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Abstract

The spin wave energy is determined by the competition between uniaxial and
cubic anisotropy. We discuss the reorientation temperature TR of magnetization in
two-dimension and calculate its dependence on the exchange, J , and the uniaxial
anisotropy, G , parameters within random phase approximation. We find that TR
varies as

√
JG in the planar regime.

Experiments have shown that thin films of Fe on Ag (100) for a thickness less than
a few monolayers [1, 2] show a phase transition at a temperature which is some fraction,
typically of the order of a half of Tc (Curie temperature). It has been argued that this
transition is driven by the large entropy associated with a planar magnet. In the past,
numerous theoretical work has been done in order to understand this effect [3, 4, 5, 6, 7,
8].

It could be shown that the reorientation of the magnetization vector is a conse-
quence of the competition between the surface anisotropy which may favor a perpendicular
magnetization and the long-range dipole interaction which favors an in-plane magnetiza-
tion. It was shown that both first and second order transitions are possible but the result
is not physically very transparent [7, 8].

In the present paper, we focus on the order of the reorientation transition and on
its dependence on system parameters. We have chosen to look at this problem using
an RPA (random phase approximation) [9] spin wave approach which is valid in the
uniaxial regime. We consider the spin wave theory for a two-dimensional ferromagnet
with uniaxial anisotropy. The important fluctuations occur at long wavelength so that
the effect of uniaxial anisotropy and anisotropic exchange are equivalent. In the uniaxial
case the magnetization M is perpendicular to the wave vector k , and the effects of dipolar
interactions are not important in the spin wave regime and they can be safely neglected.
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In order to determine the anisotropic part of the free energy, which is responsible
for the existence of easy magnetization directions, we start with the Hamiltonian

H = H0 +Ha, (1)

where
H0 = −J

∑
〈ij〉

Si · Sj (2)

is the Heisenberg Hamiltonian and J in Equation (2) is the ferromagnetic nearest-
neighbour coupling constant and

Ha = −G
∑
i

(Szi )
2 +Kp

∑
i

[(Szi S
y
i )2 + (Syi S

z
i )

2 + (Szi S
z
i )

2] (3)

describes the spin anisotropy. The first term on the right hand side (rhs) of Eq. (3)
represent the uniaxial anisotropy constant and the second term is the cubic anisotropy
constant. The inclusion of the entropic effects at high temperature is to reduce the
importance of G . We study this by defining a variational free energy which is derived
from Hamiltonian H ′ , which is the same as Eq. (1) except that G has been replaced by
a variational parameter g which is in Eq. (3).

We consider the effect upon the spin wave spectrum of an anisotropy within the
easy plane. It is convenient to write the spins in terms of linearized spin wave variables
[10]. Let us suppose that at temperature T the mean magnetic moment 〈S〉 = m , which
is independent both of g and T . The quantity m denotes the relative magnetization.

In the case of classical limit the total Hamitonian can be written in the following
form[10]

H =
∑
k

[
a+
k ak(εk + ξ) +

1
2
(a+
k a

+
−k + aka−k)ν

]
. (4)

We define ξ = 2m(g + m2Kp) and ν = 0 and note that ξ is independent of the wave
vector k and arises from the anisotropy energy. The term εk arising from the exchange
forces has the form Dk2 in the region of interest in which D ' 2Jma2 for sc, bcc and
fcc lattices of lattice constant a . The spin wave energy is given by:

h̄ωk =
(
A2
k − B2

k

)1/2
(5)

where Ak = εk + ξ and Bk = 0. Using Equation (5) we find the spin wave energy for
h̄ = 1

ωk = εk + 2m(g +m2Kp). (6)

For the anisotropy energies with field applied parallel or perpendicular to the plane,
these can be calculated from a quasi-classical argument. We consider the ground state
energy as a function of the magnetization direction F (g, θ). We obtain:

F‖(g, θ) = −hom sin θ − gm2 cos2 θ +
1
4
m4Kp sin2 2θ (7)
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F⊥(g, θ) = −hom cos θ − gm2 cos2 θ +
1
4
m4Kp sin2 2θ (8)

where ho = gµBH . The main result of an applied field parallel to the film is that the
equilibrium angle θo in low temperature phase T < TR is not exactly zero but assumes
the field and temperature dependent value given by

sin θo =
ho

2mg + 2m3Kp cos 2θ0
. (9)

In particular, when ho = 2m(g − m2Kp), i.e. for sufficiently high fields, a spin flop
phase transition proceeds, with the perpendicular component going to zero. Similarly,
a perpendicular applied field modifies the angle assumed by the magnetization after the
transition to a value given by

cos θo =
−ho

2mg + 2m3Kp cos 2θ0
. (10)

When ho = −2m(g +Kpm
2) the system undergoes a phase transition characterised by

the parallel component of M vanishing.
Experiments show that for many systems the direction of the magnetization is a

sensitive function of the temperature. At low temperatures the magnetization vector
is perpendicular to the surface, which is attributed to a strong surface anisotropy, by
increasing the temperature the magnetization vector switches to an in-plane direction [1].
This switching temperature decreases with increasing film thickness [11, 12, 13].

Jensen and Benneman[4] have used a classical mean field spin model. They find
that TR depends only on the surface anisotropy and is independent of the exchange
provided that J >> G . This is unsatisfactory because TR << TC (critical temperature)
for all J >> G . An alternative approach has been used by Pescia and Pokrovsky[3]
who show that the axial magnetic state becomes unstable to a Kosterlitz-Thouless phase.
They find that TR is proportional to TC and hence that TR can be appreciable fraction
of TC even for small anisotropy. However it was shown by Yafet et al[14] that the planar
Heisenberg model is stabilised by dipolar interactions and that the Kosterlitz-Thouless
transition is suppressed. Our result differs from these two earlier results [3, 4] in that the
in-plane magnetization appears when the perpendicular magnetization goes to zero. To
show it we write the total free energy F of the system as the following:

F (g, θ) = Fo(g, θ)+ < H −H ′ >o (11)

where
Fo(g, θ) = F‖(g, θ) + kBT

∑
k

ln
(
1− e−βωk

)
(12)

and the angular brackets denote the thermal average. Since the only k dependence of
ωk comes from εk, the sum, which is the second term of Eq. (12), may be transformed
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into an integral in two dimension between the energy gap and the first Brillouin zone
boundary.

The total free energy is minimized with respect to g and the result is:

ho
2m(g −m2Kp)2

(
−hom+ 2Gm2 − 2m4Kp

)
=
kBT

4πJ
ln(

kBT

ωo
), (13)

where ωo is the spin wave energy gap which is calculated by using Equation (6) at k=0.
The expression for the reorientation temperature TR is found from the condition that
Equation (13) has a solution for g → 0 at low temperatures. We find

TR = η
√
JG, (14)

where η =
(
32πm4/k2

B

)1/2 . We find that at T = 0 g = G as expexted and that for
T > 0, g decreases and that the reorientational transition occurs at T = TR as g → 0.
This result is in agreement with the low temperature results of Chui [7].

We also compared our result with the experimental observations on the system
Fe/Ag (100) obtained by Krebs et.al. [1] and Stampanoni et.al. [2]. They reported that
the disappearance of the ground state perpendicular remanence at temperatures ≤ 100K ,
i.e. well below the Curie temperature of the system. Our theory gives a reasonable
explanation of this important experimental finding. Thus a reorientation transition occurs
in a temperature region TR < Tc as where explored.

As a conclusion, reorientation temperature is driven by the large entropy associated
with a planar magnet. The reorientation temperature of magnetization was calculated by
using the RPA spin wave approach which is valid in the uniaxial regime. We found that
the spin wave velocity varies as

√
JG in the planar regime, which is a suggestive result.
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