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Abstract

Some of the first transition metal alloys show first order antiferromagnetic phase
transition as a function of alloy concentration [1-5]. The antiferromagnetism of mate-
rials can be classified into three different class: type I, type II and type III. Although
the neutron diffraction studies give information about the type of magnetism, they
do not show the fluctuations of magnetic moment from the original direction. So
in order to have some information about this fluctuations one must perform the
magnetic diffuse scattering. Recently, we proposed that the square lattice may have
a double-Q structure as well as single-Q [6]. We showed that the alloying may cause
a first order antiferromagnetic phase transition. In order to show that this is the
case we perform the magnetic diffuse scattering and give more evidences that the
alloying play the dominant role in this phase transition.

1. Introduction

First row transition metal alloys, especially v-Mn, shows very interesting behavior.
Manganese quenched into a face center cubic structure exhibits type-1 antiferromagnetism.
This is a sequence or ferromagnetic x-y layers that alternate in spin direction along the
z-axis. The z-axis becomes inequivalent to the other cartesian directions and magnetism
induces a huge tetragonal distortion of approximately six per cent parallel to the z-axis
[7]. Neutron scattering [8] shows that the spins align parallel to the z-axis where they
are held in place by spin-orbit coupling. As we have already mentioned, the structure of
~v-Mn is face center cubic. Antiferromagnetism in f.c.c lattice is frustrated, with only a
fraction of nearest neighbors being allowed to be antiparallel. Geometrically frustrated
lattices provide some of the most sophisticated and interesting types of antiferromagnet.
The fundamental cause is that the frustration forces some of the bands to gain less than
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their optimum energy. There are usually a variety of ways in which this loss can be
spread amongst the different bonds, often leading to ground state degeneracy to leading
order. This degeneracy is usually lifted on a smaller energy scale than that promoting the
magnetism, and this then leads to the possibility of phase transitions between different
magnetic ground states caused by fairly small changes in the magnetic interactions. In
particular, alloying a frustrated antiferromagnet can lead to such a phase transition at
quite modest doping. The alloying is main focus in our model. When another transition
metal is doped into the manganese there are quite dramatic changes in behavior. Fe [1],
Ir [9], Ni [2] and Cu [10] all substantially reduce the tetragonal distortion and for Fe, Ir
and Ni there is evidence of a cubic phase which is stabilized at doping concentrations of
approximately a quarter.

In order to show that the alloying causes this phase transition we will use the
Heisenberg model, which is quite appropriate when the magnetic moments are large
enough.

2. Heisenberg Model

In our previous studies, we showed that the square lattice can be frustrated by
longer-range bonds [6]. We used the classical limit of the Heisenberg model, which says
that if the magnetic electrons were described by localized orbitals, then the resultant
spins on the neighboring atoms would align either parallel or antiparallel depending on
the sign of the exchange integral J.

We proposed that the square lattice has frustrated antiferromagnetic arrangement
(double-Q) depending on the strength of the higher nearest neighbors’ interactions, al-
though it is commonly known as an unfrustrated system (single-Q).

Heisenberg Hamiltonian is

H =Y JiS;S;, (1)
(i,9)
where S; and S; are the resultant spins of neighboring atoms, which are quantum
mechanical operators satisfying the commutation relations (h/2m = 1)

[sg, sﬂ = icap0isS] @)
Y

According to Hund’ s third rule the spin is usually maximum [11] so there is a constraint
on spin. The total spin constraint is

Si-SjZS(S+1) (3)

and applies to each atom independently. For the ground state, it must be minimized
subject to constraint. This yields a very complicated quantum mechanical problem [12].
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However, the spins may be considered as very large spins i.e, S — oo. In this limit the
quantum mechanics goes away. If we normalize the spins by

S;=57"s;. (4)
Then

The remainder of the problem is simply to find relative directions in which each of the
spins point in order that the Hamiltonian

HZJSQZSi-Sj (6)
ij

is minimized. Including the second nearest neighbors interactions the Hamiltonian be-
comes

HZJlZSi'Sj+JQZSi'Sj' (7)
(i,9) [4,5]

Once this Hamiltonian is solved [6], we can get two different magnetic ordering
known as collinear and non-collinear as shown in Figure 1 and Figure 2. We proposed
that the alloying may cause an antiferromagnetic first order phase transition. We found
some indications that this is really happening. In order to give more evidences that this
is the case one must perform magnetic diffuse scattering.
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Figure 1% Collinear phase Figure 2. Non-collinear phase
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3. Magnetic Diffuse Scattering

If there is any impurity in the system, then we can express the spins as

where §Sg is spin fluctuations. Then one can calculate the Fourier transform of the spin
as

Sy = Z(s? +0SR;) exp(ik - Ry). 9)

Thus the magnetic scattering intensity

I(k) o [& A (S A R)| (10)
can be written as
1K) o |7 A [(sﬁmsk)mﬂ, (11)
which is
I(k)m + I(K)aist (12)

Here, we have omitted terms like S;SS, +SS, S, since the contribution from this
term is small. This leads to a sum of two scatterings. If we choose the propagating to
be parallel to the spin direction, then the magnetic scattering intensity disappears. The
only remaining thing is now diffuse, which is

I(k) o« |& A (88 A R)[. (13)

This is the quantity that gives information about the fluctuations. We will use this
approximation in order to investigate any non-collinear spin arrangement in the square
lattice. Equation (13) can be rewritten as |5Sk — [RéSk] f-@|2. Compering with |5Sk|2,
the other terms can be ignored. This means we can work with only |5Sk| .

For the present model there are two relevant spin components: the parallel com-
ponent, including original component, which is lost into the non-collinear component
impurity spins and the non-collinear component itself. Assuming that original spins are
parallel to z axis and that the non-collinear component is parallel to x axis, then the
magnetic diffuse scattering can be reduced to

~

—~
-

S—
Il

16S)|” + [0S L[* — |08 Az + 68 L Ax|” (14a)
1) = [8Sx — 08 1ia|” + 75 (198" + 65 L[°) (14b)
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in terms of parallel (0S)), and perpendicular (§S,), spin components.

Firstly, we will consider the collinear arrangement on the square lattice. Using
equation (13) one can work out magnetic Bragg spots. We show the Bragg spots of three
phases in the square lattice in Figure 3a to Figure 3c.

(a) (b)

Figure 3. Three phases of square lattice

Figure 3a is the Bragg spots of the simple collinear arrangement. Figure 3b is the
Bragg spots of the degenerate improved [12] collinear arrangement and Figure 3¢ shows
the Bragg spots of the non-collinear arrangement in the first Brillioun zone.

The question is now whether or not the impurities cause a non-collinear arrange-
ment in the collinear phase? In order to learn this, we will work with diffuse scattering.

4. Magnetic Diffuse Scattering In Chosen Clusters

Firstly, we will consider a small cluster with an impurity. Before the impurity
addition in the cluster, the spin configuration is shown in Figure 4a. In the presence of
the impurity we can represent the spin as

_q0
S| = Sl + 0SR1 (15)
in which 6SR; is the additional spin term due to impurity that forces the spin to have
two components. This means the spins must rotate from the original direction with an

angle 6 which is pictured in Figure 4b.
We need §S), for calculating the diffuse magnetic scattering. This is

1 ,
0S| =+ > exp(ik.Rj)SR] (16)
l

In this cluster we assume that only four spins would be affected after an impurity.
So 0SR are
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where Ty and To are

and where S - S1 =0.
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= Scosf — S*sinb,
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(b)

(17a)
(17b)
(17¢)

(18a)
(18b)

Figure 4. a) Before the impurity addition in a small cluster b) One impurity in a small cluster

Then the fourier transform of /SR is

5Sk = —So(expik . Ro) + (T1 — Sl)(eXp(ik . Rl) + exp(—ik - Rl) +

(T9 — So)(expik - Ro + exp(—ik - Ro)
08 = 2coskx(Ty —S1(Tq —S1) —Sg +2cosky(Tg — Sg)

Using the equations (18.a) and(18.b) we can rewrite this equation as

6Sy = S [2cosf(coskx + cosky) — 1] + Sq [2(1 — sin6)(cos ky — coskx)]

and its square is
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|68y |”

= 5% [2cosf(coskx + cosky) — 1]2 +4(1 —sin6)*(coskx — cosky)®.  (22)

Here we have used Sg-Sq = 0. This can be separated into two parts as

161> = 4(1 —sin6)*(coskx — cosky)? (23a)
LER |2 = [2cosf(coskx + cosky) — 1]2 . (23b)
The first equation gives the scattering peaks when coskx = —cosky = 1 as shown in
Figune 5 by X.
2
Y X Y
| | | @ <@
Y Y 2r /\
-2 0 2
Figure 5. Diffuse scattering peaks of collinear Figure 6. Magnetic diffuse scattering in a
phase after an impurity small cluster
However the second equation gives scattering peaks when coskx = cosky =-1,

which is indicated by Y in Figure 5. It is obvious that the peaks at Y points corresponds
to the Bragg spots of the collinear state.

As we mentioned above, in the interval z.izj1/2 for the simple collinear phase the
spins must be represented by two components after the impurity addition. In this interval
these X peaks are observable. It is easy to see that the symmetry of the X peaks is the
same as the symmetry of non-collinear phase. Thus it may be concluded that the impurity
trap a local non-collinear arrangement of spins.

Furthermore, we looked at the variation of |§S| | as a function of the cluster size.
We observed that this peak spreads out towards the origin by increasing the size of
cluster as shown from Figure 7a to Figure 7d. These results indicate that the scattering
is converging towards the Green function calculations of the scattering [4], which says
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that there is a long range correlation between the fluctuations. these results are the
same as the results observed in MnCu alloys [13]. It means that the prediction of our
model is not far away from the reality. If this long range correlation occurs, it is probable
that the system picks up another ordering. So the impurities may causes a first order
antiferromagnetic phase, transition.
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Figure 7. a) Magnetic diffuse scattering:9spins, b) Magnetic diffuse scattering:16spins, ¢) Mag-
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netic diffuse scattering:36spins, d) Magnetic diffuse scattering:49spins.
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5. Conclusions

In this study we investigated the magnetic diffuse scattering after impurity addi-

tions. We started with a small cluster of the simple collinear phase containing a single
impurity. We saw that the symmetry of diffuse scattering pattern is the same as sym-
metry of non-collinear phase. By increasing the cluster size we realize that the results
converge to the exact results of the Green’ s function calculations which says that there
may or may not be long rang ordering of the non-collinear phase depending on clustering
or anti-clustering [14].

If there is a long range order of the non-collinear phase then one may say that the

impurities cause a first order phase transition. We can finally conclude that the alloying
cause a first order antiferromagnetic phase transition from one ordering to the another.
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