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Abstract

The elastic light-light scattering below the threshold of the e+e− pair production
leads to a variation in polarization of hard γ-quanta traversing without loss a region
where the laser light is focused. This effect can be used to control the γ-quantum
polarization. Equations are obtained which determine the variation of Stokes pa-
rameters of γ-quanta in this case, and their solutions are given. It is pointed out
that this effect can be observed in the experiment E-144 at SLAC. It should be taken
into account and, perhaps, it can be used in experiments at future γγ colliders.

1. Introduction

Optics of high-energy γ-quanta (h̄ω >∼ 100 GeV) in matter is determined mainly by
process of the e+e− pair production. Traversing a crystal, such γ-quanta can essentially
vary their polarization accompanying by considerable losses in intensity. These problems
including applications in high-energy physics are considered in a number of papers (see,
for example, [1], [2] and literature therein).

It is well known that a region with an electromagnetic field can also be regarded
as anisotropic medium (see [3] §129-130 and [4]). A possibility to consider a bunch of
laser photons as a “crystal” is pointed out, for example, in Ref. [2], but the concrete
calculations are not given.

In the present paper we study in detail properties of such a “crystal” considering head-
on collision of hard γ-quanta with a bunch of polarized laser photons. For the energy of
γ-quanta below the threshold of the e+e− pair production

h̄ω < h̄ωth =
m2
ec

4

h̄ωL
=

260 GeV
(h̄ωL/eV)

(1)

(here h̄ωL is the laser photon energy and me is the electron mass) the main interaction
is the elastic light-light scattering γγL → γγL. Cross section of this process <∼ α2 r2

e
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is approximately by 5 order of magnitude less then a typical cross section for the pair
production ∼ πr2

e , where α = e2/(h̄c) = 1/137 and re = e2/(mec
2) is the classical

electron radius. Therefore, the laser bunch is practically transparent for such γ-quanta.
On the other hand, the variation in polarization for the γ-quantum traversing the bunch
is determined by the interference of the incoming wave and the wave scattered at zero
angle. In other words, for such a variation it is responsible not the cross section (which
is proportional to square of the light-light scattering amplitude of the order of
α4), but the scattering amplitude itself ∼ α2. As a result, in this case the essential
variation in the γ-quantum polarization can occur practically without loss in intensity of
γ-quanta.

This effect can be interesting for the following reasons:
(i) It can be used to control the polarization of hard γ-quanta without loss in their

intensity. In particular, with its help it is possible to transform the circular polarization
into the linear one or the linear polarization into the circular one, and it is possible to
rotate the direction of the linear polarization.

(ii) The experimental observation of variation in the γ-quantum polarization at pas-
sage through the bunch of polarized laser photons below the threshold of the e+e− pair
production will be indirect observation the process of the elastic light-light scattering.
The conditions close to those necessary for observation of such effect is realized now at
SLAC in E-144 experiment [5].

(iii) The discussed problem is also actual in connection with projects of γγ colliders
which under development now (see Refs. [6], [7], [8]). In these projects it is suggested to
obtain the required high-energy γ-quanta by backward Compton scattering of laser light
on the electron beam of a linear collider. The planned almost the whole conversion e→ γ
will take place under condition that an electron travels in a laser “target” an optical
thickness t of the order of one:

t ∼ π r2
e nL lL ∼ 1,

where nL is the concentration of the laser photons in the bunch and lL is its length.
The γ-quantum obtained inside the bunch will travel further through the same bunch
varying its polarization. We will show that this variation is determined approximately
by the same parameter t and it may be quite essential. Therefore, such a variation in
polarization should be, generally speaking, taken into account at simulations of the e→ γ
conversion process performed just now for such colliders (see, for example, [8]). Besides,
if one adds in the scheme of the γγ collider the laser flash of the defined polarization, one
can exert control over the γ-quantum polarization.

2. Equations for Stokes parameters of the γ-quantum

Let us consider the head-on collision of γ-quanta with the bunch of laser photons. We
choose the z axis along the momenta of γ-quanta. The polarization state of γ-quantum
is described by Stokes parameters ξ1,2,3, among them ξ2 is the degree of the circular
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polarization (which is equal to the mean γ-quantum helicity) and
√
ξ2
1 + ξ2

3 is the degree
of the linear polarization. In the helicity basis (λ, λ′ = ±1) the density matrix of γ-
quantum has the form (see, for example, Ref. [3] §8):

ργλλ′ =
1
2

(
1 + ξ2 −ξ3 + iξ1
−ξ3 − iξ1 1− ξ2

)
. (2)

For the laser photon such a matrix is described by the following parameters: the degree
of the circular polarization Pc, the degree of the linear polarization Pl and the direction
of the linear polarization. Let us choose the x axis along this direction 1, then

ρLλλ′ =
1
2

(
1 + Pc −Pl
−Pl 1− Pc

)
. (3)

We will also use a compact expression describing the polarization of both photons

ρΛΛ′ = ργλ1λ′1
ρLλ2λ′2

. (4)

We will obtain further equations for Stokes parameters ξi of γ-quantum traversing a
laser bunch. As is well known the variations in intensity and polarization of the wave
passing through a medium are due to interference it with the wave scattered at zero angle.
Let the incoming wave has the form

AΛ eikz .

Here the amplitude AΛ describes the polarization state of the γ-quantum and the laser
photon, the wave vector k = ω/c (the frequency of laser photon ωL � ω). When the
wave passes through a “target” layer of a thickness dz it is appeared the forward scattered
wave

fΛΛ′ AΛ′ 2nL dz
∫

eikr

r
dx dy =

2π i
k

fΛΛ′ AΛ′ 2nL dz eikz = eikz dAΛ , (5)

where fΛΛ′ is the forward amplitude for the process of elastic scattering light by light.
The factor 2 in front of nL is due to relative motion of the γ-quanta and the “target”.

The matrix ρΛΛ′ from Eq. (4) is expressed trough the product of AΛ:

ρΛΛ′ =
〈AΛA

∗
Λ′ 〉

N
, N = 〈AΛA

∗
Λ〉 , (6)

where 〈...〉 denotes a statistical averaging. The quantity N is proportional to the γ-
quantum intensity J . When the wave passes through the layer of a thickness dz its
relative variation in intensity is equal to

dJ

J
=
dN

N
=

2
N

Re 〈(dAΛ)A∗Λ〉 = −4π
k

Im (fΛΛ′ ρΛ′Λ) 2nL dz . (7)

1We restrict ourselves to the case when the direction of the linear polarization is constant inside the
laser flash. More general case corresponds only to a little more cumbersome expressions.
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If we introduce the total cross section for the light-light scattering

σγγ =
4π
k

Im (fΛΛ′ ρΛ′Λ) , (8)

then the Eq. (7) can be presented in the form

dJ = −σγγ 2nLdz J . (9)

Analogously,

dρΛΛ′ = d
〈AΛA

∗
Λ′ 〉

N
=

2π i
k

(fΛΛ′′ρΛ′′Λ′ − f∗Λ′Λ′′ρΛΛ′′) 2nLdz − ρΛΛ′
dN

N
. (10)

Instead of the scattering amplitudes fΛΛ′ it is convenient to use the invariant scattering
amplitudes Mλ1λ2 λ′1λ

′
2

defined in Ref. [3] §127

fΛΛ′ ≡ fλ1λ2 λ′1λ
′
2

=
k

4π
(h̄c)2

s
Mλ1λ2 λ′1λ

′
2
, s = 4 h̄ω h̄ωL , (11)

where quantity s is the square of the total energy of the γ-quantum and the laser photon
in their centre-of-mass system. Among the five independent helicity amplitude only three
ones are not equal to zero for the forward scattering, namely

M++++ = M−−−− , M+−+− = M−+−+ , M++−− = M−−++ .

We will use further the following real quantities R and I proportional correspondingly to
the real and imaginary parts of the scattering amplitudes divided by α2s:

Inp =
(h̄c)2

s

Im (M++++ + M+−+−)
2πr2

e

,

Rc + iIc =
(h̄c)2

s

M++++ − M+−+−
2πr2

e

, Rl + iIl =
(h̄c)2

s

M++−−
2πr2

e

. (12)

By substituting Eqs. (4), (11), (12) into Eqs. (7), (8), (10) we shall obtain the
expression for the cross section

σγγ = πr2
e (Inp + ξ2Pc Ic + ξ3Pl Il) (13)

and equations for Stokes parameters. To write down these equations it is convenient to
introduce the quantity

dt = 2πr2
e nLdz (14)

which we will call the reduced optical thickness of the layer dz. Then

dξ1
dt

= (−Rcξ3 + Icξ1ξ2)Pc + (Rlξ2 + Ilξ1ξ3)Pl ,
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dξ2
dt

= −Ic(1− ξ2
2)Pc + (−Rlξ1 + Ilξ2ξ3)Pl , (15)

dξ3
dt

= (Rcξ1 + Icξ2ξ3)Pc − Il(1 − ξ2
3)Pl .

Integrating these equations one can obtain the dependence of Stokes parameters on
the reduced optical thickness t. After that the dependencies of cross section (13) and
then the intensity (9) on t are determined.

The physical meaning of different items in the cross section (13) can be easily es-
tablished if one considers the collisions of photons in pure quantum states. Let σ0 and
σ2 denote the cross sections for collisions of photons with the total angular momentum
Jz = ξ2 − Pc equals 0 and 2, and σ‖ and σ⊥ denote the cross sections for collisions of
photons with parallel (ξ3 = Pl = 1) and orthogonal (ξ3 = −Pl = 1) linear polarizations.
Then the quantity Inp corresponds to the cross section for nonpolarized photons

σnp = πr2
e Inp =

1
2
(σ0 + σ2) =

1
2
(σ‖ + σ⊥) , (16)

and quantities Ic and Il correspond to asymmetries for the circular and linear polarization
respectively

πr2
e Ic =

1
2
(σ0 − σ2) , πr2

e Il =
1
2
(σ‖ − σ⊥) . (17)

The forward scattering amplitudes (and, therefore, quantities R and I) depend on the
single variable

r =
s

4m2
ec

4
=

ω

ωth
.

Using for amplitudes Mλ1λ2 λ′1λ
′
2

formulas from Refs. [9] and [3] §127 we obtain the
following expressions for functions (12):

Inp = 0 at r < 1 ; Inp =
1
r

[
2
(

1 +
1
r
− 1

2r2

)
cosh−1

√
r −

(
1 +

1
r

)√
1− 1

r

]
at r > 1 ,

Rc + iIc =
2
πr

(−3B− + T−), Rl + iIl =
1
πr

(
1 +

1
r
B− +

1
2r2

T+

)
, (18)

where

B− =


√

1
r
− 1 sin−1√r −

√
1
r

+ 1sinh−1√r at r < 1√
1− 1

r
cosh−1

√
r −

√
1
r

+ 1 sinh−1
√
r − iπ

2

√
1− 1

r
at r > 1,

T± =

 −(sin−1√r)2 ± (sinh−1√r)2 at r < 1

−π
2

4
+ (cosh−1

√
r)2 ± (sinh−1

√
r)2 − iπ cosh−1

√
r at r > 1 .
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Functions R and I are presented in Figs. 1 and 2. Note that extremums of Rc and Rl
are at the threshold of the pair production:

Rc = 0.315, Rl = −0.348 at s = 4m2
ec

4 . (19)

In the region below the threshold these functions decrease very rapidly with decreasing
of s:

Rc =
64

315π
r2, Rl = − 4

15π
r at r � 1. (20)

Figure 1. The real parts of the scattering amplitudes for the light-light scattering at zero angle
(see Eqs. (12) (18)) in dependence on the parameter s/(m2

ec
4) = 4ω/ωth.

3. A laser bunch as a transparent anisotropic medium

A laser bunch becomes transparent for γ-quanta with the energy below the threshold of
the pair production ω < ωth (see Eq. (1)):

Inp = Ic = Il = σγγ = 0 at s < 4m2
ec

4.

If the laser photons are linearly polarized (Pl 6= 0, Pc = 0) the solution of Eqs. (15)
has the form

ξ1 = ξ0
1 cosϕl + ξ0

2 sinϕl , ξ2 = −ξ0
1 sinϕl + ξ0

2 cosϕl , ξ3 = ξ0
3 , (21)
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Figure 2. The same for the imaginary parts of amplitudes. The quantity π r2
e Inp is equal to

the cross section of the γγL → e+e− process for nonpolarized particles.

where the phase ϕl = PlRl t and ξ0
i are the initial Stokes parameters. It is seen from

this solution that in this case the laser bunch is an anisotropic medium with different
refraction indices nx and ny along the x and y axes:

nx − ny =
c

ω
2πr2

e nL PlRl. (22)

Such a medium transforms the circular polarization of γ-quanta into the linear one and
vice versa. If, for example, the initial γ-quantum is circularly polarized, ξ0

2 6= 0, ξ0
1 =

ξ0
3 = 0, its polarization transforms to the linear one, ξ1 = −ξ0

2 , ξ2 = ξ3 = 0, when the
phase ϕl becomes equal to −π/2.

If the laser photons are circularly polarized (Pc 6= 0, Pl = 0), the solution of Eqs.
(15) has another form

ξ1 = ξ0
1 cosϕ − ξ0

3 sinϕ , ξ2 = ξ0
2 , ξ3 = ξ0

1 sinϕ + ξ0
3 cosϕ , (23)

where the phase ϕ = PcRc t. From this solution it is seen that in this case the laser
bunch is an gyrotropic medium with different refraction indices n+ and n− for the right
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and left polarized γ-quanta, and

n+ − n− =
c

ω
2πr2

e nL PcRc.

Such a medium rotates the direction of the γ-quantum linear polarization on the angle
(−ϕ/2).

In a general case

ξ1 = A cos (ϕ + ϕ0) , ξ2 = −Pl Rl
R

A sin (ϕ+ ϕ0) +
PcRc
R

B , (24)

ξ3 =
PcRc
R

A sin (ϕ + ϕ0) +
PlRl
R

B , R =
√

(PcRc)2 + (Pl Rl)2 ,

where the phase ϕ = Rt and constants A, B and ϕ0 are determined by the initial
conditions. Note that the total degree of the γ-quantum polarization is not changed:√

ξ2
1 + ξ2

2 + ξ2
3 =

√
A2 +B2 = const .

4. Variation in polarization above the threshold of the pair production

Above the threshold of the e+e− pair production (ω > ωth ) the variation in the γ-
quantum polarization is accompanied by a reduction in their intensity in accordance with
Eq. (9). In this case the total γ-quantum degree of polarization are not conserved. We
give the solutions of Eqs. (15) for two particular cases discussed in the above section.

If the laser photons are linearly polarized (Pl 6= 0, Pc = 0) then

ξ1 = (ξ0
1 cosϕl + ξ0

2 sinϕl) /Dl , ξ2 = (−ξ0
1 sinϕl + ξ0

2 cosϕl) /Dl , (25)

ξ3 = (ξ0
3chτl − shτl) /Dl , Dl = chτl − ξ0

3shτl , τl = Pl Il t .

The similar case (in connection with the problem of passage of γ-quanta through a
monocrystal) was considered in detail in Ref. [2]. Note that ξ3 → 1 at τl → −∞.

If the laser photons are circularly polarized (Pc 6= 0, Pl = 0) then

ξ1 = (ξ0
1 cosϕ − ξ0

3 sinϕ) /Dc , ξ2 = (ξ0
2chτc − shτc) /Dc , (26)

ξ3 = (ξ0
1 sinϕ + ξ0

3 cosϕ) /Dc , Dc = chτc − ξ0
2shτc , τc = Pc Ic t .

In this case ξ2 → ±1 at τ → ∓∞.

5. Discussion

1. As a result, we have shown that below the threshold of the e+e− pair production
the laser bunch is similar to the transparent anisotropic medium. In particular, the
linearly polarized bunch corresponds to the uniaxial crystal and the circularly polarized
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bunch corresponds to the gyrotropic medium. Let us illustrate the magnitude of the
discussed effects using as an example the parameters of the laser bunch given in Ref. [8]
(they are close to the parameters which are realized in the experiment E-144 at SLAC
[5]): h̄ωL = 1.18 eV, the energy of the laser flash is 1 J, the laser bunch length is 1.8
ps, and the peak intensity is about 1018 W/cm2. The reduced optical thickness (14) for
this flash is equal to t = 1.4. As is seen from Fig. 1 phases ϕl = PlRl t and ϕ = PR t
which determine the magnitude of the effect can reach values ≈ 0.3t ∼ 1. According to
Eqs. (21) and (23) it means that the variation in the γ-quantum polarization may be
very large. It is also seen from Fig. 1 that the effect depends strongly on the energy and
it becomes very small at ω � ωth.

2. With the growth of the intensity of laser flash it is necessary to take into account
the effects of intense electromagnetic fields (see Ref. [10] and literature therein) which
we neglect in the present paper.

3. In the scheme of the e → γ conversion adopted for the γγ colliders, γ-quanta are
produced inside the laser bunch. When such γ-quanta travel further in the laser bunch
they can essentially vary their polarization. It should be noted, however, that for the
optimal conversion the laser photons and the hardiest γ-quanta are circularly polarized
[6], [8]. These γ-quanta conserve their polarization on the rest way through the bunch.
But the γ-quanta with a lower energy have a linear polarization, and the rotation of the
direction of this linear polarization should be, generally speaking, taken into account.

4. The linear polarization of γ-quanta is needed for a number of interesting experi-
ments. For example, in Ref. [11] it is stressed that the best way to determine the CP
value of the neutral Higgs boson with the intermediate mass is to use γγ collisions with
the parallel or perpendicular linear polarizations. However, the γγ luminosity for such
polarization is considerable less then the luminosity for the circular one. Using the addi-
tional laser bunches to transform the circular polarization into the linear one may lead
to the luminosity of the γγ collision with the linear polarizations close to that for the
optimal conditions.

5. We apply the same method to calculate the variation in the polarization of electrons
traversing through a bunch of polarized laser photons. The corresponding results will be
given in a separate paper.

We are very grateful to I. Ginzburg, V. Maisheev, V. Mikhalev A. Melissinos and
A. Onuchin for useful discussions. This work is supported in part by the Russian Fond
of Fundamental Research (grant No. 96-02-19079).
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