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Abstract

Starting from Coon-Baker-Yu (CBY) q-oscillator, a two parameter, multidimen-
sional q-oscillator is formulated. It is shown that this procedure, called Fibonac-
cization, can be extended to any number of parameters. The relation between CBY
states and Fibonacci CBY states are also investigated.

Generalization of integers into q-basic numbers and generalization of quantum
oscillators into q-oscillators [1,2,3] are related deformations. These deformations have
been investigated in recent studies [4,6,7,8]. For example, oscillators with a spectrum
given by basic numbers defined in symmetric form [9]

[n] =
qn − q−n
q − q−1

, (1)

where q is a real parameter, have been used in the construction of the SUq (2) Lie algebra
[2,3], q correction to Planck radiation and q statistics [10]. On the other hand, the Jackson
basic number [12], given by

[n] =
qn − 1
q − 1

, (2)

is used in the construction of SLq (n) and SUq (n) quantum [12,13]. This form also
yields the energy spectrum of the multidimensional (nonquantum) U(n) invariant CBY
q-oscillator [14]. n fact, the two parameter generalization of basic numbers,

[n] =
qn1 − qn2
q1 − q2

, (3)
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with q1, q2 real numbers or a complex conjugate pair, solves the Fibonacci difference
equation [15]. Among multidimensional q-oscillators, the multidimensional Uq(n) invari-
ant Pusz-Woronowicz (PW) oscillator [16] can be extended to a two parameter oscillator.
This is the covariant Fibonacci oscillator whose spectrum is given by (3).

On the other hand, the CBY oscillator is simpler to construct and is related to
PW oscillator through the oscillator states [12]. We will now propose a two parameter
version of the CBY oscillator using a similar procedure as in [15]. We will call it the
Fibonacci-CBY oscillator.

The defining commutation relation of the CBY q-oscillator is given by

[ai, aj†]q ≡ aiaj† − qaj†ai = δij , (4)

where a and a† are annihilation and creation operators, respectively. Using the fact that
the right hand side of (4) is a scalar, we multiply (4) by a†k once from left, once from
right and rearrange to obtain

aia
†
ja
†
k = qa†jaia

†
k − qa

†
ka
†
jai + a†kaia

†
j. (5)

We now introduce a new parameter q2 by defining a new operator b by

bi ≡ qN/22 ai, (6)

where N is the number operator satisfying

aiN = (N + 1)ai.

Using this fact it follows that

bif(N) = f(N + 1)bi (7)

b†jf(N) = f(N − 1)b†j

for any analytic function f(N).
It is possible to eliminate q−3N/2

2 and find

bib
†
jb
†
k = qq2b

†
jbib

†
k − qq

2
2b
†
kb
†
jb
†
i + q2b

†
kbib

†
j. (8)

If we set q = q1/q2 , we obtain a two parameter version of the CBY oscillator which we
will call the fCBY oscillator with the “commutation” relation

bib
†
jb
†
k = q1bib

†
jbib

†
k − q1q2b

†
kb
†
jbi + q2b

†
kbib

†
j ,

bi|0 > = 0, (9)
bib
†
m|0 > = δim|0 >
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For the above equation (9), we calculate the inner products of oscillator states defined
through:

|ijk · · · >= b†ib
†
jb
†
k · · · | >,

where |0> is the normalized ground state:

< i|j > = δij (10)

< ij|km > = q2δ
i
k < j|m > +q1δ

i
m < j|k >

< ijk|mnp > = q2
2δ
i
m < jk|np > +q1q2δ

i
n < jk|mp > +q2

1δ
i
p < jk|mn > .

The recursive property of the above definition permits us to define a tensor N from inner
products of the fCBY q-oscillator states

< i1 · · · in|k1 · · ·kn >≡ N i1i2···in
k1k2···kn ≡ N

i
k(n, q), (11)

which has the recursion relation

N i1i2i3···in
k1k2k3···kn = qn−1

2 N i1
k1
N i2i3···in
k2k3···kn (12)

+ q1q
n−2
2 N i1

k2
N i2i3···in
k1k3···kn

+ q2
1q
n−3
2 N i1

k3
N i2i3···in
k1k2k4···kn

+ · · ·
+ qn−1

1 N i1
k2
N i2i3···in
k1k3···kn−1

If we consider the simplest form of the N tensor, N i
j , we see that it is simply the

Kronecker delta, δij . Since for the case q1 = −1 or q2 = −1, where we find the usual
n-dimensional Kronecker delta, we name N the two parameter generalized Kronecker
delta.

It is also possible to find a relation between the N tensor of the CBY q-oscillator
and the N tensor of the new fCBY oscillator. To accomplish this, we expand the N
tensor completely and we see that for two and three particle cases we have

N = q2NCBY |q=q1/q2 (13)

N = q3
2NCBY |q=q1/q2 ,

where N denotes the sensor obtained from the inner products of CBY states [1,17]. For
the generalization do a d -dimensional inner product case, one should note that in the
above examples, N is each time divided by the highest power of q2 when it is expanded
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into its most simple form using (12). To find the expression for the highest power of q2 ,
we use the fact that the defining equation (9) is symmetric in powers of q1 and q2 .

To obtain the highest power of q1 , in a d -dimensional inner product,

< i1i2 · · · id|j1j2 · · · jd >=< |bid · · · b12ai1bj1†bj2† · · · bjd† | >,

we couple each bik with the rightmost possible b†jm giving rise to a factor of q1 each time
it is permuted with a b†j . For example, bi1 will couple with b†jd picking up (d-1) factors
of q1 . If we denote the total power of q1 by m(d), it can be expressed by a summation

m(d) =
d∑
i=1

(d− i) =
d(d− 1)

2
. (14)

Using the symmetry of q1 and q2 , we find that

N = q
m(d)
2 NCBY |q=q1/q2 . (15)

The defining relation for this new oscillator (9) can also be written in the form of
q-commutator notation in (4):

[[bi, b
†
j]q1, b

†
k]q2 = 0. (16)

We can generalize this equation by writing

[[[bi, b
†
j]q1, b

†
k]q2, b

†
l ]q3 = 0. (17)

Note that (16) trivially solves (17). Further generalizing this equation by introducing
new parmeters is straightforward. One can construct the n-parameter version of fCBY
q-oscillator as

[· · · [[bi, b†j]q1, b
†
k]q2, · · · b

†
z]qn = 0. (18)

By setting i = j = k = · · · = z , it is possible to obtain the one dimensional
version of the above new q -oscillator. If this equation is written as a difference equation,
the associated n-parameter basic number can be calculated. One should note that, for
n parameters, the difference equation which determines the spectrum is of order n and
therefore the number of initial conditions is also n . Different choices of initial condiitions
lead to different results. For example, if one sets the first (n-1) basic numbers to be the
integers up to (n-1) as the initial conditions, then it is possible to think of n , as the
point above which the q effects are to be observed. Another interesting case can be an
(n-1)-forld degenerate ground state and a unique first excited state.
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