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Abstract

Single pseudoscalar and vector mesons hard semi-inclusive photoproduction γh→
MX via higher twist mechanism is calculated using the QCD running coupling con-
stant method. It is proved that in the context of this method a higher twist contri-
bution to the photoproduction cross section cannot be normalized in terms of the
meson electromagnetic form factor. The structure of infrared renormalon singulari-
ties of the higher twist subprocess cross section and the resummed expression (the
Borel sum) for it are found. Comparisons are made with earlier results, as well as
with leading twist cross section. Phenomenological effects of studied contributions
for π, K, ρ-meson photoproduction are discussed.

One of the fundamental achievements of QCD is the prediction of asymptotic scaling
laws for large-angle exclusive processes and their calculation in the framework of pertur-
bative QCD (pQCD) [1-3]. In the context of the factorized QCD an expression for an
amplitude of an exclusive process can be written as integral over x, y of hadron wave
functions (w.f.)1 Φi(x, Q̂2) (an initial hadron), Φ∗f (y, Q̂2) (a final hadron) and amplitude
TH(x, y; αS(Q̂2), Q2) of the hard-scattering subprocess [2]. This approach can be applied
for investigation, not only exclusive processes but also for the calculation of higher twist
(HT) corrections to some inclusive processes, such as large-pT dilepton production [4],
two-jet+meson production in the electron-positron annihilation [5], etc. The HT cor-
rections to a single meson semi-inclusive photoproduction and jet photoproduction cross
sections were studied by various authors [6,7]. In these early papers for calculation of
integrals over x, y, which appear in an expression of the amplitude, the frozen coupling
constant approximation was used. In our recent work we consider the hard semi-inclusive
photoproduction of single pseudoscalar and vector mesons γh→ MX using the running
coupling constant method.

The two HT subprocesses, namely γq1 → Mq2 and γq2 → Mq1 contribute to the
photoproduction of the single meson M in the reaction γh → MX. The Feynman

1Strictly speaking, ΦM (x, Q̂2) is a hadron distribution amplitude and it differs from a hadron wave
function. But in this paper we use these two terms on the same footing.
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diagrams for the first subprocess are shown in Figure 1. The momenta and charges of
the particles in question are indicated in Figure 1(a). The amplitude for the subprocess
γq1 →Mq2 can be found by means of the Brodsky-Lepage method [2],

M =
∫ 1

0

∫ 1

0

dx1dx2δ(1 − x1 − x2)TH(x1, x2; αS(Q̂2), ŝ, û, t̂)ΦM (x1, x2; Q̂2) (1)

In (1), TH is the sum of graphs contributing to the hard-scattering part of the subprocess,
which for the subprocess under consideration is γ + q1 → (q1q2) + q2, where a quark and
antiquark from the meson form a color singlet state (q1q2).

The important ingredient of our study is the choice of the meson model w.f. ΦM . In
this work we calculate the photoproduction of the pseudoscalar (pion, kaon) and vector
(ρ-meson) mesons. For these mesons in the literature [3,8] various w.f. were proposed.

The pion and ρ-meson wave functions have the form

ΦM (x, µ2
0) = ΦMasy(x)

[
a + b(2x− 1)2

]
. (2)

For the model w.f. the coefficients a, b take the following values:
Chernyak-Zhitnitsky w.f. [3];

a = 0, b = 5, for the pion,

a = 0.7, b = 1.5, for the longitudinally polarized ρL −meson, (3)
a = 1.25, b = −1.25, for the transversely polarized ρT −meson.

Ball-Braun w.f.[8];
a = 0.7, b = 1.5,

for both longitudinally and transversely polarized ρ-meson. Here we have denoted by
x ≡ x1 the longitudinal fractional momentum carrying by the quark within the meson.
Then, x2 = 1− x and x1 − x2 = 2x− 1.

The pion and ρ-meson w.f. are symmetric under replacement x1−x2 ↔ x2−x1. But
the kaon w.f. is non-symmetric; ΦK(x1 − x2) 6= ΦK(x2 − x1) [3]. Indeed, the kaon w.f.
includes a term proportional to odd power of (2x− 1),

ΦK(x, µ2
0) = ΦKasy(x)

[
a + b(2x− 1)2 + c(2x− 1)3

]
, (4)

a = 0.4, b = 3, c = 1.25,

and may be written as the sum of the symmetric Φs(x, µ2
0) and antisymmetric Φa(x, µ2

0)
parts,

Φs(x, µ2
0) = ΦKasy(x)

[
a + b(2x− 1)2

]
, Φa(x, µ2

0) = ΦKasy(x)c(2x− 1)3. (5)

In (2),(4),(5) ΦMasy(x) is the asymptotic w.f.

ΦMasy(x) =
√

3fMx(1− x), (6)
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where fM is the meson decay constant; fπ = 0.093 GeV, fK = 0.112 GeV . In the case
of the ρ-meson we take fLρ = fTρ = 0.2 GeV for the CZ w.f., and fLρ = 0.2 GeV ,
fTρ = 0.16 GeV for BB w.f. The normalization of ΦM (x, µ2

0) at µ0 = 0.5 GeV is given by
the condition∫ 1

0

dxΦM(x, µ2
0) =

fM

2
√

3
. (7)

The factor
√

2 appearing in the normalization of a vector meson is included into the
ρ-meson decay constant.

b)

d)c)

a)

q

M
x1P

-x2P1-θ2zp, θ1

Figure 1. Feynman diagrams contributing to the higher twist subprocess γq → Mq. Here p

and P are the hadron h and meson M four momenta, respectively.

The formalism for calculation of the HT subprocess cross section is well known and
described in [6,9]. We omit details of our calculations and write down the final expression
for dσ̂HT /dt̂. We find:

for the pseudoscalar and longitudinally polarized vector mesons,

dσ̂HT (e1, e2)
dt̂

=
32π2CFαE

9ŝ2

{
−e2

1

ŝ2

[
I2
1 t̂− 2I1 (I1ŝ + I2û)

û

t̂
+ I2

2

û2

t̂

]
−

e2
2

û2

[
K2

1 t̂− 2K1 (K1û + K2ŝ)
ŝ

t̂
+ K2

2

ŝ2

t̂

]
− (8)

2e1e2

ŝût̂

[
I1K1 t̂

2 − I1(K2ŝ + K1û)ŝ−K1(I1ŝ + I2û)û
]}

.

for the transversely polarized vector meson,

dσ̂HT (e1, e2)
dt̂

=
64π2CFαE

9ŝ4

−t̂

û2
[e1ûI2 − e2ŝK2]

2 (9)
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In (8),(9), αE ' 1/137 is the fine structure constant, CF = 4/3 is the color factor.
The Mandelstam invariants for the subprocess are defined as

ŝ = (zp + q)2 = zs,

t̂ = (q − P )2 = t, (10)
û = (zp − P )2 = zu,

where s, t, u are the Mandelstam invariants for the process γh→MX , z is the longitu-
dinal fractional momentum of the quark q1 out of the hadron h.

The main problem in our investigation is the calculation of quantities I1,2, K1,2,

I1 =
∫ 1

0

∫ 1

0

dx1dx2δ(1 − x1 − x2)αS(Q̂2
1)ΦM (x1, x2; Q̂2

1)
x2

, (11)

I2 =
∫ 1

0

∫ 1

0

dx1dx2δ(1 − x1 − x2)αS(Q̂2
1)ΦM (x1, x2; Q̂2

1)
x1x2

, (12)

and

K1 =
∫ 1

0

∫ 1

0

dx1dx2δ(1 − x1 − x2)αS(Q̂2
2)ΦM (x1, x2; Q̂2

2)
x1

, (13)

K2 =
∫ 1

0

∫ 1

0

dx1dx2δ(1 − x1 − x2)αS(Q̂2
2)ΦM (x1, x2; Q̂2

2)
x1x2

, (14)

where for I1, I2 the renormalization and factorization scale is Q̂2
1 = x2ŝ, for K1, K2 it is

given by Q̂2
2 = −x1û.

Here we shall calculate the integrals (11-14) using the running coupling constant
method and also discuss the problem of normalization of the higher twist process cross
section in terms of the meson electromagnetic form factor obtained in the context of the
same approach.

Let us clarify our method by calculating the integral (11); the quantities I2, K1,2 can
be worked out in the same way. For the mesons with symmetric w.f. Eq.(11) in the
framework of the running coupling approach takes the form

I1(ŝ) =
∫ 1

0

αS((1− x)ŝ)ΦM (x, µ2
0)dx

1− x
. (15)

The αS((1 − x)ŝ) has the infrared singularity at x → 1 and as a result integral (15)
diverges (the pole associated with the denominator of the integrand is fictitious, because
ΦM ∼ (1 − x), and therefore, the singularity of the integrand at x = 1 is caused only by
αS((1− x)ŝ)). For the regularization of the integral let us relate the running coupling at
scaling variable αS((1−x)ŝ) with the aid of the renormalization group equation in terms

764



AGAEV

of the fixed one αS(ŝ). The renormalization group equation for the running coupling
α(ŝ) ≡ αS(ŝ)/π

∂α(λŝ)
∂ lnλ

' −β0

4
[α(λŝ)]2 , (16)

has the solution

α(λŝ) ' α(ŝ)
1 + (α(ŝ)β0/4) lnλ

. (17)

In (16),(17), the one-loop QCD coupling constant αS(µ2) is defined as

αS(µ2) =
4π

β0 ln(µ2/Λ2)

with β0 = 11− 2nf/3 being the QCD beta-function first coefficient.
Having inserted (17) into (15) we get

I1(ŝ) = αS(ŝ)
∫ 1

0

ΦM (x, µ2
0)dx

(1− x)(1 + (1/t) ln(1− x))
, (18)

where t = 4π/αS(ŝ)β0.
The integral (18) is, of course, still divergent, but now it is recasted into a form, which
is suitable for calculation. Using the method described in details in our work [10] it may
be found as a perturbative series in αS(ŝ)

I1(ŝ) ∼
∞∑
n=1

(
αS(ŝ)

4π

)n
Sn, Sn = Cnβ

n−1
0 . (19)

The coefficients Cn of this series demonstrate factorial growth Cn ∼ (n − 1)!, which
might indicate an infrared renormalon nature of divergences in the integral (18) and
corresponding series (19). The procedure for dealing with such ill-defined series is well
known; one has to perform the Borel transform of the series [11]

B[I1](u) =
∞∑
n=1

un−1

(n− 1)!
Cn, (20)

then invert B[I1](u) to obtain the resummed expression (the Borel sum) for I1(ŝ). This
method is straightforward but tedious. Therefore, it is convenient to apply the second
method, used in our work [12], which allows us to bypass all these intermediate steps and
find directly the resummed expression for I1(ŝ). For these purposes let us introduce the
inverse Laplace transform of 1/(t + z)

1
t + z

=
∫ ∞

0

exp[−(t + z)u]du. (21)
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Then I1(ŝ) may be readily carried out by the change of the variable x to z = ln(1 − x)
and using (21)

I1(ŝ) =
4
√

3πfM
β0

∫ ∞
0

exp
[
− 4πu

αS(ŝ)β0

](
a + b

1− u
− a + 5b

2− u
+

8b

3− u
− 4b

4− u

)
. (22)

Eq.(22) is nothing more than the Borel sum of the perturbative series (19) and the
corresponding Borel transform is

B[I1](u) =
a + b

1− u
− a + 5b

2− u
+

8b

3− u
− 4b

4− u
. (23)

The Borel transform B[I1](u) has poles on the real u axis at u = 1; 2; 3; 4, which
confirms our conclusion concerning the infrared renormalon nature of divergences in (19).
To remove them from Eq.(22) some regularization methods have to be applied. In this
article we adopt the principal value prescription [13]. We obtain

[I1 (ŝ)]res =
4
√

3πfM
β0

[
(a + b)

Li(λ)
λ
− (a + 5b)

Li(λ2)
λ2

+

8b
Li(λ3)

λ3
− 4b

Li(λ4)
λ4

]
, (24)

where Li(λ) is the logarithmic integral [14], for λ > 1 defined in its principal value

Li(λ) = P.V.

∫ λ

0

dx

ln x
, λ = ŝ/Λ2. (25)

For other integrals from (12-14) we find

[I2 (ŝ)]res =
4
√

3πfM
β0

[
(a + b)

Li(λ)
λ
− 4b

Li(λ2)
λ2

+ 4b
Li(λ3)

λ3

]
, (26)

and

[K1 (−û)]res = [I1 (−û)]res , [K2 (−û)]res = [I2 (−û)]res . (27)

From (24),(26),(27), we conclude that in the framework of the running coupling approx-
imation even for mesons with symmetric w.f. we have

[I2 (ŝ)]res 6∼ [I1 (ŝ)]res , [K2 (−û)]res 6∼ [K1 (−û)]res .

Another question is the normalization of the meson photoproduction cross section in
terms of the meson elm form factor. The pion and kaon form factors have been calculated
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by means of the running coupling approach in our previous papers [10, 12]. Let us write
down the pion form factor obtained using the pion’s simplest w.f., that is, the asymptotic
one (a = 1, b = 0 in (3))

[
Q2Fπ(Q2)

]res
asy

=
(16πfπ)2

β0

[
−3

2
+ (lnλ− 2)

Li(λ)
λ

+ (lnλ + 2)
Li(λ2)

λ2

]
. (28)

From (24),(26),(28) it follows that in the running coupling approach the HT subprocess
cross section (8) cannot be normalized in terms of the meson form factor for mesons with
symmetric w.f.

Let us, for completeness, write down I(ŝ), K(−û) calculated for non-symmetric w.f.
(5)

[I1 (ŝ)]res =
4
√

3πfM
β0

[
(a + b + c)

Li(λ)
λ
− (a + 5b + 7c)

Li(λ2)
λ2

+

2(4b + 9c)
Li(λ3)

λ3
− 4(b + 5c)

Li(λ4)
λ4

+ 8c
Li(λ5)

λ5

]
, (29)

[I1 (ŝ)]res =
4
√

3πfM
β0

[
(a + b + c)

Li(λ)
λ
− 2 (2b + 3c)

Li(λ2)
λ2

+

4(b + 3c)
Li(λ3)

λ3
− 8c

Li(λ4)
λ4

]
. (30)

The expressions for [K1 (−û)]res and [K2 (−û)]res may be obtained from (29),(30) by
c → −c, λ = ŝ/Λ2 → −û/Λ2 replacements, respectively. With these explicit expressions
and the results of [12] at hand one can check our statements concerning the normalization
of the subprocess cross section for kaons.

Let us write down the HT correction to the single meson photoproduction cross section
by taking into account both HT subprocesses; γq1 → Mq2 and γq̄2 → Mq̄1. It is not
difficult to prove that the second subprocess cross section can be obtained from (8),(9)
by e1 ↔ e2 replacement. Then the HT correction to the single meson photoproduction
cross section is given by

σHT

dp2
Tdy

= z∗
∑
q1,q̄2

{
qh1 (z∗,−t)

dσ̂HT (e1, e2)
dt̂

+

q̄h2 (z∗,−t)
dσ̂HT (e2, e1)

dt̂

}
s

s + u
. (31)

where

z∗ =
pT e−y√
s− pT ey

.

Here the sum runs over the hadron’s quark q1 and antiquark q2 flavors. In (31) qh1 (z∗,−t),
qh2(z∗,−t) are the quark and antiquark distribution functions, respectively. All r.h.s.
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quantities are expressed in terms of the process c.m. energy
√

s, the meson transverse
momentum pT and rapidity y using the following expressions

ŝ =
spT e−y√
s− pT ey

, t̂ = −pT
√

se−y, û = − p2
T

√
s√

s− pT ey
. (32)

Eq.(31) is the final result which will be used later in our numerical calculations.
In our study of the single meson photoproduction a crucial point is the comparison of

our results with leading twist (LT) ones. This will enable us to find such domains in the
phase space in which the higher twist photoproduction mechanism is actually observable.

The LT subprocesses, which contribute to a meson photoproduction are:
a photon-quark (antiquark) scattering

γ(q) + qi(p1)→ qi(p2) + g(p3), (γqi → qig), (33)

and photon-gluon fusion reactions

γ(q) + g(p1)→ qi(p2) + qi(p3). (34)

In this article we consider the inclusive cross section difference in the photon-proton
collision, namely

∆M =
dσ

dp2
Tdy

(γp→ M+X) − dσ

dp2
Tdy

(γp →M−X) ≡ ΣM+ − ΣM− . (35)

The LT subprocess which dominates in this difference is γq → gq with q →M . Its cross
section at the tree level is well known,

dσ̂LT

dt̂
= −

8παEe2
q

3ŝ2

[
αS(ŝ)

t̂

ŝ
+ αS(−t̂)

ŝ

t̂

]
, (36)

where the Mandelstam invariants of the subprocess are

ŝ = (q + p1)2, t̂ = (q − p2)2, û = (q − p3)2.

Then the leading twist contribution to the single meson photoproduction in γp→MX
is given by the expression,

dσLT

dp2
Tdy

=
∑
q

∫ 1

xmin

dxqp(x,−t̂)DM/q(z,−t̂)
z

dσ̂LT

dt̂
, (37)

where

z =
pT e−y

x
√

s
+

pT ey√
s

, xmin =
pT e−y√
s− pT ey

. (38)

In (37), qp(x,−t̂) and DM/q(z,−t̂) are a quark q distribution and fragmentation functions,
respectively. The subprocess invariants ŝ, t̂, û in (37) are functions of s, pT , y,

ŝ = xs, t̂ = −pT
√

se−y

z
, û = −xpT

√
sey

z
. (39)
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Eq.(37) together with (31) for the HT contributions will be applied for numerical calcu-
lations.

In numerical calculations for quark distribution functions, we borrow the leading order
parametrization of Owens [15]. Our calculations are performed for M = π , K, ρ at

√
s =

14.1 GeV, 25 GeV . The quark fragmentation functions are taken from [16]. Recently, in
[17], a new set of fragmentation functions for charged pions and kaons, both at leading
and next-to-leading order, have been presented. These functions give DM++M−

q (x, Q2),
but not DM±

q (x, Q2). Therefore, we cannot apply them in our calculations.
The other problem is a choice of the QCD scale parameter Λ and number of active

quark flavors nf . The HT subprocesses probe the meson w.f. over a large range of Q2, Q2

being equal to ŝ or −û. It is easy to find that −ûmin > 4.04 GeV 2, while ŝmin > 16 GeV 2.
For momentum scales ŝ,−t̂ used in (36) as arguments of αS in the LT cross section we
get

−t̂min > 6 GeV 2, ŝmin > 16 GeV 2.

In other kinematic domains these scales take essentially larger values. Taking into
account these facts we find it reasonable to assign Λ = 0.1 GeV, nf = 5 throughout in
this section.

Results of our numerical calculations are plotted in F igs.2−6. First of all, it is interest-
ing to compare the resummed HT cross sections with the ones obtained in the framework
of the frozen coupling approximation. In F ig.2, the ratio rM = (ΣHTM )res/(ΣHTM )o for
negatively charged particles (π−, K−) is shown. In the computing of (ΣHTM )o we have ne-
glected the meson’s w.f. dependence on the scale Q̂2. Let us emphasize that for the kaon
we have used the frozen coupling version of our expression (8), but not the Bagger-Gunion
formula from [6], which is incorrect in that case.

In all of the following figures we have used the resummed expression for the HT
cross section. In F ig.3 the ratio RM =| ∆HT

M /∆LT
M | is depicted. For all particles

the LT cross section difference is positive ∆LT
M > 0, since ΣLTM+ ∼ up(x,−t̂)e2

u, while
ΣLTM− ∼ dp(x,−t̂)e2

d. The smaller quark charge ed and the smaller distribution function
dp both suppress ΣLTM− [6]. The HT cross section difference may change sign at small pT
and become negative ∆HT

M < 0. For example, ∆HT
π− < 0 at 2 GeV/c ≤ pT ≤ 11 GeV/c

for
√

s = 25 GeV, y = 0 and at 2 GeV/c ≤ pT ≤ 9 GeV/c for
√

s = 25 GeV, y = 0.5.
Only at the phase-space boundary pT > 11 GeV/c in the first case or at pT > 9 GeV/c in
the second one ΣHTπ+ > ΣHTπ− . Therefore, we plot the absolute value of RM . The similar
picture has been also found for other mesons.

The rapidity dependence of RM at
√

s = 25 GeV, pT = 3 GeV/c plotted in F ig.3(b)
illustrates not only the tendency of the HT contributions to be enhanced in the region
of negative rapidity, but also reveals an interesting feature of the HT terms; as is seen
from F ig.3(b) the ratio RM is an oscillating function of the rapidity. This property of
the HT terms may have important phenomenological consequences. In fact, in F ig.4 we
have depicted ∆tot

M and ∆LT
M versus rapidity. In both cases, owing to observed property

of ∆HT
M (y), in certain domains of the rapidity interval −2 ≤ y ≤ 2.105 the total cross

section difference is more than ∆LT
M and in some ones less than ∆LT

M . In the case of the
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kaon photoproduction

∆tot
K > ∆LT

K , for − 2 ≤ y ≤ 0.3 and 1.8 ≤ y ≤ 2.105,

∆tot
K < ∆LT

K , for 0.3 ≤ y ≤ 1.8.
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Figure 2. Ratio rM = (ΣHTM )res/(ΣHTM )o, where (ΣHTM )res and (ΣHTM )o are HT contributions to

the photoproduction cross section calculated using the running and frozen coupling approxima-

tions, respectively. The ratio is depicted as a function of pT .
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Figure 3. Ratio RM =| ∆HT
M /∆LT

M | for the kaon a) at fixed rapidity y=0. In b) RM is plotted

as a function of y for the pion (dashed curve) and for the kaon (solid curve).
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Figure 4. The cross section difference ∆M as a function of the rapidity for kaons.

The properties of the HT terms found in the pion and kaon photoproduction processes
persist also in the ρ-meson photoproduction. But now the HT contributions change the
whole picture of the process arising from the ordinary LT calculations. Thus, as in the
case of the pion photoproduction, the HT terms are enhanced relative to the leading ones
and ∆HT

ρ < 0 almost for all pT . But now | ∆HT
ρ | takes such large values that it even

changes the sign of the total cross section difference. That is, if in accordance with the
LT estimations Σtotρ+ > Σtotρ− must be valid for all pT , for pT < pcT we find Σtotρ+ < Σtotρ− .
The value of pcT depends on the process parameters, as well as on the ρ-meson w.f. used
in calculations. At pt ≈ pcT we have Σtotρ+ ≈ Σtotρ− .
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Figure 5. ∆ρ for ρ-meson. The solid curve describes ∆LT
ρ , whereas the dashed curves correspond

to ∆tot
ρ . The long-dashed curve has been obtained using the CZ w.f., the short-dashed one- BB

w.f. In the domains I(BB w.f.) and I ′(CZ w.f.) the absolute value of | Σtotρ | or Σtotρ− − Σtotρ+ is

plotted.
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Figure 6. ∆ρ dependence on the rapidity at
√
s = 25 GeV, pT = 3 GeV/c. The solid curve

corresponds to ∆LT
ρ , the long-dashed and short-dashed curves describe ∆tot

ρ obtained using CZ

and BB w.f., respectively. In regions I(BB w.f.) and I ′(CZ w.f.) the cross section difference

Σtotρ− − Σtotρ+ is shown.

Our results are shown in Figure 5. For the parameters indicated in the figure a
critical value of pT is: pcT1 ' 5.05 GeV/c for CZ w.f., and pcT2 ' 6.25 GeV/c for BB
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w.f. In all kinematic domains the HT contributions found using BB w.f. exceed the ones
obtained by applying CZ w.f., that is, | ∆HT

ρ (BB) |>| ∆HT
ρ (CZ) |. For example, the ratio

| ∆HT
ρ (BB)/∆HT

ρ (CZ) | equals to 2.39 at
√

s = 25 GeV, pT = 5 GeV/c, y = 0, or to 2.63
at
√

s = 25 GeV, pT = 3 GeV/c, y = −1. Similar pictures persist in F ig.6, where ∆LT
ρ

and ∆tot
ρ are depicted as functions of the rapidity y. In F ig.6, for the process parameters√

s = 25 GeV, pT = 3 GeV/c we have: in domain I′ (−1.74 ≤ y ≤ 1.3) the total cross
section difference for CZ w.f. is negative, in I (−1.5 ≤ y ≤ 1.5) - ∆tot

ρ (BB) < 0.
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It is worth noticing that in [6] the authors considered the ρ-meson photoproduction
at the same process’s parameters and predicted Σtotρ < 0 at pT ≤ 3 GeV/c, but could
not find similar effects for Σtotρ in dependence on the rapidity. Our investigations prove
that Σtotρ < 0 at pT < pcT and pcT well into deep perturbative domain. We have also
demonstrated that the same phenomenon exists for yc1 ≤ y ≤ yc2.

In this work we have calculated the single meson hard semi-inclusive photoproduction
via higher twist mechanism and obtained the expressions for the subprocess γq → Mq
cross section for mesons with both symmetric and non-symmetric wave functions. Sum-
ming up we can state that:
i) in the context of the running coupling constant method the HT subprocess cross sec-
tion cannot be normalized in terms of meson’s elm form factor neither for mesons with
symmetric w.f. nor for non-symmetric ones;
ii) the resummed HT cross section differs from that found using the frozen coupling ap-
proximation, in some cases, considerably;
iii) HT contributions to the single meson photoproduction cross section have important
phenomenological consequences, specially in the case of ρ-meson photoproduction. In
this process the HT contributions wash the LT results off, changing the LT predictions.
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