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Abstract

Ground state wave function and the energy term of the relativistic electron
moving in the field of two Coulomb centers are calculated analytically by the method
of linear combination of atomic orbitals. Obtained analytical formula is applied to
the calculation of the critical distance between two heavy nuclei at which energy
term reaches the boundary of the lower continuum.

1. Introduction

The two centre Coulomb problem (i.e., the problem of motion of an electron in the
field of two fixed charges Z1 and Z2 separated by distance R) is a classical problem of
nonrelativistic quantum mechanics and is applied in the theory of chemical binding, in
the physics of µ-mesons, etc.

There is ample literature devoted to this problem, examples of which may be found
in [1-8]. For the nonrelativistic equation of the H+

2 molecular ion, Heitler and London
gave the first approximate solution [2]. Exact methods were derived soon after by Teller
[3] and Jaffe [5], by expanding the wave functions in terms of a suitable basis functions.
The equivalence of their methods was shown in [5,6] in which were published extensive
calculations on the nonrelativistic one-electron problem. The corresponding problem for
Dirac equation has the following characteristic properties which complicate its solution:

1. Variables in the Dirac equation with potential V = −α
(
Z1
r1

+ Z2
r2

)
can’t be sepa-

rated in any system of coordinates.

2. For large Z , there is the full down to the center [15].
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3. The wave function is multicomponent and for Zα ≈ 1 all components are of the
same order.

Interest in the relativistic two centre problem arose after prediction in [10] of the
possibility of checking quantum electrodynamics in the experiments on collisions of heavy
ions. As is well known, for Z ≈ Zcr = 170, lowest energy level of the one-center Dirac
equation imbedded the boundare of lower continuum and for the spontoneous production
of positrons will occur. As no nucleus with charge Z > Zcr do exist, the experiment
has to be done with two colliding heavy ions. To perform the calculation of the expected
positron distribution the energy of the quasimolecular states must be known as a function
of the internuclear distance R . This leads us to the wave equation for an electron in the
field of two Coulomb centers. There were several works [8-10] in which the energy term
and the critical distance (i.e., the distance, at which energy term reaches the boundary
of lower continuum) were calculated numerically as well as analitically.

In [8] the Dirac equation for a two centre Coulomb potential was solved numerically
by the method of diagonalization of Dirac Hamiltonian in a finite basis. Approximate
analitical calculations of critical distance were performed in [9,10], and also gave rise to
formulas which allow calculation of the energy term and critical distance for the charges
obeying the condition Z1+Z2−Zcr

Zcr
� 1 (condition of small overcriticallity) and for R � 1.

In the present work the two center Coulomb problem for Dirac equation is solved
by a method analogous to the method of linear combination of atomic orbitals (LCAO),
which is widely used in the quantum mechanics of molecules [6]. As is well known, method
of LCAO is applied for the solution of nonrelativistic two center one- and two- electron
problems and energy term of the nonrelativistic electron can be calculated analytically
anological calculations for dirac electron to our knowledge has not yet been performed.
As a result of such calculations, we obtain analytical formula which is true for wide range
of distances between charges and resulting charges of nuclei.

In this paper we use the system of units h̄ = c = me = 1, R is the distance between
charges, Z1 = Z2 = Z .

2. Hamiltonian and wave function

The motion of a relativistic electron in the field of two Coulomb centers is described
by stationary Dirac equation, written in the form

HΨ = EΨ, (1)

where H = ~α~p + β + V is the Dirac Hamiltonian, and ~α and β are the usual Dirac
matrices.

We will solve equation (1) by the method of LCAO choosing the trial wave functions
in the form

Ψ = d1Ψ1 + d2Ψ2,
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where Ψ1 and Ψ2 are the wave functions of the relativistic electron moving in the field
of charges Z1 and Z2 , respectivily.

As is well known [6], symmetry of charges (Z1 = Z2), normalising conditions
< Ψ|Ψ >= 1, < Ψj |Ψj >= 1, (j = 1, 2), and that the ground state does not have nodes
give rise to

d1 = d2 = d =
1√

2(1 + S)
,

where S =< Ψ1|Ψ2 > is the overlap integral.
Energy can be calculated as the matrix element

E =< Ψ|H |Ψ > (2)

where

< Ψ| = [ϕχ], |Ψ >=
[
ϕ
χ

]
As a trial function Ψ1 and Ψ2 we take the ground state wave functions of a

relativistic hydrogenlike atom [16] with effective charge Qα , i.e.:

ϕj = Arγ−1
j e−Qαrj

[
1
0

]
= Agj

[
1
0

]
χj = iABrγ−1

j e−Qαrj
[

cos θ
eiϕ sin θ

]
= iABgj

[
cos θ
eiϕ sin θ

]

where gj = rγ−1
j e−Qαrj , j = 1, 2

A =
(2Qα)

3
2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2Qα)γ−1

B =
1− γ
Qα

, γ =
√

1−Q2α2,
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3. The Energy Term and the Critical Distance

Inserting trial functions into Eqn.(2) we obtain analitical formula for the the energy
term in terms of five integrals which are expressed by gamma functions:

E =
2πA2bR2γ

1 + S
[Qα(I1 + I2) +

aγ

2Qα
(I3 + I4)− 2Zα(I2 + I5)] (3)

S = 2πA2R2γ+1bI4

where integrals I1 − I5 are written as

I1 =
1
a2γ

2Γ(2γ) (4)

I2 =
1
a2γ

[
(2− a2

3(2γ − 1)
)Γ(2γ, a) + (

1
3

+
a

3(2γ − 1)
)a2γe−a

]
(5)

I3 =
1

a2γ+1
4γΓ(2γ) (6)

I4 =
1

a2γ+1

[(
4γ − 2a2γ

3(2γ − 1)

)
Γ(2γ, a) + (2 +

2aγ
3(2γ − 1)

)a2γe−a
]

(7)

I5 =
1

a2γ+1

[
(a− γ)Γ(2γ, 2a) + (a + γ)Γ(2γ) − 1

2
(2a)2γe−2a

]
(8)

a = 2QαR, b =
2

1 + γ
.

Thus we have obtained the energy term of the relativistic electron in the field
of two centers as a function of distance R , charge Z and effective charge Q . In the
nonrelativistic limit i.e., for Qα� 1 (γ ' 1) formula (3) gives us

E = Q2α2F1(a) +QαF2(a), (9)

where

F1(a) =
1
2

1 + e−a
(
1 + a− a2

3

)
1 + e−a

(
1 + a+ a2

3

)
and

F2(a) = −Zα
1 + 2e−a (1 + a) + 1

a −
(

1
a + 1

)
e−2a

1 + e−a
(
1 + a+ a2

3

) .
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This formula coincides with the well known formula for nonrelativistic hydrogen
molecular ion [6].

In Q/Z is given as a function of R for nonrelativistic and relativistic Br-Br systems
(with charge Z = 35), respectively. These functions are obtained by minimizing functions
(9) and (3), respectively. In Figure 2 such graphs are given for the charge Z = 68.

In Figures 3 and 4 relativistic and nonrelativistic energy terms which are described
by formulas (3) and (9) are given for the charges Z = 35 and Z = 68.
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Figure 1. The ratio Q/Z as a function of

distance R for Z = 35. Dashed line corre-

sponds to the nonrelativistic system described

by formula (9); solid line corresponds to the

relativistic one describing by (3)

Figure 2. The ratio Q/Z as a function of

distance R for Z = 68. Dashed line corre-

sponds to the nonrelativistic system; solid line

corresponds to the relativistic one

As seen from these Figures in the limits of R→ 0 and R→∞ , effective charge and
energy term tend to the effective charge and the energy term of the united and separated
atoms, respectively, and relativistic corrections become considerable for small R .

Effective charge Q is a function of R and Z , i.e.

Q = Q(R,Z).

As is well known [6],

Q |R→0 = 2Z (10)
Q |R→∞ = Z. (11)

Calculating E(R) in the limit R→ 0 from Eqn.(3) we have

E(R → 0) =
√

1− 4Z2α2;
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i.e., for R → 0 our formula goes over into the formula for the energy of relativistic
hydrogenlike atom with charge 2Z (united atoms).

Calculation E(R) for R →∞ from Eqn.(3) leads to

E(R→∞) =
√

1− Z2α2

(for separated atoms).
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Figure 3. The energy terms of the relativistic

and nonrelativistic electron moving in the field

of two Coulomb centers with charge Z = 35.

Dashed line is the energy term of nonrelativis-

tic electron; solid line is the energy term of

relativistic one

Figure 4. The energy terms of the relativistic

and nonrelativistic electron moving in the field

of two Coulomb centers with charge Z = 68.

Dashed line is the energy term of nonrelativis-

tic electron; solid line is the energy term of

relativistic one

Note that in the above considered case the resulting charge of the nuclei is less than
137. In the case when Z1 +Z2 > 137, generally speaking, finite sizes of the nuclei must be
taken into account. Hovewer Popov’s formula for the critical distance (i.e., for the distance
at which the energy term of ground state reaches the boundary of the lower continuum)
which was obtained by mathcing asymptotics of wave function at the distances where
finite sizes of the nuclei can be neglected can be also obtained from our formula for the
energy term assuming the same conditions which were required in [13]. Indeed, taking
into account that in this case γ = i

√
4Z2α2 − 1, a� 1 and Q = 2Z from the condition

of diving of term into the lower continuum we have

E(Rcr) = −1,

[(1− γ)4γ + 2γ] a2γ = −4γΓ(2γ + 1),

or
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(2R)−2γ 4γ
(1 − γ2)γ((γ − 1)4γ − 2γ)

Γ(2γ + 1) = 1 ≡ e2πi.

After some straightforward transformations this expression takes the form

Rcr = C exp(− π√
4Z2α2 − 1

). (12)

This formula coincides with known formula for Rcr which was derived in [13] (see also
[14,17]).

4. Conclusion

We have obtained an analitical formula for the energy term of a relativistic electron
moving in the field two fixed centers using method like to the nonrelativistic LCAO
method. This formula is valid for wide range of the distances between centers and resulting
charges Z1+Z2 . In the case of overcritical charges this formula reproduces the well known
Popov’s formula for the critical distance at which the energy term, reaches the boundary
of the lower continuum and production of electron- positron pairs will occur [13,14].

Finally there is the considerable interest in baryons containing two heavy quarks
(QQq-baryons) [19,20]. These baryons are the analogues to the above considered sys-
tem (Z1 , Z2, e

−) in which Coulomb potential replaced with the Coulomb plus confining
potential. Therefore, the method proposed in this paper can be also applied for solving
the Dirac equation with two center Coulomb plus confinement potential for the calcu-
lation energy spectrum of QQq baryons. At the present time we are performing such
calculations.
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