Wa ) (W = Wp) (W = Wy ) (1 = 10) (1 = 715) (1 = 715)- (1c)
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Hence, the free energy of our model is

F=F +F+ F5. (1d)

Here we denote the three phases as a, 3 and v. ¥,, ¥3 and ¥, are the values of the
order parameter ¥ in the phases o, 3 and vy, respectively. Also 7., ng and n, are the
values of the order parameter 7 in the phases «, 3 and ~, respectively. This free energy
is equal to zero when ¥ = ¥, and 1 = 7, for the a phase; ¥ = 13 and 1 = ng for the
B phase; and ¥ = ¥, and 1 = n, for the v phase. Therefore, this free energy is valid in
the region of three-phase coexistence.

This free energy given in Eq.(1d) can be rewritten as

F=ay+a1¥ + GQ\IIQ + a3\I/3 + a4\I/4 + a5\I/5 + aG\IIG
+ b1n + ban® + b3n® + ban® + bsn® + ben®
+ 1 Un 4 o0y + csUn? + U0 + c5 03 (2)
+ ceUn® + 7 U0 + cs UPn® + co Ui
Here, the coefficients a;(i = 1,2,3,4,5,6),b;(i = 1,2,3,4,5,6)and ¢;(: = 1,2, 3,4,5,6,7,8,9)

in terms of ¥;, n; (i = a, 3,7) are given in Appendix A. As we see from Eq.(A5), a5 is
linearly proportional to ¥;. We assume that the temperature dependence of a5 is

as — a50(T — Tc)g".

Here, T, denotes the critical temperature. From the Landau theory, the temperature
dependence of as should be

ag = GQQ(T — TC).

Therefore, from Eqgs.(A2) and (A5) we conclude that the power x should be 1/4. Hence,
using Eqs.(A0-A6) the temperature dependence of the a;’s should be as follows:

ag ~ |T — T.]>?,

ai ~ |T = T,[>*,

ag ~ |T —T|,

as ~ |T = T,[**,

ag ~ |T = T,|"?,

as ~ |T —To)*. (3)

Similarly, using Eqs.(A7-A12) the temperature dependence of the b;’s are given below:
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by ~ |T — T,)>*
by ~ |T — T,

by ~ |T — T,[>*
by ~ |T — T,|"?
bs ~ |T — T,|"*

(4)

Using Eqgs.(A13-A21) the temperature dependence of the coefficient ¢;’s can be found as

a~|T—Te|

¢y ~ |T = T,|**
c3 ~ |T = T,|**
ca ~ |T = T,|"?
cs ~ |T = T,|"?
co ~ |T — T,|*?
cr ~ |T = T,|*
s~ |T —To"* .

(5)

Since W¥; and 7; are linearly dependent on as and bs, respectively, the temperature de-

pendences of the order parameter ¥; and 7; are given as

U, ~ T —T.|°

and
i~ |T - Tclﬁ )

where the critical exponent for the order parameter is § = 1/4.

(6)

(7)

Now, we want to find the critical exponent - for the susceptibility x. For this purpose

we write the definition of the susceptibility x; (i = «, 8,7) as

0?F

-1

Xi =Gglv=y,
n="ns

From Egs.(2) and (9), we find x; as

X; b= 2as + 6a3V; + 120497 + 20a5 V3
+ 30@(3\1/;-1 + 2com; + 264771-2 + 665\111'771'
+ 2c7m} + 6esWin? + 6egUyn?.
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Using Egs.(4), (5), (6), (7) and (8), each term in Eq.(10) has the temperature dependence
as

Xi_l ~ (T - TC)
or
i~ (T =T, (10)

Since the susceptibility behaves as

xi ~ (T —1T.)™7

we have the critical exponent for the susceptibility as v = 1.
The susceptibility x;(i = «, 5,7) can also be defined as

O*F
A e 11
X (ang)q/j\l/i (11)
n="ns

From Egs.(2) and (12), we find x| as

X' 71 = 2by + 6b3n; + 12047 + 200575}
+ 30ben; + 23, + 2407
+ 6cgUn; + 2c8 U3 + 67 U2 (12)
+ 6con; 3.

Using Egs. (4), (5), (6), (7) and (8), each term in Eq.(13) has the temperature dependence
as

X'~ (T =T, (13)

Therefore, the critical exponent for this susceptibility is also v = 1.

Now, we want to find the critical exponent « for the specific heat C. Using Eqgs. (4),
(5), (6), (7) and (8), each term in the free energy given by Eq.(2) has the temperature
dependence as

F = A(T —T,)%?, (14)
where A is a constant. Hence, we have
0*F 3 _
C =T(Gzg)lr=r. = JATAT - T) 12, (15)

Since the temperature dependence of the specific heat can be expressed using the power
law as

C~ (T—T.) " (16)
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from Eq.(16) we have a = 1.

3. Discussion

In this study we give the form of the free energy (Eq.1d) with two order parameters
U and 7 to describe the multicritical behaviour of a system in the region of three-phase
coexistence. The form of the free energy we give in Eq(1d) is the most general form
that one can obtain for a system of three-phase coexistence. As in the Landau theory,
the temperature dependences of as and by, which are the coefficients of ¥2? and 7?2,
respectively, as given in Eq.(2), were taken as

ag = GQQ(T — TC)

and
b2 = bQQ(T — TC).

Using these temperature dependences of the coefficients, we predicted the critical be-
haviour of the order parameters ¥ and 7, susceptibility x and the specific heat C. The
critical exponents that we calculated from our model turned out to be the tricritical expo-
nents. This shows that our mean field model which has the free energy given by Eq.(1d),
describes the critical behaviour of those systems exhibiting the three-phase coexistence
near the tricritical point. As an example, we have used this mean field model to describe
the tricritical behaviour of nematic, smectic A and smectic C phases of liquid crystals
near the NAC point [13]. Our mean field model can also be used to describe the tricritical
behaviour of those systems such as ferroelectric systems, ferroelectric liquid crystals and
ammonium halides, which exhibit three-phase coexistence.

Conclusions

In this study we have developed a mean field model with two order parameters for
those systems exhibiting three-phase coexistence near the multicritical point. Using our
model we have calculated the critical exponents for the order parameters, susceptibility
and the specific heat. And these exponents are the tricritical exponents. Therefore, our
mean field model can be used to describe the tricritical behaviour of a system in the
region of three-phase coexistence.

Appendix A
If we expand Eq.(1d) we obtain Eq.(2) with the coefficients a;, b;, and ¢; as follows:

ap = VoUW, + W3 U2, + V2U30,
+ U UEW, + WS UpU2 + U2 U302
+ W W2 + WU WS + U, WD
+ U WgWl + o Tplyransiy (A0)
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+ NANETy + TansT + NNy
4 3 2 2. 2 2
+ N2+ NG + a3

+ Nampn’

a; = —UaWz — VU3 — V203 — U, U]
— WL, — WU — WS — v,
— W, — URU2 — WU — WUl
— 8W, WRW2 — 8V, Wgld — 8T, U3U,
—8W2WzW? — QU2 VAW, — 8U2 WU,
= WaVpnangny, — YaWqnansny
— Vg Wamangny

ag = W4, + W5 + U3 + 70,0 4 70,07
+ VWS 4 TU2UE + TUR02 4+ 70202
+ TS U+ TS, + TV,
+ 28W, WU + 280,030, + 2802 0,30,
+ Vananpny + Ypnansny + Yynansiy

az = —6W5 —6W} — 603 — 210,03 — 210 Vg
210,02 — 21020,
—21VgW2 — 21V3W, — 560, Vg0,
a3y
ay = 1507 + 15W3 + 1502 + 350, U + 35W, ¥, + 35050,

as = —20\1105 — 20\113 — 20\11,),

a6=10

(A3)
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b1 = —1ang — Nan — Aty — Nanls
— NaTly = MaTs — MM = Tally
— Ty — M — M — e
— 81aM — 81ansns — 8Natiny (A7)
— 8n2nans — 8Ny — 81anany
= Nang¥aVs¥Wy — Nany Vo ¥ply
— Ny Ya¥pl,

by =14 + 15+ 105 + Tnay + Tan’
3 2 2 2 2 2 2
+ Tngny + Tngng + Tngnsy + Tngny
+ e + TNy + Ty (A8)
+ 28nampn> + 28nam3ny + 2802087,
+ 770(\1/&\1/6\1/7 + ngllfa\lfgll/,y + 77,),\1105\1/3\1/7

bs = —6m5 — 6 — 615 — 21nam; — 21nans
— 21nan? — 21nany — 21ngn3 — 2105, (A9)
— 56manpgny — \I/alllgﬁ&y

by = 1502 + 1503 + 1592 + 351413 (A10)
+ 351amy + 35787,

b5 = _2077a — 20773 — 2077,), (All)

be = 10 (A12)

c1 = VaVsnans + VaVsnany
+ Vo Wpnany + VaVynans
+ Vo Vnany + Vo Wyngn, (A13)
+ WgWynans + VaVynan,
+ VpWynan,
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Cy = _\I/ananﬁ - ‘Ifwam - ‘Ifa%??v
— Wgnang — Yanany — Yengny
= U nans — YyNany — Yyngn,

C3 = _7705\1105\1/6 - naq/aq/’y - naqlﬁq/'y
= n¥aVs —1nsWaWy —nsWsW,
— 1 ¥a¥s =y Vo ¥y —n,WpW,

cs = Yona + \I/oznﬁ + ‘Ifa% + \1167705 + \116776
+ Wgny + Wyna + VUyng + VUany

C5 = Nalp + Nally + N7y
6 =V Vg + V0, + VgV,
cr=—Vy—Vg -V,
€t = —Na — N — Ty
cg = 1.
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