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Abstract

We consider the interaction of a confined electron with bulk polar-optical phonons
in a cylindrical quantum well wire with infinite boundary potential. Expressions for
the polaron self energy and mass are derived within a composite variational scheme
consisting of a strong-coupling characterization imposed in the lateral directions
and a weak-coupling LLP-counterpart structured along the length of the wire. The
formulation is seen to be rather commendable and yields a sensible description of
the Q1D-polaron in thin wires of weak or intermediate electron-phonon coupling
strengths.

1. Introduction

Continuous progress in epitaxial growth techniques has resulted in the fabrication
of quasi-one-dimensional semiconductor structures with sharp interfaces [1]. Within this
context there has appeared a numerous amount of publications focused to the study of
the interaction of one dimensionally confined electrons with the bulk LO phonon modes
[2-11]. As one would expect, the common finding in the relevant papers is that the
electron couples to the phonon field very effectively and consequently, certain polaron
quantities (e.g., the binding energy, polaron mass or the mean phonon density clothing
the electron) scale to considerably pronounced values over that in the unconstrained
three dimensional case. This follows essentially from that, in thin wires, the polaron
cloud becomes squeezed towards the wire axis in the transverse directions resulting in a
very high degree of localization of the polaron. Hence, even in weak polar materials the
effective electron-phonon coupling shows up a strong-coupling aspect brought about by
confinement effects. We therefore think that, even for a weak electron-phonon coupling
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strength, the lattice may acquire a relaxed static deformation clothing the entire extent of
the rapidly fluctuating electron in the directions transverse to the axis of a thin wire. Still,
however, the ions may respond to the instantaneous position of the electron longitudinally
along the length of the wire. Consequently, one has the adiabatic (strong-coupling)
condition obtained along the two transverse axes, and weak-coupling along the third
(z) direction. We refer to this situation as mized coupling. The content of this article
is therefore aimed at this particular situation where we review the ground state polaron
properties in thin wires of weak polar materials.

In what follows we refer to the case of an electron confined laterally within a
free-stand tubular geometry with infinite boundary potential at radius R. For the
present we take the confined electron as interacting with the bulk phonon modes only,
and refrain from including any modifications such as those due to phonon confinement,
the polaron-induced band non-parabolicity or the loss of validity of both the effective—
mass approximation and the Frohlich continuum Hamiltonian in thin microstructures.
We also ignore the screening effects and leave out the contributions from the interface
phonon modes. In view of these simplifying assumptions and adopting the so called bulk
phonon approrimation we treat the quasi-1D polaron within the framework of a composite
“mixed-coupling” approximation and devote almost all emphasis to the formal aspect of
the problem.

2. Theory
2.1. Hamiltonian and Wavefunction

Using units for which 2m* = h = wro = 1, the Hamiltonian describing an electron
coupled to bulk LO-phonons is given by

H= He—l—ZagaQ + He (1)
Q
where 5
10 0 0
H=——I\p=—|—535 2
C pop <p5/>> 0z? ®
is the electron part, and
He_ph = Z Tolag exp(iq - §+ iq.2) + hc] (3)
Q

is the Frohlich interaction in which the coordinates p' and z give the electron position.
The interaction amplitude is related to the electron-phonon coupling constant « and the
phonon wavevector Q = (q,q-) through T'g = Vv4dra/Q.

To account for the cylindrical confinement with zero potential inside, and infinitely
rigid boundary at p = R, we shall impose the lateral wavefunction of the electron to be
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given in the product form

De(p) = N Jo(rp) exp(—%/pr) (4)

where the constant N serves for normalization. Clearly, Jo, the zeroth order cylindrical
Bessel function of the first kind, takes care of the geometric confinement, and the further
confinement induced by phonon coupling is governed by the Gaussian counterpart through
parameter p. In the above, k = jo1/R, where jo 1 is the first zero of Jg.

2.2. Canonical Transformations

The Hamiltonian, Eq.(1), is invariant to translations of the electron together with
its concomitant lattice distortion, and the total momentum along the wire axis is con-
served, i.e., H commutes with

0
P,=—i— +1I, 5
gt (5)
in which
II, = ZqzagaQ (6)
Q

refers to the phonon momentum. Therefore, it is possible to transform to a representa-
tion in which the relevant coordinate of the electron is totally eliminated and the total
momentum P, becomes a c-number. On this purpose, applying the LLP — unitary trans-
formation [12]

Uy = exp{i(P, —1II,) 2} , (7)
the Hamiltonian conforms to
H = U{'HU,
10 8> 9
= ——3a. - |+ Pz - Hz
pOp (pap ( )
+ Z aTQaQ + Z To(age'T? 4 he). (8)
Q Q

With the above form achieved for the polaron Hamiltonian, the problem reduces to the
evaluation of the ground state energy for a given momentum P,. The functional form,
E.(P.), thus obtained can then be expanded in a power series to second order in the
momentum, i.e.,

Eg(P.) = Ey(0) + cPZ,

where the reciprocal of the factor multiplying P? is identified as the polaron mass (in
units of the band mass, m*) along the length of the wire.
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For the calculation of E, a variational approach is adopted, and the polaron ground
state is postulated in a product ansatz consisting of the electron and lattice parts, i.e.,

W, = &, Us|0), 9)

where |0) is the phonon vacuum state, and
Us = eXpZ ug(®Pe) ag — ag], (10)
Q

is the the second LLP canonical (displaced oscillator) transformation in which the func-
tion ug(®Pe) should be determined variationally.
Thus, subjecting the Hamiltonian further to the transformation

H' — U;'H'U,,
we finally obtain

10 0
H' = —=-— (p—)—i—g aba +§ u?
Q%Q Q
pop \' Op 5 5

— Z Toug (¢'77 + cc) + Z {[L@e'T? — uglag + he}
Q Q

+ P —ILY + {Pz - 2H§0>} P.

+ 2 {PZ - ng0>} o+ {Hg” - 2HZ} ¢ (11)
where
no = > up., (12)
Q
n® = Zquz(aQ + ag) . (13)
Q

Before we proceed with our main theme we should remark that, if the first transfor-
mation were by-passed (i.e. U; were selected as the identity operator), the theory would
then diverse to the strong-coupling approximation for which simultaneous optimisations
with respect to ®. and ug(®P.) correspond to the self-trapping picture of the polaron
where the electron distribution and the lattice polarisation influence each other in such
a way that a stable relaxed state is eventually attained. The calculations and results
pertaining to such a case (with a > 1) have already been provided in a previous paper
[8], and we do not re-derive them here. We shall be content with only noting that in
narrow wires the pure-adiabatic theory is capable of yielding a reasonable description of
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the polaron even when the electron-phonon interaction is not dominantly strong enough.
For completeness, we make a small digression at this point and demonstrate this aspect
by comparing the available data obtained previously from the pure strong coupling [10]
and the Feynman path integral theories [11] applied to the case of a polaron in a cylin-
drical wire with parabolic confinement potential, i.e., V(p) ~ Q2p?. Although the two
types of boundary potentials (rigid and parabolic) are qualitatively different in nature,
we find it instructive to display the domain of validity of the strong coupling theory. An
immediate glance at the family of curves in Figure 1 reveals that the point where the
pure adiabatic theory starts to lie deviated below the path integral approximation shifts
down to smaller values of « as the degree of confinement is increased (i.e., as 2 is tuned
to large values); and it is this salient feature which leads us be motivated to treat the free
direction with the more suitable LLP transformation, but still retain the strong-coupling
characterization of the polaron in the lateral directions. We therefore reasonably use
an admixture of the strong and intermediate coupling approximations to shed a better
insight into the ground state polaron properties in highly anisotropic Q1D structures of
weak polar materials.
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Figure 1. The polaron binding energy &, = {2 — E; as a function of « in a parabolic boundary
wire. The solid and dashed curves refer respectively to the strong coupling [10] and path integral
[11] theories. The set of curves, from bottom to top, are for Q = 0, 10, 10% and 103.
2.3. Variational Calculation

In the following, we adopt the case of a stationary polaron, i.e. take

(0](®e|U5 ' UT TP U Us|®,)[0) = 0,

and thus regard P, as a virtual momentum which we retain to keep track of the effective
mass of the coupled electron-phonon complex.
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Calculating the expectation value of H” (11) in the state ®.|0), we obtain the
ground state energy, given by

E; = e, +P?—2P.II, + [1V]?

+ > ud(l+¢?) -2 Tques, (14)

Q Q

where

10 )
= (B — == (p—)|® 15
o = (ol -2 (g ) 10, (15)
sg = (D)0 B,) (16)

Defining, for notational convenience,

) Jo,1 MQ )
T (T) = / dt t" I (£) o () Jo(xt)exp(—?t ), (17)
0

and adopting the form (4) for the electron wavefunction, we obtain €; and s, , equations
(15) and (16), to be expressible in the following concise forms

@ 0) — (/)25
%:ﬁ+ﬁ{%ﬁawmamg mm}, )
00

and

oy = T0a/r) (19)

q 1
Uéo)(o)
The variational function ug(®e) minimizing Eq.(14) is found to be given by the following
Q
nonlinear equation

{1 —2(P, —TIM)q, + qg} uo —Tosg =0, (20)

which can easily be handled with the consideration that, from symmetry arguments, the
term H(ZO) (12) can only differ from the total momentum by a scalar factor. Hence, setting

n =np. (21)
the optimal-fit condition (20) for ug(®P.) conforms to a convenient expression. We obtain

Lqsq
Uu. =
@ 1- 2(1 - n)quz + qz

(22)
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in which the unknown scalar, 7, is determined by the transcendental equation

I'2s2q,
nP. = Z Q% 2 - (23)
(1= 20— n)Pog: + 2]

In complete form, with the optimal fit for ug(®.) substituted in, and the wavevec-
tor sums involving powers of first and second order in P, projected out, equation (14)
takes the form

1
Eg:ek—ZF%531+q2+(l—n)Pg, (24)
Q z

from which we identify the effective polaron mass as
1
=—. 25
Mp =717 n (25)

For a virtual translation (P, ~ 0), Eq.(23) can be expanded in powers of P, to yield
2
gz
n=4(1-n)) Tgs: —=5=+0(P?), (26)
) (1+42)

which, upon solving for 1 and substituting in the mass expression (25), we obtain

2

q:
mp:1+4g 1%537. (27)
1 2\3
g (1+4q2)

Projecting out the @-summations in equations (24) and (27), we finally arrive at the
following integral - expressions for the ground state energy and the longitudinal mass

o0
1
E, = - d 2 28
o €L a/o q1+qsq, (28)
a [ qg+3
m = 14+ = dqq——= s . 29

3. Results and Conclusions

The energy expression (28) depends on the variational parameter p in a compli-
cated manner through the set of equations (17-19). The optimal fit to p which minimizes
E, can therefore be performed by numerical techniques. In the following we give our
results in terms of the binding energy of the polaron, &, = (jo,1/R)?> — E; (relative to
the subband).

It should be re-emphasized that the theory we have used in this work constrains
the validity of our results to narrow wires and to electron-phonon coupling strengths that
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are not too strong. Clearly, for a small a one requires correspondingly a high degree
of lateral confinement to compensate for weak phonon coupling and make the polaron
go over to a “pseudo-strong” coupling characterization in the lateral plane achieved by
the radially inward localization towards the wire axis. In the meantime, however, the
effective phonon coupling in the longitudinal direction will be assumed to remain weak
or at least, to grow not too powerful to violate the LLP - weak-coupling condition that
we have undertaken for the polaron behaviour along the z axis. Within the framework of
the “mixed-coupling” description thus constructed, one obtains a means of studying the
ground state polaron properties in thin wires of weak polar materials.

NN a=1

€p

0.1 1.0
R

Figure 2. The binding energy &, as a function of the wire radius for a« = 1. The solid
and dashed curves display the results of the mixed-coupling and path-integral [11] theories,
respectively. The dotted curve refers to the results derived within the pure strong-coupling
approach [8].

Selecting o = 1, an intermediate coupling strength for which the LLP-theory
proves to work rather well, we display the results of the present theory as a function of
the wire radius for R < 2. In Figure 2 we also supply the energy values of the pure
strong-coupling treatment of the same problem where the canonical transformation (7)
is by-passed and the electron wavefunction (4) is extended to include a gaussian spread
along the wire axis, i.e., ®c(p) — Po(p)exp(—2A%22) [8]. A comparison of the two
theories reveals that the strong coupling binding energy values lie deviated below the
present results except for very small values of R simply because, for an intermediate
coupling strength like o« = 1, the pure adiabatic approach can be convenient at only
very high degrees of confinement where the pseudo-enhancement in « is dominantly
realized. In this extreme, with « scaled to effective values considerably larger than 1,
the pure strong-coupling treatment becomes even superior to the LLP-framework and
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yields better results since now the effective interaction along the length of the wire should
be characterized with a projection more on the strong-coupling side as the wire is made
thinner. On the contrary, as the geometric confinement is released allowing the polaron to
expand and relax itself laterally, the strong-coupling theory starts to become inadequate
and rapidly loses its validity due to that in a comparatively delocalized configuration the
effective phonon coupling strength falls far below to sustain the adiabatic condition. With
the LLP - canonical transformation U; turned on, however, the deficiency encountered
for comparatively large R (R > 0.4) gets removed and the strong-coupling approach
becomes refined by a great extent yielding considerably improved energy upper bounds.
To see this we also make reference to the available data from a similar problem treated
under the Feynman path integral formulation applied to the case of a wire with parabolic
boundary potential, V(p) = 20?p* (cf. Ref[11]). Even though the nature of the problem
treated therein is qualitatively different from that for the rigid-boundary potential, we
find it useful to generate a plot of the path integral results (cf. dashed curve in Figure 2)
to shed some insight into the applicability of the present formalism. We correlate the two
theories by comparing the relevant subband energies, and simply use R = jo 1/ V20 as
the corresponding effective radius. We clearly see that within the range 0.4 < R < 0.8,
the present and the path integral theories are in fairly close agreement. Beyond this
range, with increasing wire radius, the present theory is seen to display an increasingly
large digression from the Feynman results due to that a delocalized nature of the electron
in the lateral directions violates the pseudo-adiabatic condition which we have imposed
apriori in this problem.

The basic qualitative features practiced for & = 1 are seen to be retained for smaller
values of a as well. It is observed that, in spite of a coupling constant smaller by an order
of magnitude or even more, a sufficiently high degree of localization can still compensate
for weak phonon coupling and lead the theory to show up a strong-coupling aspect in
the transverse directions perpendicular to the wire axis. As reference to weak electron-
phonon coupling, we select CdTe (« ~ 0.40) and GaAs (« & 0.07) based wires, which are
of particular interest as typical examples of II-VI and III-V compound semiconductors.
In Figure 3 we provide plots of the binding energy &£, and the longitudinal mass m, in
these materials as a function of the wire radius.

In the energy plot for @« = 0.40 we inspect rather prominently that the LLP
transformation employed along the z axis enhances the results considerably in good quality
over to the values achieved within the pure strong-coupling treatment of the problem.
For o = 0.07, the digression in the adiabatic approximation is even much greater, and
the corresponding strong-coupling binding energy values (not shown in the figure) lie
drastically deviated, by almost an order of magnitude, below the present results. The
overall feature displayed by the succession of curves calculated within the mixed-coupling
approximation used in this work and the Feynman path integral theory is that the range
of validity of the present results is limited, from above and below, to not too broad and
not too thin wires, yet however, the relevant values within this range (0.3 < R < 0.9) are
found to be commendable and are in somewhat close agreement with the corresponding
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path integral results (cf. Figure 4).
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Figure 3. The binding energy &, and the effective polaron mass m, as a function of the
wire radius. The upper (lower) set of curves are for CdTe (GaAs) where o = 0.40(0.07). The
solid and dashed curves display the results of the mixed-coupling and path-integral [11] theories,
respectively. The dotted curve refers to the pure strong-coupling approach [8] performed for
a = 0.07. The heavy dots, included for further comparison, represent the available data obtained
for a square cross section wire under perturbation theory [3] where we have correlated the side
length L to R through R = (jo,1/v/27)L. In the plots, the energy and length units correspond,
respectively, to 35 (18) meV and 40 (44) A, for GaAs (CdTe).
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Figure 4. The binding energy &, as a function of « in the weak/intermediate coupling regime.
The set of curves from top to bottom are for R = 0.4, 0.6and 0.8. The solid and dashed curves
display the results of the mixed-coupling and path-integral [11] theories, respectively.
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For large and small values of R lying beyond this range, the mixed-coupling
approach fails to yield a satisfying description due to that, for not thin enough wires,
the strong-coupling requirement which we have imposed in the lateral directions is not
adequately satisfied, or else, in very thin wires, the LLP - weak-coupling approximation
employed along the length of the wire becomes violated as a consequence of the pseudo-
enhancement in the overall effective phonon coupling strength. Nevertheless, in spite of
these drawbacks, we feel that the mixed-coupling theory employed in this work can be
regarded as capable of reflecting a sensible characterization of the Q1D-polaron within a
reasonable range of the wire diameter lying within 30 — 80 Angstrom units in GaAs and
CdTe based wires.
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