
Tr. J. of Physics
22 (1998) , 181 – 191.
c© TÜBİTAK
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Abant İzzet Baysal University,

Physics Department, Bolu - TURKEY

Received 19.09.1997

Abstract

Singlet axial current form factor g0
A is calculated as a function of bag radius in

the two flavor chiral solitonic bag model with unequal quark masses. The value of
g0
A near 1 fm is sufficiently small.

Introduction

The EMC data [1] implies that the quark spin contribution (i. e. the proton form
factor of the singlet axial vector current at zero momentum transfer) to the proton angular
momentum approximately vanishes. However relatively large experimental uncertainties
is consistent with a reasonably small non-zero value.

First of all, this rules out the naive nonrelativistic quark model (NRQM) in which
the spin of the proton is completely accounted by the combination of the quark spins.
Given this failure of NRQM it was necessary to go to the perturbative QCD framework, to
adress the problem and indeed there is sizable literature in this direction [2]. As there are
quark orbital contributions, as well as the gluonic ones to the proton angular momentum,
the calculations are not easy in this framework. Thus as is usually done, one resorts
to effective models of QCD. One of the most popular effective models of QCD is the
Skyrme model [3]. This model proved to be quite successful in predicting the low energy
properties of the hadrons [4]. In the simplest version of the Skyrme model one gets zero
for the singlet axial vector current matrix element [5]. Thus, in the light of the EMC
data, The Skyrme model could be taken as a desirable zeroth order model.

In the recent past all possible extensions of the naive Skyrme model have been
tried in addressing the problem under consideration [6]. The simplest extension of adding
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the Wess-Zumino (WZ) term, in the SU(3) case, did not produce any new result different
than the naive Skyrme model, as the WZ term does not contribute to the UA(1) current.

One could think of invoking many additional chiral invariant terms, most of them
being rather ad-hoc, however. For instance adding a term of the type tr(lµlµlν l

ν) to the
lagrangian produces an additional piece proportional to tr(lν lν lµ) in the UA(1) current.
It was shown that [6] after exciting the collective coordinates, this additional term in
the UA(1) current is quadratic in A†Ȧ , and thus is negligible [ in this semiclassical
quantization framework, we keep only the terms in the lagrangian which are quadratic
in terms of the angular velocity operators tr(T aA†Ȧ), where T a are the generation of
the SU(N); thus currents must be linear in terms of the angular velocity operator]. Thus
another interesting claim [7] that this type of trilinear current should represent the entire
UA(1) current whose coefficient to be determined from an anomaly-like argument, is also
ruled out.

It is well known that some of the problems the naive Skyrme model, (and its
extensions) face can be remedied by taking into account of short distance effects. That this
the case was demonstrated in computing neutron proton mass difference satisfactorily in
the framework of chiral bag model, by introducing the up and down quark mass difference
explicitly [8]

The failure of the naive Skyrme model [9] in predicting the neutron - proton mass
difference made it clear that the predictive power of this model was limited to those
problems which do not require the crucial short distance information, that baryons are
made of quarks, as the solitonic baryon (expressed as a nonlinearly twisted lump of the
Goldstone bosons) do not remember that they are made of quarks. That the neutron is
heavier than the proton might be a consequence of the crucial property of the underlying
QCD, that the d quark is heavier than the u quark, calls for a more complete effective
theory of QCD which contains in addition to the Skyrme lagrangian, explicit quarks
as well. This naturally leads one to the so - called chiral solitonic bag model [10], an
intuitively appealing framework that the quarks and Skyrmion play complementary roles
in the baryon. Namely, the quarks keep the Skyrmion from collapsing, while the Skyrmion
keeps the quarks confined. It was shown in ref. [8] that the n−p mass difference is indeed
correctly predicted by this model.

At this point, it is worth commenting on the possible modification of the two
flavor model [2] by exciting a massive isosinglet η field outside the bag to account for
the axial anomaly [2]. This is done in such a way, that the classical global axial UA(1)
symmetry of the underlying QCD which is broken explicitly by the continuity equation
is restored; that is η is coupled in such a way that isosinglet axial current is continuous
across the bag surface. This brings a new contribution to A

(0)
µ outside the bag which

is a pure gradient proportional to ∂µη . The nonconservation of A
(0)
µ as generated by

nonperturbative effects outside the bag can be represented by choosing mη 6= 0. Being
a pure gradient, the contribution of this mesonic part to the quark moment of inertia is
shown to be small [6]. Thus, we will neglect the anomaly contribution in our discussion,
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and restrict our attention exclusively to the quark contribution.
We are going to follow the same model here in computing the singlet axial vector

current matrix element as well. We will demonstrate that the presence of u − d quark
mass difference (i. e. explicit breaking of the isospin symmetry) plays a crucial role in
obtaining a reasonably small matrix element for the UA(1) current consistent with EMC
data in the two flavor case.

Chiral Solitonic Bag Model and its Quantizations

The lagrangian of the two flavor chiral solitonic bag model is defined by [10]

L = Lqθ(R − r) + Lmθ(r − R) + LBδB (1)
Lq = ψ(iγµ∂µ −M)ψ

Lm =
F 2
π

16
tr(∂µU †∂µU) +

1
32a2

tr
[
U †∂µU , U †∂νU

]2
+

m2
πF 2

π

8(mu + md)
tr
(
M
(
U + U † − 2I

))
LB = −1

2
(ψLUψR + ψRU †ψL)

M = diag(mu, md).

where Fπ is the pion decay constant, and a is the Skyrme’s dimensionless coupling
constant.

Following ref. [8], we will describe the the meson phase by the static classical fileld
configuration U = exp(i~τ · x̂F (r)) where F (r) is determined by minimizing energy and
imposing the bag boundary conditions F (0) = π and F (∞) = 0, and the quark phase
by the quantum field operator ψ(~x, t).

The standard method to excite the solitonic baryon degree of freedom, that is, to
construct the low-lying quantum states above the semiclassical ground state is to make
the substitution

U(~x, t) = A(t)U0(~x)A†(t) (2)
ψ(~x, t) = A(t)ψ0(~x, t)

where U0(~x) is the static soliton solution and A(t) is the arbitrary time dependent SU(2)
matrix, the quark field ψ0(~x, t) is the field in the rotating frame. Substituting these in
eq. (1), we get

L = L0 + λmtr(Ȧ†Ȧ) +
i

2
Xi

∫
d3xψ̄0γ0τiψ0 −

1
2
∆mqR3i

∫
d3xψ̄0τiψ0 (3)

where

Xi = tr
(
τiA
†Ȧ
)

(4)
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Rij = −1
2
tr
(
A†τiAτj

)
.

and λm is the moment of inertia of the meson phase, associated with the collective
rotation, and is given by

λm =
2πF 2

π

3

∫ ∞
R

drr2 sin2 F (r)

{
1 +

4
(aFπ)2

[(
dF (r)

dr

)2

+
sin2 F (r)

r2

]}
. (5)

ψ0(x, t) satisfies the equation of motion(
iγµ∂µ −m0 + iγ0A

†Ȧ +
1
2
∆mqA

†τ3A

)
ψ0(~x, t) = 0 (6)

and the bag boundary condition

−ix̂ · ~γψ0(~x, t) |Bag= exp(iγ5x̂ · ~τF (r))ψ0(~x, t) |Bag . (7)

We can formally solve the eq. (5) as [8]

ψ0(~x) = χ0(~x) −
∫

d3y S(~x, ~y; w)
[
iγ0A

†Ȧ +
1
2
∆mqA

†τ3A

]
ψ0(~y). (8)

Hedgehog quark state solutions [10] χ0(~x), satisfies the equation(
wγ0 + i~γ · ~∇−m0

)
χ0(~x) = 0 (9)

with

χ0(~x) =
N√
4π

 i
√

w+m0
w

j0(kr)|0 >

−
√

w−m0
w j1(kr)~σ · x̂|0 >

 . (10)

S(~x, ~y; w) is the bag propagator defined by [11](
wγ0 + i~γ · ~∇−m0

)
S(~x, ~y; w) = δ3(~x − ~y) (11)

(exp(iγ5~τ · x̂θ) + i~γ · x̂)SB |Bag= 0.

where

S(~x, ~y; w) = S0(~x, ~y; w) + R2

∫
dΩαS0(~x, ~α; w)KαS0(~α, ~y; w)

+ (R2)2

∫
dΩαdΩβS0(~x, ~α; w)KαS0(~α, ~β, w)KβS

0(~β, ~y; w) + · · · (12)
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with
Kα = exp(iγ5~τ · n̂αθ) + i~γ · n̂α , (13)

So(~x, ~y; w) is the usual Dirac propagator written in terms of two component spherical
harmonics Φjlm(Ω)

S0(~x, ~y; w) =
∑
jll′m

S0
jll′ (r, r

′; w)Φjlm(Ω)Φ†jl′m(Ω′) (14)

with

S0
jll′ (r, r′; w) = −ik [(m0 + wρ3) δl l′ + kρ2(l′ − l)] fl(kr)fl′ (kr′) (15)

fl(kr) = jl(kr)θ(r′ − r) + hl(kr)θ(r − r′)

jl and hl are Bessel and first kind Hankel functions, and γ0 = ρ3 , γi = −iρ2 ⊗ σi ,
γ5 = ρ1 ⊗ 1 , where ρ and σ are Pauli matrices. Let us decompose

Sjll′ (r, r′; w) = S0
jll′ (r, r′; w) + SBjll′ (r, r′; w) (16)

here SBjll′ (r, r
′; w) is the boundary term [12]

SBjll′ (r, r
′; w) = − (kR)2jl(kr)jl′ (kr′)

[(1−M cos θ)2 − (K sin θ + W cos θ)2]
(17)

×
{ [ (

(m0 + wρ3)2h2
l − k2h2

l̄

)
cos θ

+ 2k(l̄− l)hlhl̄(m0ρ3 + w) sin θ
](

a + bρ3(l̄− l)
)

δll′

+ k(l′ − l)
[ (

w(h2
l − h2

l̄ ) + m0ρ3(h2
l + h2

l̄ )
)

(l̄− l) cos θ

+ 2khlhl̄ sin θ
] (

bρ2 + iaρ1(l − l̄)
) }

with

l̄ = 2j − l (18)

K = −ik2R2
(
j0(kR)h1(kR) + j1(kR)h0(kR)

)
M = −ikm0R2

(
j0(kR)h0(kR) + j1(kR)h1(kR)

)
W = −ikwR2

(
j0(kR)h0(kR)− j1(kR)h1(kR)

)
where Eq. (8) can be solved perturbatively. Since ∆mq is small, it is consistent to solve
it to first order in ∆mq. Furthermore the collective rotations are adiabatic, thus τaA†Ȧ
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is also small. Therefore these rotations will also be treated to first order. Then eq. (8)
can be rewritten as

ψ0(~x) = χ0(~x)−
∫

d3y S(~x, ~y; w)
[
iγ0A

†Ȧ +
1
2
∆mqA

†τ3A

]
χ0(~y). (19)

Substituting eq. (19) in eq. (3) we get the complete Lagrangian

L = L0 −
1
2
ΛijXiXj − i

∆mq

4
R3jCjiXi (20)

where
Λij = λmδij +

1
2

∫
d3xd3y [χ̄0(~x)τiγ0S(~x, ~y; w)γ0τjχ0(~y) + h.c.] (21)

and

Cij =
∫

d3xd3y
[
χ†0(~x) (τiS(~x, ~y; w)τj + τiγ0S(~x, ~y; w)γ0τj)χ0(~y) + h.c.

]
(22)

A lengtly analysis shows that both Λ and C matrices are diagonal in flavor space

Λij = δij(λm + λq) , Cij = δijC (23)

where

λq =
1
2

∫
d3xd3y [χ̄0(~x)γ0S(~x, ~y; w)γ0χ(~y) + h.c] (24)

C =
∫

d3xd3y
{
χ†(~x) [S(~x, ~y; w) + γ0S(~x, ~y; w)γ0] + h.c

}
(25)

Singlet Axial Current

The EMC measurement of the proton structure function, and the baryonic weak
decay data on F and D ratio yield a value for the singlet axial current matrix element.

< p ↑ |A(0)
µ |p ↑>= 0.00± 0.24. (26)

Let us now construct the singlet axial current from eq. (2). As the pionic part does not
contribute, it is given purely by the quark contribution

A(0)
µ =

1
2
ψ̄γµγ5ψ inside the bag (27)

A(0)
µ = 0 outside the bag

The matrix element of the current eq. (27) between nucleon states can be written
in terms of two form factor gA and hA

< p′, s|A(0)
µ (0)|p, s >=

1
2
ū(p′, s)

[
gA(q2)γµγ5 + hA(q2)qµγ5

]
u(p, s) (28)
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where p′, p and s are the nucleon momenta and spin, and u is the free Dirac spinor of
the nucleons and q = p− p′ . As it is well known that the form factor gA(q2) has no pole
at q ' 0, due to UA(1) anomaly, we can take the limit q → 0 uniformly to obtain

< p, s|A(0)
µ (0)|p, s >=

2
3
gA(0) < Sµ > (29)

here < Sµ > is the nucleon spin. Following the general philosophy in the Skyrme model
calculations, we will compute the left hand side of eq.(29) explicitly, by computing the
matrix element of

∫
d3xA

(0)
i (x).

Now we write the singlet axial current for the quark part∫
d3xA

(0)
i (~x) =

1
2

∫
d3xψ̄(~x)γiγ5ψ(~x) (30)

Using eq. (19), to first order in A†Ȧ and ∆mq , we obtain∫
d3xA

(0)
i (~x) = −iΓijXj +

∆mq

4
DijR3j (31)

where

Γij =
1
2

∫
d3xd3y

[
χ†0(~x)γ0γiγ5S(~x, ~y; w)γ0τjχ0(~y) + h.c

]
(32)

Dij =
∫

d3xd3y
[
χ†0(~x)γ0γiγ5S(~x, ~y; w)τjχ0(~y) + h.c.

]
Using γ0 = ρ3 , γi = −iρ2⊗σi , γ5 = ρ1⊗1, and the identity τiχ0 = −σiχ0 , again after
a lengtly calculation one can show that Γij , Dij are diagonal in flavor space, namely,
Γij = δijλq , Dij = δijD with

D =
∫

d3xd3y
[
χ†0(~x)S(~x, ~y; w)χ0(~y) + h.c

]
(33)

eq. (31) can be rewritten as∫
d3xA

(0)
i (~x) = −iλqXi +

∆mq

4
DR3i (34)

The spin and isospin operators can be obtained by applying the Noether’s theorem to
the Lagrangian in eq. (20), with the transformations respectively being δrA = iAr and
δlA = ilA where (r, l = iεiτ i/2).

Si = −iλTXi +
∆mq

4
CR3i (35)

Ii = RijSj .
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Solving Xi in terms of Si in eq. (35), and substituting in eq. (34), we get∫
d3xA

(0)
i =

λq
λm + λq

Si −
∆mq

4

(
C

λq
λm + λq

−D

)
R3i , (36)

Next we substitute the explicit expression for χ0 given eq. (10) in these expressions and
get

λq = − R̃

aFπν4j2
0(ν)[ξ[ν(1 + w2

1)− 2w1] + µw1]

∫ ν

0

dyy2
{

(37)∫ y

0

dxx2
[

(ξ + µ)2j2
0(x)j0(y)n0(y) + (ξ − µ)2j2

1 (x)j1(y)n1(y)

+ ν2
(

j2
1(x)j0(y)n0(y) + j2

0(x)j1(y)n1(y)
) ]

+
∫ ν

y

dxx2
[

(ξ + µ)2j2
0(y)j0(x)n0(x) + (ξ − µ)2j2

1(y)j1(x)n1(x)

+ ν2
(

j2
0(y)j1(x)n1(x) + j2

1(y)j0(x)n0(x)
) ]

−
[

ν

2(a − b)

∫ ν

0

dxx2
[
cos F

[
(ξ + µ)j2

0(x)j2
0(y)

(
(ξ + µ)2h2

0(ν)− ν2h2
1(ν)

)
+ (ξ − µ)j2

1 (x)j2
1(y)

(
(ξ − µ)2h2

1(ν)− ν2h2
0(ν)

)
− 2ν2j2

0(x)j2
1(y)

(
(ξ − µ)h2

1(ν)− (ξ + µ)h2
0(ν)

) ]
+ ν sinFh0(ν)h1(ν)

(
(ξ + µ)2j2

0(x)j2
0(y) − (ξ − µ)2j2

1(x)j2
1(y)

)]
+ h.c.

]}
and

C = − 4R̃

aFπν4j2
0(ν)[ξ[ν(1 + w2

1)− 2w1] + µw1]

∫ ν

0

dyy2
{

(38)∫ y

0

dxx2
(

(ξ + µ)2j2
0(x)j0(y)n0(y) − (ξ − µ)2j2

1(x)j1(y)n1(y)
)

+
∫ ν

y

dxx2
(

(ξ + µ)2j2
0 (y)j0(x)n0(x)− (ξ − µ)2j2

1 (y)j1(x)n1(x)
)

−
[

ν

2(a− b)

∫ ν

0

dxx2
[

(ξ + µ)j2
0(x)j2

0(y)
[
cosF

(
(ξ + µ)2h2

0(ν)− ν2h2
1(ν)

)
+ 2ν(ξ + µ)h0(ν)h1(ν) sinF

]
+ (ξ − µ)j2

1(x)j2
1(y)

[
cosF

(
(ξ − µ)2h2

1(ν)− ν2h2
0(ν)

)
− 2ν sin F (ξ − µ)h0(ν)h1(ν)

]]
+ h.c.

]}
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and

D = − 2R̃

aFπν4j2
0 (ν)[ξ[ν(1+ w2

1) − 2w1] + µw1]

∫ ν

0

dyy2
{

(39)∫ y

0

dxx2
[

(ξ + µ)2j2
0(x)j0(y)n0(y) − (ξ − µ)2j2

1(x)j1(y)n1(y)

+ ν2
(

j2
1(x)j0(y)n0(y) − j2

0(x)j1(y)n1(y)
) ]

+
∫ ν

y

dxx2
[

(ξ + µ)2j2
0(y)j0(x)n0(x)− (ξ − µ)2j2

1(y)j1(x)n1(x)

+ ν2
(

j2
0(y)j1(x)n1(x)− j2

1(y)j0(x)n0(x)
) ]

−
[

ν

2(a− b)

∫ ν

0

dxx2
[

(ξ + µ)j2
0 (x)j2

0(y)
[
cosF

(
(ξ + µ)2h2

0(ν)− ν2h2
1(ν)

)
+ 2ν(ξ + µ)h0(ν)h1(ν) sinF

]
+ (ξ − µ)j2

1(x)j2
1 (y)

[
cos F

(
(ξ − µ)2h2

1(ν)− ν2h2
0(ν)

)
− 2ν sin F (ξ − µ)h0(ν)h1(ν)

]]
+ h.c.

]}
where

ξ = ER , w1 =
j1(ν)
j0(ν)

, µ =
m0R̃

aFπ
, ν = kR , and (40)

a− b = 1− (M + W ) cosF −K sinF

The 1/(a−b) term is to be computed by carrying out the Wick rotations k → iκ , w → iη
which is necessary for the convergence of MRE [12]. Using eq. (29), The left hand side
of eq. (35) between two nucleon state is to be identified with 2g0

A/3 < N |Si|N > . Thus
we find for g0

A

g0
A =

3
2

λq
λT
− 3∆mq

8

(
C

λq
λT
−D

)
< N |R33|N >

< N |S3|N >
. (41)

Next, using < p ↑ |R33|p ↑>= 1/3, we get

g0
A(p ↑) =

3
2

λq
λT
− ∆mq

4

(
λq
λT

C −D

)
(42)

and Notice that for ∆mq → 0, our result is identical to that of the third reference in Ref.
[5], where they have used the cranking formalism. The new contribution proportional
to ∆mq , generated by the isospin breaking, differs for proton, as expected. We have
calculated eq. (41) by determining the radial integrals in eqs. (37,38,39) where the
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numerical solutions of the equation satisfied by the Skyrme profile F (r)

(
1
4
r̃2 + 2 sin2 F )F

′′
+

1
2
r̃F
′
+ sin 2FF

′2
− 1

4
sin 2F − sin2 F sin 2F

r̃2
= 0 (43)

with the boundary conditions F (r) = π at r = 0, F (r)→ 0 as r →∞
r̃ = aFπr is used as an input. We have taken µ = 0.5, ∆mq = 3.8 MeV, and

a = 5.45. The results of the numerical analysis for proton of spin up state is presented
in fig.1.

The author would like to thank Professor N.K. Pak for most stimulating discussion
and also to thank Tuğrul Yılmaz for his assistance in carrying out the numerical analysis.
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Figure 1. g0
A plotted as a function of the bag radius. T shows the total, 1 is the ∆mq

contribution and 0 is equal mass case

References

[1] EMC Collab., J. Ashman et al., Phys. Lett. B 206 364 (1988).

[2] For a general review of the EMC effect and for further references, see R. L. Jaffe, A.
Manohar, Nucl. Phys. B 337 509 (1993).

[3] T.H.R. Skyrme, Proc. Roy. Soc. A260, 127 (1961). N. K. Pak, C. H. Tze, Ann. Phys.
(N.Y.) 117, 169 (1979); R. Balachandran, et al., Phys. Rev. D27, 1133 (1983).

190



KARAGÖZ
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